
Proximity Problems for Point Sets with Low

Doubling Dimension

by

Lee-Ad Gottlieb

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

January 2009

Richard Cole—Advisor

c© Lee-Ad Gottlieb

All Rights Reserved, 2008

Acknowledgements

Acknowledgement is first due to my advisor, Richard Cole. I thank him

for patient direction, and devoting much of himself while expecting little in

return. Now I find this medium inadequate to express my full gratitude, and

must make do with a simple thank you.

My colleagues have made the past five years at Courant a very enjoyable

period in my life. I am especially thankful to Shabsi Walfish and Ragha-

van Dhandapani for many conversations that were often useful and always

amusing. I am also grateful to my friends (and co-authors) Tyler Neylon and

Liam Roditty, who were always a pleasure to collaborate with.

Finally, I’d to thank my parents, Sigal and Lenny, and Zuki (“tech sup-

port”) and Margalit for just being themselves.

iv

Abstract

In this thesis we consider proximity problems on point sets. Proximity

problems arise in many fields of computer science, with broad application

to computational geometry, machine learning, computational biology, data

mining, and the like. In particular, we consider the problems of approximate

nearest neighbor search and dynamic maintenance of a spanner for a point

set.

It has been conjectured that all algorithms for these two problems suffer

from the “curse of dimensionality,” which means that their run times grow

exponentially with the dimension of the point set. To avoid this undesirable

growth, we consider point sets that possess a doubling dimension λ. We

first present a dynamic data structure that uses linear space and supports a

(1+ε)-approximate nearest neighbor search of the point set. We then extend

this data structure to allow the dynamic maintenance of a low degree (1+ε)-

spanner for the point set. The query and update time of these structures

are logarithmic in the size of the point set and exponential in λ (as opposed

to exponential in the dimension); when λ is small, this provides a significant

speed-up over known algorithms, and when λ and ε are constant these run

times are optimal up to a constant. The spanner degree is optimal, while the

spanner update times improve on all previously known algorithms.

v

Contents

Acknowledgements . iv

Abstract . v

1 Introduction 1

1.1 Related work . 5

1.1.1 Nearest neighbor search 5

1.1.2 Spanners . 7

1.2 Thesis outline . 8

2 A nearest neighbor search structure 10

2.1 Hierarchical partition . 11

2.2 Approximate nearest neighbor search 12

2.2.1 Tree extraction . 12

2.2.2 Search description . 13

2.3 Implicit representation of the hierarchy 17

2.4 Dynamic maintenance of the hierarchy 18

2.4.1 Insertions . 18

vi

2.4.2 Deletions . 19

3 A new approximate nearest neighbor search structure 22

3.1 The hierarchy . 23

3.2 Spanning tree . 24

3.3 Implicit representation of the hierarchy 25

3.4 A cover search in 2O(λ) log n time 28

3.4.1 Balanced tree structure for T ′ 29

3.4.2 Search execution . 30

3.4.3 Locating the lowest implicit covering point 34

3.5 Refinement search . 35

3.6 Dynamic maintenance of the hierarchy 38

3.6.1 Insertions . 38

3.6.2 Promotions . 43

3.6.3 Correctness of the covering property 45

3.6.4 Deletions . 49

3.7 Centroid Path Updates . 52

3.7.1 Review of biased skip lists 53

3.7.2 Dynamic changes to T ′ 56

3.7.3 Modified biased skip lists 58

3.8 Linear space and efficient storage of friends lists 64

4 Application: A spanner 66

4.1 A first-attempt spanner . 66

vii

4.2 The new spanner . 69

4.2.1 Motivation: An incremental spanner. 69

4.2.2 Step 1. Pruning the spanning tree 71

4.2.3 Step 2. Creating a better hierarchy 72

4.2.4 Step 3. A spanner for the intermediate hierarchy . . . 74

4.2.5 Step 4. A spanner for the final hierarchy 78

4.2.6 The degree of the final spanner 81

4.2.7 Dynamic updates . 86

5 Further applications 93

5.1 Closest pair . 93

5.2 Well separated pairs decomposition 94

viii

Chapter 1

Introduction

In 1961, Bellman [5] coined the now ubiquitous term “curse of dimension-

ality” to describe a problem that arises when estimating probability distri-

bution functions (PDFs) on high dimensional spaces. The complexity of the

solution, as well as the memory needed to compute it, grow exponentially

with the dimension. The growing memory and computation requirements

quickly cause the problem to become intractable.

Bellman himself referred only to estimating PDFs, but in fact the curse

of dimensionality applies to a wide range of computational problems. For

example, the curse can readily be seen when considering the convex hull of

n points, perhaps one of the most basic features in computational geome-

try. Chazelle [15] gave an O(n⌊d/2⌋ + n log n) algorithm for finding a convex

hull (where n is the size of the point set and d is the dimension), and this

algorithm is optimal. In fact, the maximum number of faces of a hull grows

1

exponentially in d; there may exist up to n⌊d/2⌋ faces of dimension d − 1

[33]. It is not surprising then that other basic operations on the convex hull,

such as determining the actual number of facets in the hull or whether the

hull is simplicial (meaning the hull is composed solely of simplices of affine

independent points), can be shown to require Ω(n⌊d/2⌋−1 + n log n) time [20].

Now, consider the nearest neighbor search problem (sometimes called the

post office problem). Nearest neighbor search (NNS) is one of the basic

operations computed on points. The problem asks to preprocess a set X of

points in a certain metric space M , so that given a new query point q ∈ M ,

the nearest point to q in X can be located efficiently.

In 1994, Clarkson [17] noted that although many data structures have

been proposed for efficient NNS – kd-trees [7], for example, claimed an “em-

pirically observed average running time of O(logn)” – their query times gen-

erally feature a very steep dependence on d, at least 2Ω(d). Based on this,

Clarkson concluded that the prospect of an O(log n) query time in high

dimension is “crushed by the ‘curse of dimensionality.’ ” While his claim

remains unproven, there is partial evidence that points to an even stronger

conjecture, that any (subexponential space) data structure for NNS will re-

quire exponential time for a query [10].

The aforementioned difficulties in NNS led researchers to consider an

approximate version of this problem. The approximate nearest neighbor

search problem (ANN) asks to preprocess a set X of points in a certain

metric space M , so that given a new query point q ∈ M , some point near to

2

q in X can be located efficiently. This modified problem has applications in

data mining, database queries and related fields.

However, for high dimensional metrics, a (1 + ε)-approximate nearest

neighbor search for ε < 1 may still require significant computation time,

due to the inherent complexity of the metric: Currently the best query time

for ANN in Euclidean space is O(ε(1−d)/2 log n) [14]. Hence it is natural to

study ANN techniques for point sets which are effectively lower dimensional,

although inhabiting a high dimensional space.

A recent successful approach has been to consider point sets that have

a small doubling dimension: Let the space within radius r of a point be

called the ball centered at that point. A point set X has doubling dimen-

sion λ if any set of points in X that are covered by a ball of radius r can

be covered by 2λ balls of radius r
2
. A metric is doubling if its dimension is

O(1). While a low Euclidean dimension implies a low doubling dimension

(Euclidean metrics of dimension d have doubling dimension O(d) [24]), low

doubling dimension is more general than low Euclidean dimension. For ex-

ample, exact nearest neighbor in metric spaces with low doubling dimension

may require Θ(n) computations (this follows easily from [25]), while for d-

dimensional Euclidean space Clarkson [16] has given a size O(n⌈d/2⌉(1+ε)) data

structure that answers exact nearest neighbor queries in O(logn) time (with

constant factors in the bounds depending on d and ε, ε > 0). By contrast,

for approximate nearest neighbor one can achieve the same results for low

doubling dimension as are possible for low Euclidean dimension.

3

Krauthgamer and Lee [28] developed a search structure for approximate

nearest neighbor search on a dynamic set of points. The performance of

their algorithm depends on the doubling dimension. Let α be the aspect

ratio of the points – the ratio between the largest and smallest interpoint

distances. Then their data structure supports (1 + ε)-approximate nearest

neighbor searches in time 2O(λ) log α + (1/ε)O(λ), and allows updates in time

2O(λ) log α. However, the dependence on the aspect ratio in the algorithm of

[28] is undesirable.

In this thesis we present a new data structure for approximate nearest

neighbor searches on a dynamic set of points in a metric space that have

doubling dimension λ. Our data structure has size O(n) and supports in-

sertions and deletions in 2O(λ) log n time, and finds a (1 + ε)-approximate

nearest neighbor in time 2O(λ) log n+(1/ε)O(λ). These performance times are

independent of the aspect ratio of the points.

Our data structure can be extended to allow the maintenance of a (1+ε)-

spanner for S. A (1+ε)-spanner is a graph on the points S with the following

property: Between any pair of points there is a path in the spanner whose

total length is at most (1 + ε) times the actual distance between the points.

We show how to construct a dynamic (1 + ε)-spanner for a set of points in a

metric space that have doubling dimension λ. The spanner has degree ε−O(λ)

(which is optimal), and can be updated in O(log n
εO(λ)) time.

Note that when λ and ε are constants, the NNS query time is O(logn),

which matches the known lower bound on nearest neighbor search (in the

4

algebraic decision tree model [2]). Now, the task of inserting a point into a

(1 + ε)-spanner subsumes within it the task of discovering a (1 + ε)-nearest

neighbor of the new point, so it is optimal as well.

We first review related work (in Section 1.1), and then in Section 1.2 give

an outline of the rest of the thesis.

1.1 Related work

We present an overview of related work on approximate nearest neighbor

search and dynamic spanners.

1.1.1 Nearest neighbor search

Beygelzimer et al. [9] showed how to improve on the size of the data structure

of Krauthgamer and Lee [28], requiring only O(n) space for all operations

except deletions. Krauthgamer and Lee [29] gave an alternate static data

structure for ANN, obtaining results that are independent of the aspect ratio.

Their static data structure uses space O(n3) and answers (1 + ε) queries in

2O(λ) log n + (1/ε)O(λ) time.

Improving on this result, Har-Peled and Mendel [25] constructed a lin-

ear space ring–separator structure that provides an nc-approximate nearest

neighbor to the query point in 2O(λ) log n time (for constant c). While an

nc-approximation is very coarse, it provides enough information to “jump

in” to a net-tree structure at a position that is within O(log n) levels of the

5

desired approximation (as discussed there). This clever observation com-

pletely circumvents the reliance on aspect ratio. However, the construction

of [25] does not support insertions or deletions into the point set. Using the

dynamization technique of Bentley and Saxe [8], this structure may be ex-

tended to allow for insertions, thereby producing a semi-dynamic structure,

but then an insertion would require 2Θ(λ) log2 n time. It is not clear how to

maintain the structure of [25] either dynamically or even semi-dynamically

in 2O(λ) log n time given the special order that they impose on points when

building their tree structure.

Other related research on nearest neighbor searches has focused on various

assumptions concerning the metric space. Clarkson [18] made assumptions

concerning the probability distribution from which X and q are drawn, and

developed two randomized data structures for exact nearest neighbor. How-

ever, the query time is super-logarithmic, and the structures do not support

insertion or deletion of points. Karger and Ruhl [26] introduced the notion

of growth-constrained metrics (elsewhere called the KR-dimension) which is

a weaker notion than that of the doubling dimension. They presented an

O(n logn) space data structure on which a randomized algorithm finds an

approximate nearest neighbor in O(logn) time, and which allows insertions

and deletions in O(logn log log n) time. (These times hide a polynomial de-

pendence on the expansion rate of the points.) A survey of proximity searches

in metric space appeared in [13].

6

1.1.2 Spanners

A graph H is a t-spanner of G if dH(u, v) ≤ tdG(u, v), where dG(u, v) denotes

the shortest path distance between u and v in G, and dH(u, v) denotes the

shortest path distance between u and v in H . A spanner can also be defined

for a set of points residing in Euclidean space: Let S be a set of points in

ℜd. The graph G is a complete graph whose vertices are the points of S, and

the weight of every edge is the distance between its endpoints. A geometric

t-spanner is then constructed on the graph G.

Geometric spanners have received a fair amount of attention in the past

couple of decades. Various papers have dealt with the construction of geo-

metric spanners with specific properties, such as linear number of edges, small

weight (the weight of a spanner is the sum of the weights of its edges), small

hop diameter and low degree. For points residing in (low) d-dimensional

Euclidean space, Vaidya [32], Salowe [30], Callahan and Kosaraju [12] and

Soares [31] showed how to compute a geometric (1+ε)-spanner with O(n/εd)

edges in O(n log n + ε−d log(1/ε)n) time. In the dynamic setting, where the

problem is to explicitly maintain a set of edges that constitute a spanner of

the point set, Arya et al. [3] obtained O(logd n log log n) update time in the

restricted model in which updates were assumed to be random: A point to be

deleted is assumed to be selected at random from S, and a point to be inserted

is assumed to be a random point of the new point set. Bose et al. [11] gave

a semi-dynamic algorithm that supports insertions in O(logd−1 n) time. Gao

et al. [22] considered both dynamic and kinetic spanners (a kinetic spanner

7

supports movement of the points), and gave a spanner with update time and

degree O(log α
εd), where α is the aspect ratio of the set, the ratio between the

largest and smallest interpoint distances of the set. This result is of interest

when α is small, which is often the case.

We are interested in the question of dynamic spanners for points that

reside in a metric space and have doubling dimension λ. Since doubling

dimension is more general than Euclidean dimension, all results for doubling

dimension apply to Euclidean dimension as well. In this setting Har-Peled

and Mendel [25] showed how to construct a static constant degree spanner in

O(n log n
εO(λ)) time. Roditty [27] gave a dynamic spanner that supports insertions

in O(log n
εO(λ)) amortized time and deletions in Õ(n1/3

εO(λ)) amortized time (where

the notation Õ is used to hide logarithmic factors). Very recently, Gottlieb

and Roditty gave a dynamic spanner that supports insertions in O(log2 n
εO(λ))

amortized time and deletions in O(log3 n
εO(λ)) amortized time [23].

1.2 Thesis outline

In Chapter 2, we describe the hierarchy and nearest neighbor search structure

of Krauthgamer and Lee [28]. In Chapter 3, we detail the new hierarchy and

nearest neighbor search structure. In Chapter 4, we describe how to use the

new hierarchy to maintain a better spanner. And in Chapter 5, we describe

some further applications of the nearest neighbor search structure.

As a preliminary point, we note that it can be shown (via a repeated

8

application of the doubling property) that if set S has minimum inter-point

distance a, then at most (b
a
)O(λ) points of S can be found within distance b

of any x ∈ S: To see this, note that the points of S are covered by a ball of

radius b, and so by the doubling dimension the points of S may be covered

by 2λ balls of size b
2
, 22λ balls of size b

4
, and 2O(λ log(b/a)) = (b

a
)O(λ) balls of

size a. Since the minimum inter-point distance in S is a, each ball of size a

can hold at most a single point, so we have an upper bound of (b
a
)O(λ) on the

number of points in S.

9

Chapter 2

A nearest neighbor search

structure

In what follows, we describe in detail the hierarchy introduced by Krauthgamer

and Lee [28], and show how it may be used to support a (1+ε)-nearest neigh-

bor search (NNS) in 2O(λ) log α + ε−O(λ) time. We also review how to update

the hierarchy in 2O(λ) log α time under insertions and deletions. ([28] claims

a slightly worse bound for insertions and deletions, but actually 2O(λ) log α

suffices.) In its original presentation, the hierarchy required 2O(λ)n space. In

our presentation, we will incorporate a modification suggested by Beygelz-

imer et al. [9], coupled with a new technique, to bring the space requirement

down to O(n). (For ease of presentation, some layout and terminology intro-

duced here may differ from the original presentation.)

10

2.1 Hierarchical partition

For a set Y , X ⊂ Y is an r-discrete center set (or r-net) of Y if it satisfies

the following two properties:

(i) Packing: For every pair x, y ∈ X, d(x, y) ≥ r.

(ii) Covering: Every point y ∈ Y is strictly within distance r of some point

x ∈ X: d(y, x) < r.

We say that x ∈ X covers y ∈ Y if d(x, y) < r. The previous conditions

require that the points of X be spaced out, yet cover all points of Y .

Let S be a set of points with doubling dimension λ and aspect ratio α.

(For ease of presentation, we assume the minimum inter-point distance in S is

1, and that α is a power of 2 and is known in advance.) The hierarchical par-

tition is a hierarchy of log α+1 discrete center sets, Y1 = Y20, Y21 , Y22, . . . , Yα.

The first (or bottom) level of the hierarchy is the set Y1 = S. The ith level,

for i > 0, is the set Y2i, where Y2i a 2i-discrete center set of Y2i−1 . 2i is the

radius of set Y2i. Note that the final (or top) level of the hierarchy, Yα, must

contain a single point.

Let xj denote the occurrence of point x in level Y2j of the hierarchy. x

may appear in as many as log α+1 levels of the hierarchy, which implies that

the size of the hierarchy may be Θ(n log α). Later (in Section 2.3), we will

show how an implicit representation of the hierarchy can be stored in O(n)

space.

11

2.2 Approximate nearest neighbor search

The hierarchy can be used to support a (1 + ε)-NNS algorithm. To facilitate

the search, we will first need to extract a spanning tree T that directly

corresponds to the hierarchy.

2.2.1 Tree extraction

The extraction of the spanning tree for the hierarchy is straightforward. The

nodes of T are arranged in log α + 1 levels, T0, . . . , Tlog α, where the nodes in

Ti store points of Y2i. For each point occurrence xm
j , there exists a unique

tree node vj ∈ Tm (or vm
j) which stores xm

j . Tree level T0 – the leaf level –

contains n leaf nodes, each one storing a unique point in S. Tree level Tlog α

contains a single node, which is the root of the tree.

The tree edges are determined as follows. Consider each point xm
j in turn,

and let xm+1
i be the point that covers xm

j . (If more than one point covers xm
j ,

let xm+1
i be the closest one of these.) Node vm

j is connected to vm+1
i , and is

its tree child.

The edge assignments define an ancestral relationship among the nodes

of T . We will extend this ancestral relationship to the corresponding points

of the hierarchy: If vl
i is a parent (or ancestor) of vm

j (l > m), then we say

that xl
i is a parent (ancestor) of xm

j . Note that a node or point may have at

most 2O(λ) children.

The following property of tree nodes and hierarchical points follows by

12

construction:

Property 1. Let xl
i be an ancestor of xm

j , or equivalently, let vl
i be an ancestor

of vm
j , l > m. Then d(xl

i, x
m
j) <

∑l
k=m+1 2k = 2 · 2l − 2m+1.

2.2.2 Search description

Now that we have extracted the spanning tree T from the hierarchy, we can

describe the (1 + ε)-NNS algorithm. The (1 + ε)-nearest neighbor search

consists of two separate stages: The first stage is a 4-cover search which

requires 2O(λ) log α work. The second stage is a refinement search, which

requires ε−O(λ) work. The total run time of the (1 + ε)-NNS is 2O(λ) log α +

ε−O(λ).

4-cover search.

A point yl in the hierarchy c-covers a point q, if d(yl, q) < c ·2l. If yl c-covers

q, and q is not c-covered by any point in all levels below Y2l, then Y2l is the

lowest level in which q is c-covered. When c is a constant, there may be 2Θ(λ)

points in level Y2l that c-cover q.

The 4-cover search on q uses the spanning tree to identify all points that

4-cover q. The key observation driving the search is that if zm 4-covers

q, then all ancestors of zm 4-cover q as well. To see this, first note that

d(zm, q) < 4 · 2m, and then recall that by Property 1 the distance from zm

to any ancestor yl is less than 2 · 2l − 2m+1. It follows that the distance

13

from q to yl is d(yl, q) ≤ d(yl, zm) + d(zm, q) < (2 · 2l − 2m+1) + 4 · 2m =

2 · 2l − 2m+1 + 2 · 2m+1 = 2 · 2l + 2m+1 ≤ 2 · 2l + 2l = 3 · 2l. Hence, yl 4-covers

q. (Note that in fact this same property is true of 2-covering. The need for

a four cover search will become clear in the proof of Lemma 2.2.1 below.)

The 4-cover search on T begins with the root node at level Tlog α. If the

point stored at this node does not 4-cover q, then no point 4-covers q, and

the algorithm terminates. If the stored point does 4-cover q, then the root

node is placed in set Vlog α. At each iteration, the search descends down one

level of the tree. At level Tm, the search inspects the children of nodes in

Vm+1; if any of these children store points that 4-cover q, they are placed in

set Vm. The search terminates at level T0, or earlier if it encounters a level

in which no nodes store points that 4-cover q.

The search finds all points that 4-cover q; correctness follows from the

aforementioned observation that if a point 4-covers q, all its ancestors 4-

cover q as well. A set Vm may contain at most 2O(λ) nodes, from which it

follows that the search considers 2O(λ) nodes at each of the O(log α) levels,

and terminates in 2O(λ) log α time.

Refinement search

The refinement search follows the completion of the 4-containment search.

Recall that the 4-cover search identifies the lowest level Tm that contains

nodes which store points that 4-cover q. Vm is the set of these nodes.

The refinement search backtracks one step, taking the set Vm+1. This set

14

consists of nodes in level Tm+1 that 4-cover q. The refinement search proceeds

to identify the set V ′ comprising all level Tm−log(4/ε) descendants of the nodes

in Vm+1. This can be done by descending log(4/ε) + 1 further levels in T .

When ε is appropriately small, the cost of this search is bound by the size

of V ′, which is ε−O(λ). After determining V ′, we inspect the points stored in

the nodes of V ′ and identify the point which is closest to q. We can prove

the following:

Lemma 2.2.1. Let z be the nearest neighbor of q in S.

(i) d(q, z) > 2 · 2m−1 + 1.

(ii) At least one node in V ′ stores a point xm−log(4/ε) that satisfies d(q, xm−log(4/ε)) <

1
2
2mε − 1 + d(z, q).

(iii) xm−log(4/ε) is a (1 + ε)-approximate nearest neighbor of q.

Proof. Recall that z0 is the occurrence of z in the bottom level of the hier-

archy.

(i) A lower bound on d(z, q) = d(z0, q) follows. q is not 4-covered by any

points in level Y2m−1 , so the distance from q to all these points is at least

4 · 2m−1. By Property 1, the distance from q to all descendants of these

points at the bottom level of the hierarchy is greater than 4 · 2m−1 − (2 ·

2m−1 − 1) = 2 · 2m−1 + 1. Since z0 is a descendant of some point in Y2m−1 ,

d(z0, q) > 2 · 2m−1 + 1.

15

(ii) Correctness follows in two steps. The first step establishes that an an-

cestor of z0 is stored by some node in V ′; we name this ancestor xm−log(4/ε).

The second step establishes that d(q, xm−log(4/ε)) < 1
2
2mε − 1 + d(z, q).

The first step establishes that xm−log(4/ε), the ancestor of z0 in level

Y2m−log(4/ε) , is stored by some node in V ′. To prove this, it suffices to show

that some node in Vm+1 stores an ancestor of z0 (which is of course also the

ancestor of xm−log(4/ε)). Since V ′ includes all tree descendants of this node

at level Tm−log(4/ε), V ′ must contain a node storing xm−log(4/ε).

Since q is 4-covered by some points in Y2m, the distance from q to these

points is less than 4 ·2m. Since z is the nearest neighbor of q, it must be that

d(z0, q) < 4 · 2m as well. By Property 1, the distance from z0 to its ancestor

in level Ym+1, say wm+1, is less than 2 ·2m+1−1. It follows that d(wm+1, q) ≤

d(wm+1, z0)+d(z0, q) < (2·2m+1−1)+4·2m = 2·2m+1−1+2·2m+1 = 4·2m+1−1.

It follows that wm+1 4-covers q, and so wm+1 must be stored by some node

in Vm+1. As mentioned above, a consequence of this is that xm−log(4/ε) must

be stored by some node in V ′.

The second step establishes an upper bound on d(xm−log(4/ε), q). By Prop-

erty 1, d(xm−log(4/ε), z0) < 2 · 2m−log(4/ε) − 1 = 1
2
· 2mε − 1. It follows that

d(xm−log(4/ε), q) ≤ d(xm−log(4/ε), z0) + d(z0, q) < 1
2
· 2mε − 1 + d(z0, q).

(iii) It follows from (i) and (ii) that xm−log(4/ε) is a (1+δ)-approximate nearest

neighbor of q, with 1 + δ = d(xm−log(4/ε),q)
d(z0,q)

<
1
2
·2mε−1+d(z0,q)

d(z0,q)
= 1 +

1
2
·2mε−1

d(z0,q)
<

1 +
1
2
·2mε−1

2·2m−1+1
< 1 +

1
2
·2mε

2·2m−1 = 1 + ε
2

< 1 + ε.

16

It follows that some node of V ′ stores a (1 + ε)-approximate nearest

neighbor of q. We search all stored point in the nodes of V ′ and identify the

point closest to q. This point must also be a (1 + ε)-approximate nearest

neighbor of q. We conclude that the cover and refinement searches find a

(1 + ε)-approximate nearest neighbor in 2O(λ) log α + ε−O(λ) steps.

2.3 Implicit representation of the hierarchy

Here we review how the hierarchy and associated tree may be stored implicitly

in O(n) space. This section incorporates ideas from [28, 9].

A single-child path is a maximal chain of parent-child nodes where each

node (including the final one) has only a single child. Compress all single-

child paths in T , retaining only the first node on the path, and connect

this first node to the single child of the final path node; these are now a

parent-child pair. This parent-child pair of nodes in distant levels implies the

existence of the removed intermediate nodes, which are thereby represented

implicitly. Each internal node in the resulting tree either has minimum degree

2, or has a child with minimum degree two. Since the tree has exactly n leaves

(one storing each point), the size of the tree is O(n). We remove from the

hierarchy all points that were stored in the removed nodes, and the size of

the hierarchy is the same as the size of the tree.

The cover and refinement searches proceed in a top-down fashion as be-

fore. When a search encounters a compressed path, it fills in the implicit

17

nodes necessary for the search.

2.4 Dynamic maintenance of the hierarchy

In this section, we review how to support dynamic updates to the hierarchy

and its spanning tree in 2O(λ) log α time.

2.4.1 Insertions

The insertion of a point z into an empty hierarchy is accomplished by insert-

ing an instance of z into all log α + 1 levels of the hierarchy.

To insert a point z into a nonempty hierarchy, we must first find the

lowest point ym that 1-covers (or simply covers) z. (If there are multiple

points in level Y2m that cover z, we take the closest one.) ym can be found

in 2O(λ) log α time by executing a 4-cover search while keeping track of all

points that 1-cover z. Since all points that 1-cover z necessarily 4-cover z as

well, these points will be encountered by the 4-cover search.

Once ym is identified, we insert zm−1 as its child. (If ym was previously

represented implicitly in the hierarchy, it now has two children and will ap-

pear explicitly.) We further insert z into every level of the hierarchy below

level Y2m−1 , where occurrence zp is the child of zp+1 (m−1 > p ≥ 0); however,

the compression scheme implies that only zm−1 and z0 will appear explicitly

in the hierarchy. It is clear that these points obey the covering property, and

since z is not covered by any points in levels Y2m−1 and lower, these points

18

obey the packing property as well.

T is updated with a single node storing each explicit point occurrence.

The insertion run-time is dominated by the 4-cover search, and is 2O(λ) log α.

2.4.2 Deletions

We present a deletion scheme that requires 2O(λ) log α time. The deletion

schemes presented in [28, 9] needed a data structure using 2Θ(λ)n space,

while the following scheme employs a data structure using O(n) space.

When a point z is deleted from the point set, all occurrences of z in

the hierarchy (and the tree nodes storing these occurrences) are marked as

deleted, but no further action is taken. This scheme results in two issues

that need to be addressed: (i) After multiple deletions, there may be n′

nodes in the tree but only n points in the point set, and (ii) the 4-cover

and containment searches may return a node that has no real (non-deleted)

descendants.

The first concern is addressed by rebuilding the hierarchy and tree in the

background. It suffices, if T holds n′ nodes (included those nodes storing

deleted points), to start rebuilding after n′

3
deletions, and to complete the

rebuilding over the next n′

6
insertions and deletions; that is, for each update

to the point set 7 updates are performed on the background structure. The

completed hierarchy (and tree) will then contain at least n′

2
points, including

at most n′

6
deleted points.

To address the second concern, we record which nodes in the tree have at

19

least one leaf descendant storing a non-deleted point. This can be done by,

after each update, traversing the tree from the leaf level up to the root level

(in O(log α) time), and recording at each internal node which of its children

have a leaf descendant storing a non-deleted point.

The procedure for insertions or deletions (including the 4-cover search)

proceeds as before, without regard to which nodes have leaf descendants

storing non-deleted points. However, when searching for an approximate

nearest neighbor the cover and refinement searches ignore a node if none of

its leaf descendants store a non-deleted point.

Modifications to the refinement search

Recall that the refinement search identified a set of nodes V ′, inspected the

points stored in this set, and returned the closest one. Under our deletion

scheme, when a node v ∈ V ′ stores a deleted point, the refinement scheme

will consider in its stead an arbitrary non-deleted point stored in some leaf

descendant of v (if there are any such points). We can show that this does not

affect the correctness of the refinement search, which still returns a (1 + ε)-

approximate nearest neighbor. Revisiting Lemma 2.2.1, we take xm−log 4/ε as

the deleted point stored in v, and say that the refinement search considered

in its stead a descendant z̃0. By Property 1 we have that d(xm−log 4/ε, z̃0) <

2m−log(4/ε) − 1 = 1
2
2mε − 1. It follows that d(q, z̃0) ≤ d(q, xm−log(4/ε)) +

d(xm−log(4/ε), z̃0) < (1
2
2mε− 1+ d(q, z))+ (1

2
2mε− 1) = 2mε− 1+ d(q, z). z̃ is

therefore a (1+ δ)-approximate nearest neighbor of q, where 1+ δ = d(q,z̃0)
d(q,z0)

<

20

2mε−1+d(q,z0)
d(q,z0)

< 1 + 2mε−1
d(q,z0)

< 1 + 2mε−1
2·2m−1+1

< 1 + 2mε
2·2m−1 = 1 + ε.

21

Chapter 3

A new approximate nearest

neighbor search structure

The hierarchy of [28] supports approximate nearest neighbor searches in

2O(λ) log α + ε−O(λ) time and updates in 2O(λ) log α time. These times are

acceptable when α = nO(1) – which is often the case – but problematic when

α is asymptotically larger. Note that the introduction of α into the nearest

neighbor search and update times is due solely to the 4-cover search, which

requires 2O(λ) log α time.

Here we show how to construct and maintain a modified hierarchy that

supports a cover search in 2O(λ) log n time. This improved run time eliminates

the dependence on α in the nearest neighbor search and update times. The

description of the hierarchy is straightforward, although the cover search is

more involved and handling dynamic updates is intricate. As before, many

22

points of the hierarchy will be represented implicitly.

A spanning tree is maintained for the hierarchy. A balanced tree structure

for the spanning tree drives the cover search. The final update and search

times are reduced to 2O(λ) log n and 2O(λ) log n + εO(λ), respectively.

3.1 The hierarchy

Let us first present the new hierarchy. (For ease of presentation, we assume

that the minimum possible inter-point distance in S is 1. The hierarchy

can be maintained without this assumption, and without knowledge of the

minimum inter-point distance in advance.) The hierarchy contains an infinite

number of levels. The first (or bottom) level of the hierarchy is the set

Y1 = Y50 = S, and the top level Y5∞=∞ contains only a single point. Each

intermediate level 0 < i < ∞ is represented by a set Y5i which is a 5i-discrete

center set of Y5i−1 , where the definition of a r-discrete center set is slightly

altered to satisfy the following properties:

(i) Packing: For every pair x, y ∈ X, d(x, y) ≥ 1
5
r.

(ii) Covering: Every point y ∈ Y is strictly within distance 3
5
r of some

point x ∈ X: d(x, y) < 3
5
r.

The radius of level Y5m is defined to be 5m. We have altered the dropoff

of the hierarchy – the ratio of radii from one level to the next – to 5 instead

of 2; the purpose for this will become clear in Section 3.6.2. A point yl covers

23

a point x if d(yl, x) < 5l, and the covering property implies that all points in

the hierarchy are 3
5
-covered.

We further stipulate that for each point occurrence xm, the hierarchy

records all points within distance 2 · 5m of xm. These points are the friends

of xm, and are recorded in the friends list for xm. Friends list are necessary

for the execution of the cover search. xj,i may have at most 2O(λ) friends.

(The astute reader may have noted that the storage of all the friends lists

may require 2Θ(λ)n = ω(n) space. We address this issue in Section 3.8, where

we give a space saving technique that reduces the storage requirement to

O(n).)

3.2 Spanning tree

The extraction of the spanning tree for the hierarchy proceeds as before. The

nodes of T are arranged in an infinite number of levels T−∞, . . . , T∞, where

each node of level Tm stores a unique point of Y5m . Let the node storing

point xm
j be vm

j . The tree edges are determined in the usual way: For a point

xm
j , let xm+1

i be the point that 3
5
-covers xm

j . (If multiple points 3
5
-cover xm

j ,

a single one of these is chosen based on the insertion and promotion rules

below.) vm
j is connected to vm+1

i , and is its tree child.

Two nodes are friends if the points stored in them are friends. We extend

the ancestral relationship of the tree to apply to the corresponding points

of the hierarchy, precisely as was done before. This gives us the following

24

close-covering property that relates ancestors and descendants.

Property 2. Close-covering: Let xl
i be an ancestor of xm

j , or equivalently let

let vl
i be an ancestor of vm

j . Then d(xl
i, x

m
j) ≤

∑l
k=m+1

3
5
5k = 3

4
5l − 3

4
5m =

4
5
5l − 5m − 1

20
5l + 1

4
5m ≤ 4

5
5l − 5m.

3.3 Implicit representation of the hierarchy

Although each point of the hierarchy appears in an infinite number of levels,

there exists a simple implicit representation of the hierarchy which stores only

O(n) points. As we show below, the implicit representation does not interfere

with the cover or refinement searches, so we can still find the lowest point in

the hierarchy that covers q, even if this point is represented implicitly.

We present here the tree compression scheme for T , which implies an

implicit representation of the hierarchy. (We present a general overview of the

scheme, with more specifics and some exceptions deferred to Sections 3.6.1

and 3.6.2.) As before, we compress all single-child paths in T , with only

the first node remaining uncompressed. The first node is connected to the

single child of the last node, and such a parent-child pair of nodes in non-

adjacent levels implies the existence of the intermediate nodes. However,

there is a caveat to this compression: A node v on a single-child path remains

uncompressed if the point stored by v has friends in its level. (As mentioned

above, the execution of the cover search will use the friends lists, and as a

result points with friends need to be represented explicitly.) Let the resulting

25

tree be T ′. The compression scheme implies an implicit representation of the

hierarchy.

As described above, the new implicit representation differs from the old

one only in that points with friends are explicitly stored. The following

lemma shows that there are only O(n) point occurrences which have friends,

so the size of the tree and the explicit hierarchy remains O(n).

Lemma 3.3.1. The number of point occurrences in the hierarchy having

friends is O(n).

Proof. The bound follows from a simple charging argument. Consider a point

z, and let Y5l be the highest level in which z is present in the hierarchy. The

three occurrences zl, zl−1 and z0 are changed to z if they have friends. Any

other occurrences of z that has friends is charged to an arbitrary one of its

friends. We will prove that z can be charged at most twice for occurrences of

other points, from which it follows that z can be charged at most five times.

Let z be charged for some occurrence of y – say zm and ym are friends.

By assumption, ym is not the highest or second highest occurrence of y in

the hierarchy (or else ym would be charged to y and not to z), so y exists in

level Y5m+2. We can show that (i) zm must be the highest or second highest

occurrence of z in the hierarchy; and (ii) zm has no other friends that can

be charged to z. These two facts together imply that z can only be charged

twice for occurrences of other points.

We first show that zm must be the highest or second highest occurrence of

z in the hierarchy. Suppose in contradiction that z existed in level Y5m+2 of the

26

hierarchy. Then we can show zm+2 violates the packing property with respect

to ym+2: Since ym and zm are friends, d(y, z) ≤ 2 · 5m = 2
25

5m+2 < 1
5
5m+2,

which implies that ym+2 and zm+2 violate the packing property of level Y5m+2 .

It follows that z cannot exist in level Y5m+2, and zm is the highest or second

highest occurrence of z.

Now we show that zm has no other friends in level Y5m that can be charged

to z. Suppose in contradiction that zm has a friend xm that is charged

to z. By assumption, xm is not the highest or second highest occurrence

of x (or else xm would be charged to x), so x exists in level Y5m+2 of the

hierarchy. We show that xm+2 violates the packing property with respect

to ym+2: Recalling that both xm and ym are friends of zm, we have that

d(x, y) ≤ d(x, z) + d(z, y) ≤ 2 · 5m + 2 · 5m = 4 · 5m = 4
25

5m+2 < 1
5
5m+2, which

implies that xm+2 and ym+2 violated the packing property of level Y5m+2. It

follows that there does not exist a second point xm charged to z.

We conclude that each point z can be charged at most five times for

points with friends, and since every point occurrence is charged to that point

or to its friend, there are O(n) points in the hierarchy with friends.

When a point is inserted into the hierarchy, it may cause 2O(λ) friends

which were previously represented implicitly to now appear explicitly. Nev-

ertheless, Lemma 3.3.1 demonstrates that in total O(n) points appear ex-

plicitly due to possessing friends. The insertion scheme will be presented in

Sections 3.6.1 and 3.6.2, where we will see that each insertion causes O(1)

additional points to be stored explicitly (in addition to the 2O(λ) points which

27

are represented explicitly due to their having friends). We may conclude that

the total number of explicit points in the hierarchy is O(n).

3.4 A cover search in 2O(λ) log n time

While a 4-cover search was necessary to support nearest neighbor searches

and updates for the previous hierarchy, the construction of the new hierarchy

is such that a 1-cover (or just ‘cover’) search suffices. A cover search on q

finds the lowest level points which cover q. Given these points, we can execute

a refinement search to find a (1 + ε)-nearest neighbor of q in (1/ε)O(λ) more

steps. The following lemma is the key observation motivating the cover

search.

Lemma 3.4.1. (i) If zm covers q, then all ancestors of zm cover q.

(ii) If both zm and xl (l > m) cover q, then zm is a descendant of xl or of

one of xl’s friends.

Proof. (i) By the close-covering property, the distance from zm to its ancestor

yl is not greater than 4
5
(5l−5m). We have that d(yl, q) ≤ d(yl, zm)+d(zm, q) <

(4
5
5l − 5m) + 5m = 4

5
5l < 5l, so yl covers q.

(ii) It follows from (i) that yl, the ancestor of zm, covers q. Since xl also

covers q, we have that d(xl, yl) ≤ d(xl, q)+d(yl, q) ≤ 5l+5l = 2·5l, from which

it follows that if xl and yl are not the same point, then they are friends.

28

(Note that in fact this same property is true of a 4
5
-covering. The need

for a 1-cover search will become clear in the proof of Lemma 3.5.1.)

The cover search presented below first finds the lowest explicitly repre-

sented point in the hierarchy that covers q (or the set of such points if there

is more than one). This point may not be the lowest point covering q, since

that point may be represented implicitly. However, we will show (in Sec-

tion 3.4.3) that given the lowest explicitly represented point that covers q,

it is an easy matter to identify the lowest point that covers q. This will

complete the description of the cover search.

The execution of the cover search makes use of the compressed spanning

tree T ′ of the hierarchy and also the friends list of each point. To attain the

2O(λ) log n search time, we will need to maintain a balanced tree structure

for T ′, and it will drive the search.

3.4.1 Balanced tree structure for T ′

To support the 2O(λ) log n time cover search, we maintain a centroid path

decomposition of T ′, and for each centroid path store its nodes in a weighted

search structure. To this end, define s(v), the size of node v, to be the number

of nodes in the subtree rooted at v.

For our purposes, we define the centroid path of a tree to be the path

starting at the root, which at each node v branches to v’s largest child (the

child with the greatest size), with ties broken arbitrarily. In addition, we

stipulate that each centroid path Ci contains nodes of size 2j < s(v) ≤ 2j+1

29

for appropriate i; j is the scale of Ci. In a centroid path decomposition, we

recursively decompose each off-path subtree of the centroid path. Note that

in the centroid path decomposition the largest scale is j = ⌈log n⌉, and also

that a path from the root to a leaf traverses at most log n distinct centroid

paths.

Let w(v), the weight of a node v, be the number of nodes in its off-path

subtrees, plus one for the node itself. The nodes of each centroid path,

ordered top-down, are stored in a weighted search structure. We will use the

biased skip lists of Bagchi et al. [4].

The maintenance of the centroid path decomposition and associated bi-

ased skip lists is intricate, and is deferred to Section 3.7.

We can now describe the cover search.

3.4.2 Search execution

In this section, we show how to locate the lowest explicitly maintained point

that covers the query point q.

Suppose for the moment that the points of the hierarchy were well-

separated, meaning that the distance between all points in level Y5m is greater

then 2 ·5m, and so no point has any friends. Then it would be an easy matter

to execute an O(logn) time cover search for q using T ′. The search begins at

the root of T ′, and is defined throughout by v, the current node of interest

which stores a point that covers q, and by the centroid path Ci that contains

v. By the well-separated assumption, at most one point at each level cov-

30

ers q. As a consequence of Lemma 3.4.1, the search need only consider the

descendants of this one point.

The search is divided into phases. In each phase, the search considers the

current centroid path Ci, and the task is to find v′, the bottommost node on

Ci which stores a point that covers q. The search first checks if the bottom

node on Ci, say vb, stores a point that covers q. If it does then v′ = vb.

If vb’s point does not cover q, then v′ is located by means of a weighted

binary search driven by the weighted search structure for the centroid path

Ci. At each step, the binary search tests consecutive nodes v1, v2 ∈ Ci, where

v1 is the parent of v2; if v1’s stored point covers q but v2’s point does not,

then v′ = v1. Otherwise the search continues in the appropriate part of Ci

(everything strictly above v1, or everything strictly below).

Having found v′, the search tests each off-path child of v′ to see if any of

them stores a point that covers q. If so, that child is the new node of interest,

and the search proceeds to the next phase with the new node of interest and

its centroid path. (Note that the scale of the new centroid path is less than

the scale of Ci, so the number of search phases is O(log n).) If not, the search

terminates at v′.

This algorithm runs in 2λ log n time. In general, each step of the weighted

search for v′ on Ci removes a constant fraction of the weight of Ci from con-

sideration. Once v′ is found, the search inspects the children of v′ (2O(λ) time)

to find the new node of interest and proceeds with the child and its centroid

path. This implies that the entire search can be executed in 2O(λ) log n time.

31

However, we must also consider the case where v′ is the bottom node of Ci;

in this case w(v′) may be similar to W , and the weighted search does not

remove a constant fraction of the weight of Ci from consideration. But in

this event the search identifies v′ in a single step, finds the child that is the

new node of interest in 2O(λ) time, and begins the next phase. Recalling that

the search consists of only O(log n) phases we conclude that the search time

remains bounded by 2O(λ) log n.

The difficulty in using this search procedure is that the points of the

hierarchy need not be well-separated. If we find that q is not covered by

the point stored in v then we may indeed eliminate v from contention, since

Lemma 3.4.1 ensures that none of the descendants of v stores a point covering

q; but if we find that q is covered by v’s point, we cannot eliminate v’s friends

from consideration. This problem would appear to break the logarithmic

search, but can be evaded by noting that the search scheme of [28] succeeded

by considering 2O(λ) points at each level. Translated into our context, this

implies that only 2O(λ) subtrees (or centroid paths) need be retained at each

step.

More formally, let a search be defined by a set V of nodes of interest. V

is a set of nodes in the same tree level that store points that cover q. As a

consequence of Lemma 3.4.1, the search need only consider the descendants

of these points. (Another consequence of the Lemma is that these points

must be friends.) For each node vi ∈ V , we record the centroid path Ci of

T in which vi is found, or rather the portion of Ci that has not yet been

32

searched. Let C be the set of these partial centroid paths.

The search begins with the root as the only member of V . At every step,

the search takes the partial centroid path Ci whose weight is largest, and as

in the ideal well-separated case tests the bottom node of Ci (if not already

tested). If the bottom node’s stored point does not cover q, the search tests

consecutive nodes of Ci, and as before prunes a constant fraction of the

weight of Ci. If neither of these nodes store points that cover q, then the

search continues by considering the current heaviest partial path.

When, for some i, a node vi is found whose stored point covers q, the

search from vi continues as follows. All children of vi are tested to determine

if their stored points cover q. Let v′
i be a child of vi containing q, if any. Then

v′
i and its friends that store points which cover q form the new set of nodes

of interest. (Note that by Lemma 3.4.1, the lowest points covering q must be

descendants of these points.) The search then continues with V consisting of

v′
i and these friends; for each one of these nodes, we record its full centroid

path Cj, or the surviving portion of Cj if Cj has already been pruned. If vi

has no child v′
i that stores a point that covers q, then the new set of nodes

of interest include vi (with its partial path Ci consisting of just vi) and those

friends of vi that store points that cover q (with their partial centroid paths

determined as before). If this set is empty, the search stops at vi. The search

terminates when all partial paths are empty, or have been reduced to single

nodes that have no children storing points that cover q.

Lemma 3.4.1 implies that the new set of the nodes of interest are descen-

33

dants of nodes in the old set of nodes of interest. It follows that the new

nodes of interest are either found on the partial paths in C, or are found on

paths that are descendants of the partial paths in C, and a descendant path

must necessarily be of lesser weight than its ancestral path. More precisely,

let the weight of the heaviest partial path Ci be W , consider the set of partial

paths C ′ ⊂ C with weight greater than W
2

, and recall that |C ′| ≤ |C| = 2O(λ).

A search step replaces Ci by one or more paths with weight not greater than

W
2

. Each other path of C ′ may be replaced by some other paths as well, but

by at most one path of weight greater than W
2

. It follows that a single search

step reduces the size of |C ′| by at least one, and that 2O(λ) steps reduce |C ′|

to 0. It follows that:

Theorem 3.4.2. The above search procedure on T terminates in 2O(λ) log n

time.

3.4.3 Locating the lowest implicit covering point

The cover search described above returns the lowest explicitly represented

point covering q (or the set of such points). If the lowest point covering q

(say zp) is indeed represented explicitly, then it will be returned by the cover

search. If zp is not represented explicitly, then the cover search will not locate

it.

To circumvent this difficulty, we prove that the cover search must in fact

return some occurrence of z, say zm (m > p). That is, we show that there

34

exists an occurrence zm which is the lowest explicit point covering q. Given

zm and inspecting its distance from the query point, it is trivial to deduce

that zp (which by construction must exist) also covers q.

We now show that the cover search must return some occurrence of z.

First consider all occurrence of z above zp, and note that at least one of them

(the highest one, say zl) must be represented explicitly, since its parent has

at least two children. Further note that by Lemma 3.4.1, each one of these

occurrences covers q. Let Y5m (l ≥ m) be the lowest level in which q is covered

by some explicit point ym. By Lemma 3.4.1(ii), ym and zm are friends so zm

must be found explicitly in the hierarchy. zm is therefore returned by the

cover search.

3.5 Refinement search

In the last section, we showed how to execute a cover search to find the lowest

points in the hierarchy that covers q. The refinement search uses the lowest

containing points to find a (1 + ε) nearest neighbor of q, as was done above

in Section 2.2.2.

Let Y5m be the lowest level containing points that cover q. The cover

search returns a set containing all points in Y5m that cover q. (If there is only

one point in Y5m that covers q, then it is possible that this point is represented

only implicitly and has no storing node. The refinement search will fill in this

node, and all other implicit nodes encountered from here on.) We backtrack

35

one step and take the set Vm+1 of all nodes in level Tm+1 that cover q. We

then identify the set V ′ consisting of all level T
5m−log5

40
ε

descendants of the

nodes in Vm+1. This may be accomplished by descending log 40
ε

+ 1 further

levels in the tree. The cost of this search is bounded by the size of V ′, which

is (1/ε)−O(λ). After determining V ′, we inspect the points stored in the nodes

of V ′ and identify the point which is closest to q. We can prove the following:

Lemma 3.5.1. Let z be the nearest neighbor of q in S.

(i) d(q, z) > 1
5
· 5m−1 + 1.

(ii) At least one node in V ′ stores a point xm−log5(40/ε) that satisfies d(q, xm−log(4/ε)) <

1
50

5mε − 1 + d(z, q).

(iii) xm−log5(40/ε) is a (1 + ε)-approximate nearest neighbor of q.

Proof. Recall that z0 is the occurrence of z in the bottom level of the hier-

archy.

(i) A lower bound on d(z0, q) follows. q is not covered by any points in

level Y5m−1 , so the distance from q to all these points is at least 5m−1. By

Property 2, the distance from q to all descendants of these points at the

bottom level of the hierarchy is greater than 5m−1−(4
5
5m−1−1) = 1

5
5m−1 +1.

Since z0 is a descendant of some point in Y5m−1 , d(z0, q) > 1
5
5m−1 + 1.

(ii) Correctness follows in two steps. The first step establishes that an an-

cestor of z0 is stored by some node in V ′; we name this ancestor xm−log5(40/ε).

The second step establishes that d(q, xm−log(4/ε)) < 1
50

5mε − 1 + d(z, q).

36

The first step establishes that xm−log5(40/ε), the ancestor of z0 in level

Y5m−log5(40/ε) , is stored by some node in V ′. To prove this, it suffices to show

that some node in Vm+1 stores an ancestor of z0 (which is of course also the

ancestor of xm−log5(40/ε)). Since V ′ includes all tree descendants of this node

in level Y5m−log5(40/ε) , V ′ must contain a node storing xm−log5(40/ε).

Since q is covered by some points in Y5m , the distance from q to these

points is less than 5m. Since z0 is the nearest neighbor of q, it must be that

d(z0, q) < 5m as well. By Property 2, the distance from z0 to its ancestor

in level Ym+1, wm+1 say, is less than 4
5
· 5m+1. It follows that d(wm+1, q) ≤

d(wm+1, z0) + d(z0, q) < 4
5
· 5m+1 + 5m = 5m+1. It follows that wm+1 covers q,

and so wm+1 must be stored by some node in Vm+1. As mentioned above, a

consequence of this is that xm−log5(40/ε) must be stored by some node in V ′.

The second step establishes an upper bound on d(xm−log5(40/ε), q). By

Property 2, d(xm−log5(40/ε), z0) < 4
5
5m−log5(40/ε) − 1 = 1

50
· 5mε − 1. It follows

that d(xm−log5(40/ε), q) ≤ d(xm−log5(40/ε), z0)+d(z0, q) = 1
50
·5mε−1+d(z0, q).

(iii) It follows from (i) and (ii) that xm−log5(40/ε) is a (1 + δ)-approximate

nearest neighbor of q, with 1 + δ = d(xm−log5(40/ε),q)
d(z0,q)

=
1
50

·5mε−1+d(z0,q)

d(z0,q)
= 1 +

1
50

·5mε−1

d(z0,q)
< 1 +

1
50

·5mε−1
1
5
5m−1+1

< 1 +
1
50

·5mε
1
5
5m−1 = 1 + 1

2
ε < 1 + ε.

It follows that some node of V ′ stores a (1 + ε)-approximate nearest

neighbor of q. We search all stored points in the nodes of V ′ and identify

the point closest to q. This point must also be a (1+ ε)-approximate nearest

neighbor of q. We conclude that the cover and refinement searches find a

37

(1 + ε)-approximate nearest neighbor in 2O(λ) log n + ε−O(λ) steps.

3.6 Dynamic maintenance of the hierarchy

In this section, we discuss how to maintain the hierarchy under dynamic

updates in 2O(λ) log n time. An insertion into the hierarchy is similar to

an insertion into the hierarchy of [28] (with some additional complications),

and the runtime is dominated by the cost of a cover search for the new

point. An insertion requires adding to the hierarchy at most 2O(λ) explicit

points that have friends, and O(1) points that lack friends. (The size of

the explicit hierarchy will remain O(n)). We will see that maintaining the

covering condition of the hierarchy in the desired time bound requires some

new ideas.

Maintaining the hierarchy under deletions will be done by simply marking

the leaf nodes as deleted. This will necessitate rebuilding in the background.

We will show that, as before, the nearest neighbor search can avoid nodes

that have no descendants storing non-deleted points.

3.6.1 Insertions

When inserting a point, we wish to follow roughly the same general approach

that was used in updating the hierarchy of Krauthgamer and Lee [28]. We

could, for example, suggest a ‘naive’ scheme in which a cover search identifies

the lowest point that covers the inserted point z, say ym, and insert zm−1

38

as its child. We would then insert z into every level of the hierarchy below

Y5m−1 , where occurrence zp is the child of zp+1 (m − 1 > p ≥ 0). (Only

zm−1 and z0 would appear explicitly). However, such an insertion scheme

still leaves us with two obstacles to overcome.

The first obstacle is that z must appear explicitly in every level in which

it has friends, and it is conceivable that there are many such levels. However,

we can show that the close-covering property ensures that of all occurrences

of z, only zm−1 and zm−2 could have friends: Recall that z is not covered by

any point in level Y5m−1 , so the distance from z to any point in this level is

at least 5m−1. By Property 2, the distance from z to any descendant of these

points is greater than 5m−1 − 4
5
5m−1 = 1

5
5m−1 = 5 ·5m−3 > 2 ·5m−3. It follows

that occurrences of z at levels Y5m−3 or lower have no friends. (In fact, this

observation is the major motivation behind Property 2, the close-covering

property.)

The second obstacle is that the insertion technique above does not main-

tain the covering invariant of the hierarchy (and by extension, the close-

covering property). This is because zm−1 is not necessarily strictly within

distance 3
5
5m of its covering point ym. We could perhaps suggest an alter-

nate insertion scheme, where we search for the lowest point that 3
5
-covers z,

and then insert z beginning at the level below this point; but this level could

be far above level Y5m , and it can be shown that all occurrences of z above

level Y5m have friends and therefore must be represented explicitly. Hence,

this suggested scheme may result in too much work per insertion. Instead, we

39

will retain the insertion scheme above, modify it only slightly, and then show

what additional steps are necessary to guarantee that the covering property

is maintained. Let us first describe the precise insertion rules we will use.

Insertion Rule 1. (IR1) The insertion of z into an empty hierarchy proceeds

as follows: We insert z into all levels of the hierarchy Y1, . . . , Y∞.

Each occurrence zp is a child of zp+1 (except for the top occurrence).

Only the top and bottom occurrences of z are stored explicitly. After the

first insertion, all points obey the packing and covering properties.

Insertion Rule 2. (IR2) The insertion of z into a non-empty hierarchy

proceeds as follows: A cover search is executed to locate the lowest level point

that covers z. Let this point be ym. (If there are multiple such points, let ym

be the closest one.)

(i) z is inserted in all levels from Y5m−1 down.

(ii) If d(z, ym) > 1
5
5m, then zm is inserted as well.

With the exception of the top occurrence of z, each occurrences zp is a

child of zp+1. If zm−1 is the top occurrence of z then it is a child of ym.

All points inserted by IR2(i) obey the covering property (in fact, they are

1
5
-covered), and since z is not covered by any points in level Y5m−1 or lower, all

occurrences obey the packing property as well. Now consider the case when

IR2(ii) inserts zm as the top occurrence of z. By assumption, zm obeys the

packing property. We would like to assign zm as a child of the closest point

40

in Y5m+1 ; however, we have not guaranteed that this point 3
5
-covers zm and

satisfies the covering property. Guaranteeing the existence of such a point is

the outstanding issue in the insertion scheme, and the goal of the promotion

scheme of the next section.

The top and bottom occurrences of z are stored explicitly. As we have

shown above, zm−1 and zm−2 may have friends and be explicitly stored, but

no other occurrences of z have friends, so only these are stored explicitly.

The insertion of zm, zm−1 and zm−2 also causes friends of these points to be

stored explicitly. So an insertion adds O(1) explicit points that do not have

friends and 2O(λ) explicit points that have friends.

(For simplicity, once a point zm is assigned a parent ym+1, it is never be

assigned a new parent xm+1, even if d(zm, xm+1) < d(zm, ym+1). Giving a

point a new parent would require a cut and link operation on the balanced

tree structure and is too expensive.)

In closing this section, we note that this insertion scheme closely resembles

the naive insertion scheme, with the only change being the additional point

added by rule IR2(ii). The insertion of this additional point is in fact a critical

feature that will enable us to guarantee the covering property. To see why

IR2(ii) is useful, let us consider a point ym that has no children other than

ym−1. In the naive insertion scheme the next point insertion (say of point

z1) may add to ym a child zm−1
1 at distance 3

5
5m or greater, immediately

violating the covering property. In the new insertion scheme, the insertion of

z1 can only add to ym a child zm−1
1 at distance less than 1

5
5m: If z1 is distance

41

1
5
5m or greater from ym, the insertion of zm−1

1 would trigger IR(ii) and insert

zm
1 as a parent of zm−1

1 . Hence, a single insertion cannot cause the covering

property to be violated.

However, a covering violation below ym can result from a sequence of four

insertions:

• The first insertion is a point z1 at distance almost 5m−1 from ym−1;

IR2(i) inserts zm−2
1 and IR2(ii) inserts its parent zm−1

1 (covered by ym).

• The second insertion is z2 at distance almost 5m−1 from zm−1
1 and al-

most 2 ·5m−1 from ym; IR2(i) inserts zm−2
2 and IR2(ii) inserts its parent

zm−1
2 (covered by ym).

• The third insertion is z3 at distance almost 5m−1 from zm−1
2 and almost

3 ·5m−1 from ym; IR2(i) inserts zm−2
3 and IR2(ii) inserts its parent zm−1

3

(covered by ym).

• The fourth insertion is z4 at distance almost 5m−1 from zm−1
3 and more

than 3 · 5m−1 = 3
5
5m from ym; IR2(i) inserts zm−2

3 and IR2(ii) inserts

its parent zm−1
3 . zm−1

3 is not covered by ym.

In effect, IR2(ii) has allowed us to ‘buy time,’ deferring by several insertions

the time at which the covering property is violated. This deferral will provide

time for promotions, which we describe in the next section. The promotion

scheme will guarantee that the covering property is maintained.

42

3.6.2 Promotions

The insertion rules ensure that several points must be inserted as the children

of a point ym before one of them will be at distance 3
5
5m or greater from

ym and violate the covering property. The multiple insertions over which

this occurs gives us an opportunity to promote one of these children. (A

promotion of a point occurrence creates an occurrence of the point one level

up.) The point created by the promotion will 3
5
-cover points that are too far

away from ym, and will serve as their parent. However, such a promotion

scheme could result in a difficulty, if the point created by the promotion is

itself not properly covered. Hence, a subtler approach is called for.

Obligations. When a point is inserted into the hierarchy by IR(ii) or by

a promotion, it may be given an obligation; an obligation is the name of

some point which is a candidate for promotion at a later time. Let zm be an

inserted point, and let ym+1 be the closest point in level Y5m+1 . The obligation

rules are determined by d(zm, ym+1) as follows.

(i) If 1
5
5m+1 ≤ d(zm, ym+1) < 2

5
5m+1, then the obligation of zm is the point

that is the obligation of ym+1.

(ii) If 2
5
5m+1 ≤ d(zm, ym+1) < 4

5
5m+1, then the obligation of zm is itself.

(Recall that points inserted by IR2(i) are always 1
5
-covered when they

are inserted; hence, they cannot have an obligation. This is why only points

inserted by IR2(ii) or by a promotion can have an obligation.)

43

Triggering promotions. A promotion is triggered by the insertion of zm

in the vicinity of ym+1, the closest point in the next highest level. The

promotion rules are determined by d(zm, ym+1) as follows:

(i) If 2
5
5m+1 ≤ d(zm, ym+1) < 3

5
5m+1, then ym+1’s obligation is promoted.

(ii) If 3
5
5m+1 ≤ d(zm, ym+1) < 4

5
5m+1, then zm’s obligation (which is itself)

is promoted, resulting in the addition of zm+1 to the hierarchy. zm+1

is the parent of zm.

The new point occurrence created by the promotion is made a child of the

closest point at the next highest level. We will show that this new occurrence

is 3
5
-covered by the closest point at the next highest level, and that the above

obligation and promotion rules suffice to guarantee that the covering property

is maintained.

We will also show (in Lemma 3.6.1 below) that a point created by a

promotion cannot itself trigger another promotion. Since points inserted by

IR(i) are 1
5
-covered, they cannot trigger promotions either. It follows that

only an application of IR(ii) can trigger a promotion. We may conclude that

a point insertion accounts for the addition of a single promoted point into

the hierarchy; this point is be stored explicitly (even if it has no friends).

A promotion may further cause 2O(λ) friends of the promoted points to be

stored explicitly.

To ensure correctness of the packing property, we stipulate that before a

point xp is promoted, we check whether xp is 1
5
-covered by some point wp+1.

44

(This is only possible if wp+1 was added subsequent to the creation of xp.

It suffices to examine the friends of xp’s parent, if any, at level Y5p+1.) If xp

is 1
5
-covered by wp+1, then the promotion of xp would violate the packing

property, and so the promotion is abandoned. We will see that this extra

stipulation does not cause a difficulty in the promotion scheme, since wp+1

will take the place of xp+1.

3.6.3 Correctness of the covering property

We now prove that the above insertion and promotion rules preserve the

covering property. In proving this, it will be helpful to introduce some termi-

nology. (Note that this terminology only alludes to concepts introduced by

the obligation and promotion rules, and does not introduce new concepts.)

Let zm be a point, and let ym+1 be the closest point to zm in level Y5m+1 .

Definition 1. zm is supersafe if

(i) z∞ is the root; or

(ii) d(zm, ym+1) < 1
5
5m+1; or

(iii) 1
5
5m+1 ≤ d(zm, ym+1) < 2

5
5m+1, and ym+1 is supersafe.

zm is safe if

(iv) 1
5
5m+1 ≤ d(zm, ym+1) < 2

5
5m+1, and ym+1 is safe; or

(v) 2
5
5m+1 ≤ d(zm, ym+1) < 3

5
5m+1, and ym+1 is supersafe.

45

Less formally, if a newly added point zm is supersafe, then it is properly

covered and has no obligation. If the newly added point is safe, it is properly

covered and has an obligation. It is however possible for zm to become

supersafe at a later time. This can occur, for example, if zm is promoted, or

if a newly added point covers zm in a way that makes zm supersafe. Then

zm will have an obligation even though it is supersafe.

It is important to note that it is possible to have an entire chain of parent-

child points which all match definition (iv), and hence are all safe. All these

points will have the same obligation, which is the point at the top of the

chain. If any one of these safe points subsequently becomes supersafe (either

by the promotion of the obligation point that causes the obligation to become

supersafe, or by the addition of a new point that covers one of the safe points

in a way that causes it to become supersafe), then all its descendants in the

parent-child chain will now match definition (iii), and will all be supersafe.

The next lemma proves that all points are safe or supersafe, implying that

all points are properly covered, and that the covering property is maintained.

It further shows that a promotion cannot trigger a second promotion, which

implies that only a single promotion may follow a point insertion.

Lemma 3.6.1. (i) All points created by an insertion are safe or supersafe.

(ii) All points created by a promotion are safe or supersafe. Further, a

promotion does not trigger a second promotion.

Proof. (i) Points created by IR1 and IR2(i) are 1
5
-covered, so they are su-

46

persafe. We turn to points created by IR2(ii). Let zm be inserted by IR2(ii),

and let xm+1 be the closest point to zm in level Y5m+1 . The following cases

are possible:

(i) d(zm, xm+1) < 1
5
5m+1. Then zm is supersafe.

(ii) 1
5
5m+1 ≤ d(zm, xm+1) < 2

5
5m+1. zm is supersafe if xm+1 is supersafe,

and safe if xm+1 is safe.

(iii) 2
5
5m+1 ≤ d(zm, xm+1) < 3

5
5m+1. zm is safe if xm+1 is supersafe. If

xm+1 is safe, then zm provokes a promotion of the point that is xm+1’s

obligation at a higher level. This promotion is caused by an obligation

that is common to an entire chain of safe points from the promoted

point down to xm+1. As mentioned above, the promotion causes the

entire chain to become supersafe, and so zm is now safe.

(iv) 3
5
5m+1 ≤ d(zm, xm+1) < 4

5
5m+1. zm is promoted and the existence of

zm+1 implies that zm is supersafe.

(v) 4
5
5m+1 ≤ d(zm, xm+1) < 5m+1. We show that this situation is not

possible. For zm to be inserted by IR2(ii) at this level, there must be

a point ym which covers z, d(ym, z) < 5m. By assumption, ym+1 does

not exist in the hierarchy, since xm+1 is the closest point to z in this

level. It follows that ym was not promoted, and so the distance from

ym to its parent wm+1 is less than 3
5
5m+1. But then d(wm+1, zm) ≤

47

d(wm+1, ym)+d(ym, zm) < 3
5
5m+1 +5m < 4

5
5m+1, which contradicts the

assumption that xm+1 is the closest point to z in level Y5m+1 .

(ii) Assume that the Lemma held prior to this promotion. Let zm be a point

that is promoted to create zm+1, and further assume that the Lemma held

prior to this promotion. We will first show that there exists a point ym+1

that covers zm in level Y5m+1 and is supersafe.

The first case is when zm was itself created by a promotion. Let ym+1 be

the point in Y5m+1 closest to zm. By assumption, zm is 3
5
-covered by ym+1;

d(zm, ym+1) < 3
5
5m. Now, the promotion of zm implies that zm had itself

as an obligation; this allows us to place a lower bound on d(zm, ym+1), so

that 2
5
5m+1 ≤ d(zm, ym+1) < 3

5
5m. Now, if ym+1 had had an obligation, the

addition of zm at this distance would have triggered the obligation. But by

assumption a promotion does not trigger another promotion, so ym+1 has no

obligation, and it is supersafe.

The second case is when zm was created directly by an insertion. Since zm

has itself as an obligation, there exists a point ym+1 which satisfies 2
5
5m+1 ≤

d(zm, ym+1) < 4
5
5m. The insertion of zm at this distance implies that ym+1

must have a child z̃m for which 2
5
5m+1 ≤ d(z̃m, ym+1) < 3

5
5m+1. (z̃ is either a

child inserted before z, or z̃ = z.) Then ym+1 must be supersafe, or else z̃m

could not even be safe.

We have proved that ym+1 is supersafe. Let xm+2 be the Y5m+2 point

closest to ym+1. If ym+1 is supersafe because d(ym+1, xm+2) < 1
5
5m+2, then

d(zm+1, xm+2) ≤ d(z, y) + d(y, x) < 4
5
5m+1 + 1

5
5m+2 < 2

5
5m+2; in this case

48

zm+1 does not trigger a promotion, and also zm+1 is safe or supersafe. If

ym+1 is supersafe because d(ym+1, xm+2) < 2
5
5m+2, and xm+2 is supersafe,

then d(zm+1, xm+2) ≤ d(z, y) + d(y, x) < 4
5
5m+1 + 2

5
5m+2 < 3

5
5m+2; in this

case zm+1 does not trigger a promotion (since xm+2 is supersafe and has no

obligation), and also zm+1 is safe.

3.6.4 Deletions

When a point z is deleted, z0 is marked as deleted, but no other changes are

made to the hierarchy or to the spanning tree T ′. This scheme results in two

issues that need to be addressed: (i) After multiple deletions, there may be b

points in the hierarchy but o(b) points in the set, and (ii) the cover search for

nearest neighbor search may return a point that is not the ancestor of a real

point. The first concern is addressed by rebuilding the data structure in the

background. (It suffices, if the hierarchy stores n points including deleted

points, to start rebuilding when it includes n
3

deletions, and to complete the

rebuilding over the next n
6

insertions and deletions; i.e. for each update, to

perform 7 updates on the background structure. Once rebuilt, the hierarchy

will contain at least n
2

points including at most n
6

deleted points.)

To address the second problem, we devise a scheme for returning only

points which are ancestors of real points. For each centroid path, we keep

track of whether its top node has any leaf descendants that store non-deleted

points; if so, we also record if the bottommost node of the centroid path has

leaf descendants that store non-deleted points, and we record which (if any)

49

of the path’s nodes have leaf descendants storing non-deleted points in their

off-path subtrees. Call these nodes real nodes. For each centroid path, the

real nodes are kept in a standard balanced tree. We organize this tree so

that its leftmost node stores the bottommost real node of the centroid path.

Note that if a path loses some (but not all) of its leaf descendants that

store non-deleted points, then each ancestral path continues to have the same

real nodes, and therefore its balanced tree remains unchanged. Thus, the

effect of deleting a point is to reduce a (possibly empty) series of paths from

having one real node to having none, and for the next path up to decrease

its number of real nodes to some nonzero number. All paths further up are

unaffected. The cost of the updates to the associated balanced trees is O(1)

for each of O(logn) paths in the series, and O(log n) for the topmost path,

for a total of O(log n).

The insertion scheme proceeds irrespective of which nodes have descen-

dants storing non-deleted nodes, so a containment search for insertions pro-

ceeds as before, irrespective of which nodes are real. For a containment search

for an approximate nearest neighbor search however, we wish to return only

nodes that have descendants storing real nodes. To this end, when the search

algorithm considers a centroid path, we seek a node on this path that has leaf

descendants storing non-deleted points in addition to containing the query

point. When the nearest neighbor search begins the refinement search, we

again only consider nodes that have leaf descendants storing non-deleted

points. We can determine in O(1) time whether a node has leaf descendants

50

storing non-deleted points, by locating its centroid path and the lowest node

of that path that contains real descendants; this descendant is the leftmost

node of the balanced tree for real nodes, so it can be identified in O(1) time.

Modifications to the refinement search.

Recall that the refinement search identified a set of nodes V ′, inspected

the points stored in this set, and returns the closest one. Under our dele-

tion scheme, when a node v ∈ V ′ stores a deleted point, the refinement

scheme will consider in its stead an arbitrary non-deleted point stored in

some leaf descendant of v (if there are any such points). We can show

that this does not affect the correctness of the refinement search, which still

returns a (1 + ε)-approximate nearest neighbor. Revisiting Lemma 3.5.1,

we suppose that xm−log5(40/ε) has been deleted, and suppose that the re-

finement search considered in its stead a descendant z̃0. By Property 2

d(xm−log5(40/ε), z̃0) < 4
5
5m−log5(40/ε) − 1 = 1

50
5mε− 1. It follows that d(q, z̃0) ≤

d(q, xm−log5(40/ε))+d(xm−log5(40/ε), z̃0) < (1
50

5mε−1+d(q, z))+(1
50

5mε−1) =

1
25

5mε − 1 + d(q, z) (where z is the nearest neighbor of q in S). z̃0 is there-

fore a (1 + δ)-approximate nearest neighbor of q, where 1 + δ = d(q,z̃0)
d(q,z0)

=
1
25

5mε−1+d(q,z0)

d(q,z0)
= 1 +

1
25

5mε−1

d(q,z0)
< 1 +

1
25

5mε−1
1
5
·5m−1+1

< 1 +
1
25

5mε
1
5
·5m−1 = 1 + ε.

51

3.7 Centroid Path Updates

In this section, we show how to dynamically maintain the centroid path

decomposition under insertions to the hierarchy. Recall that (in Section 3.4.1)

we defined a centroid path to be the path starting at the root, which at each

node branches to the node’s largest child. We further stipulated that each

centroid path Ci contains nodes of size 2j < s(v) ≤ 2j+1 for appropriate i.

In a centroid path decomposition, we recursively decompose each off-path

subtree of the centroid path.

To support the cover search, we required that each centroid path Ci (or

rather the nodes of Ci) be stored in a weighted search structure for Ci, where

the weight of a node is the number of nodes in its off-path subtrees, plus one

for the node itself. We use the biased skip lists of Bagchi et al. [4], but will

need to modify these slightly to achieve the insertion time of O(log n) per

new node. Left to right order in the skip lists will correspond to bottom to

top order in the centroid path.

We review biased skip lists in the next section (Section 3.7.1), and briefly

mention what modifications to the skip lists will be necessary. In Section 3.7.2

we discuss what changes occur to the tree T ′ and its centroid path decom-

position when a point is inserted into the hierarchy, and in Section 3.7.3 we

show how to modify the biased skip lists for our purposes.

52

3.7.1 Review of biased skip lists

A skip list is a data structure which stores an ordered, weighted set X in its

ordered nodes. Each element xi ∈ X of weight wi is stored in a skip list item

(or node) ei of height at least ⌈log wi⌉ (h(ei) ≥ ⌈log w⌉). If h(ei) > ⌈log wi⌉,

then we say that ei is oversized. The height of the skip list, H , is equal to

the height of its highest item, and the depth of item ei is the height of the

list minus the height of ei (H − h(ei)). At the left and right ends of the list

are sentinel nodes of height H , which do not correspond to points of X.

The items of a skip list are kept in order in a doubly linked list. In

addition, there exists a doubly linked list for each value 0 ≤ h ≤ H , which

stores the ordered items of height at least h; this is called the h-list.

The skip list is parametrized by two integer constants a, b with 1 < a ≤

⌊b/2⌋. The (a, b)-skip list obeys the following invariants.

Invariant 1. For all h, 0 ≤ h ≤ H, there are at most b consecutive items of

height exactly h in the h-list.

Invariant 2. For each oversize item e, and for all ⌈log w(e)⌉ < h ≤ h(e),

the skip list contains at least a items of height exactly h − 1 between e and

its h-list neighbors to the right and left.

Note that Invariant 2 applies only to an oversized item e. The sequence

of height h−1 items that separates oversized item e from its h-list neighbors

will be called the oversize (h − 1)-sequence of e. If this sequence separates e

53

from the right or left sentinel, it is called the right or left end (h−1)-sequence.

If an end sequence is empty, it is a null sequence.

Note that these invariants imply that the height of the skip list is O(log W),

(where W is the sum of weights of the items in the list), and that the depth

of an item with weight w is O(log W
w

).

Operations supported by the biased skip list

Biased skip lists support the operations search, insert, delete, and reweight.

Here we briefly sketch these operations, and refer the reader to [4] for a more

complete description.

A search is initialized at the left sentinel, and inspects the H-list (which

has the left sentinel as its first element). The search locates the item ei in

the H-list that possesses the sought key, or the pair of items ei, ei+1 whose

keys straddle the sought key. The search then considers item ei, and inspects

the (H−1)-list from ei and progresses to the right to again find an item that

possesses the sought key, or the pair of items whose keys straddle the sought

key. The search then traverses down to the next level as before. The search

terminates with success if it identifies the item with the sought key, or the

final two items which straddle it. Note that only b work is done at every

level, and since an item of weight w has depth O(log W
w

), the time required

to find this item is O(log W
w

).

The operation insert inserts an item e of weight w in its ordered position

in the structure. Finding this position necessitates a binary search, and can

54

be done in O(log W) time. e is given height h = ⌈log w⌉. All relevant h-

lists are updated to include e, in O(logw) time. The insertion may cause

the violation of Invariant 1, if the h-list now contains b consecutive items

of height h. This violation is repaired by promoting one of these items to

give it greater height, thereby splitting the sequence. Similarly, the insertion

of e may cause the violation of Invariant 2, if e interrupted a sequence of a

consecutive items of height h′ < h adjacent to an oversized item e′. In this

case e′ is demoted until it is not oversized, or until it has height h′. Note that

the demotions may cause up to O(log W)) violations at height h′ and up, but

these can be repaired with O(logW) work. Similarly, the split repairs can be

repaired in a bottom-up fashion in O(log W) time. It follows that the total

cost of the insertion is O(logW).

The operation delete removes item e of weight w from the skip list. All

h-lists containing e are updated, which can be done in O(log W) time. e may

have separated two valid sequences of height h − 1; the removal of e causes

these two sequences to join, possibly creating a sequence of length greater

than b, and violating Invariant 1. Similarly, the removal of e may cause the

violation of Invariant 2 if e was part of a sequence of exactly a consecutive

items of height h − 1 adjacent to an oversized item. As only levels h − 1

and higher are affected, these violations and subsequent violation at higher

levels may all be repaired with O(log W
w

) work. The total repair cost is then

O(log W).

The operation reweight changes the weight of an item e from w1 to w2.

55

The reweighting involves updating the h-lists between the initial and final

height of e. Similarly, these levels and all higher levels may need to be

repaired. Hence, the total cost of the reweighting is O(log W+w2

wm
), where W is

the total weight of the skip list before the reweighting, and wm =min{w1, w2}.

In Section 3.7.3, we will modify the biased skip lists so that the cost of

inserting an item of weight w at the left end of the list, or deleting an item

of weight w from the right end of the list, is only O(log w), as opposed to

O(log W).

3.7.2 Dynamic changes to T ′

The tree T ′ will change as insertions into the hierarchy occur. A single

insertion into the point set may result in the addition of 2O(λ) nodes in T ′,

which may be leaf nodes or internal nodes. We will consider each one of these

2O(λ) nodes separately, and show that each node insertion can be supported

in O(log n) time. Hence, a point insertion can be supported in 2O(λ) log n

time.

The insertion of a node v into a tree entails the insertion of v into the

appropriate centroid path. The biased skip list for this path is then updated

to include this node in O(log W) time. The insertion of v causes additional

updates up the tree, as O(log n) ancestors of v gain an extra descendant

in their off-path subtrees, and have their weight increase by one. These

ancestors must be reweighted. Let the series of such ancestors be v1, v2, . . . , vk

of weight w1, w2, . . . , wk, respectively. Note that the total weight of Ci, the

56

centroid path of vi, is less than the weight of vi+1 (since vi+1 contains Ci in

its off-path subtree). We have that the cost of the reweightings is O(log(w1 +

1) +
∑k−1

i=1 log wi+1+1
wi+1

) = O(log w1) = O(log n).

An outstanding issue is that a node insertion may cause some higher node

to become too heavy for its current centroid path; this node will then need

to migrate to the centroid path that is the parent of its current centroid

path. In fact, a node insertion may cause O(log n) ancestors to leave their

current centroid path for the next path up. Consider one such ancestor vi

of weight wi that is removed from its centroid path Ci. There will be at

least wi insertions into the subtree rooted at the top of Ci before another

node is removed from Ci. Thus we can afford Θ(wi) steps to handle the node

transfer, though we will show in the next section that O(log wi) work suffices

for these end updates. Note that an end update taking O(log wi) time will

be performed over the next log wi insertions into the relevant subtree of S.

The final concern is to ensure that the search time is not affected when

the node transfer is proceeding. But this presents no real difficulty. We will

keep the single node “in between” paths while the updates to the centroid

paths are computed. When a centroid path is searched, we will add a single

query to inspect the nodes between the path and its parent’s path, without

affecting the asymptotic running time.

Comment. An attempt to use a topology tree [21] for our construction en-

counters two obstacles in the execution of the search: (i) The transfer to

friends. This can be solved by using the (very intricate) dynamic lca query

57

structure of Cole and Hariharan [19]. (ii) Determining which nodes have

descendants storing non-deleted points (see Section 3.6.4); it is not clear if

this difficulty can be solved.

3.7.3 Modified biased skip lists

We augment the biased skip lists of Bagchi et al. [4] to support fast end

updates. We will show that an item of size w can be inserted into the left

end or deleted from the right end of the biased skip list in O(log w) time.

The other run times supported by the biased skip list (search, insert, delete,

reweight) remain unchanged. To enable us to achieve this result we will

weaken Invariants 1 and 2, but only in regards to the portion of an h-list

that starts at the left sentinel node or ends at the right sentinel node. The

following invariants override Invariants 1 and 2.

Invariant 3. For all h, 0 ≤ h ≤ H, there are at most b+1 consecutive items

of height exactly h at the left or right ends of the h-list.

Invariant 4. For each oversize item e, and for all ⌈log w(e)⌉ < h ≤ h(e),

the h-list contains at least a − 1 items of height exactly h − 1 between e and

the sentinel nodes to the right and left.

An end update of an item of size w must preserve these invariants, while

taking only O(log w) time. Before detailing the end updates, we will first

outline what splits and joins will be necessary to support the end updates.

For this purpose, we use splits that take an h-sequence of b+1 or b+2 items

58

and split the sequence (by promoting an item in the sequence) to create

sequences of sizes ⌊b/2⌋ and ⌈b/2⌉, or of sizes ⌊(b + 1)/2⌋ and ⌈(b + 1)/2⌉,

respectively. We will also utilize joins that take h-sequences that contain a−1

or a − 2 items and a + c items (c ≥ 0, a + c ≤ b), and join these sequences

(by demoting the separating item) to produce an h-sequence of size 2a + c

or 2a + c − 1 items. (The new sequence includes the demoted item). We

may also join h-sequences and immediately split the joined sequence if it is

large: A join immediately followed by a split takes the same pair as before

and produces h-sequences of ⌈(2a + c − 1)/2⌉ and ⌊(2a + c − 1)/2⌋ items,

or of ⌈(2a + c − 2)/2⌉ and ⌊(2a + c − 2)/2⌋ items, respectively. Later, we

will need that the sizes of the new h-sequences lie in the range [a + 1, b − 1].

As the split that follows a join splits a list of size at least b and at most

a + b− 1, it must create two lists of size in the range [a + 1, b − 1]; it suffices

that ⌊ b−1
2
⌋ ≥ a+1 and ⌈a+b−2

2
⌉ ≤ b−1. Likewise, the split of a list of b+1 or

b + 2 items creates the additional constraint that ⌈ b+1
2
⌉ ≤ b− 1. Since a ≥ 2

(as a join can consider a sequence of size a − 2), we can choose a = 2, b = 7

to fulfill these conditions.

Now that we have described what types of splits and joins will be used, we

can proceed to describe the procedure for a left end update, which modifies

left end sequences, and the procedure for right end updates, which modify

right end sequences. But first we need to specify some more constraints

observed by the end h-sequences. A left or right end h-sequence σ can occupy

one of five states: -2,-1,0,1,2. It is in state -2 if the next item e in the h-list

59

is oversize and σ holds a − 1 items, in state -1 if e is oversize and σ holds a

items, in state 1 if σ holds b items, in state 2 if σ holds b + 1 items, and in

state 0 otherwise. (Note that the goal of Invariants 3 and 4 was to allow for

these five states.)

We keep two stacks, one for each sentinel node. The left sentinel stack

stores pointers to all left end h-sequences with the stack order from bottom

to top corresponding to decreasing h-index order. The right sentinel stack is

organized analogously.

When an item is added to the end h-sequence in state c < 2, the state

of the sequence changes to c + 1 ≤ 2 (or possibly remains at 0 if c was

0). Then the h-sequence does not violate Invariant 3, and does not need to

be repaired. When an item is added to the end h-sequence in state 2, the

sequence violates Invariant 3 and must be repaired. The sequence splits, with

the result that the sequence is now in state 0, and that one item has been

promoted to the end (h + 1)-sequence. Crucially, we will demonstrate below

that the (h + 1)-sequence was not previously in state 2 (that is, there are no

consecutive state 2 sequences in the stack), which means that the promoted

item does not cause the (h + 1)-sequence to now violate Invariant 3, and no

further repairs are necessary.

When an item is removed from an end h-sequence in state c > −2, the

state of the sequence becomes c − 1 ≥ −2 (or possibly remains at 0 if c

was 0). Then the h sequence does not violate Invariant 4, and does not

need to be repaired. When an item is removed from an end h-sequence in

60

state -2, then the sequence violates Invariant 4 and must be repaired. Note

that immediately on the inside of the sequence there is an oversize item e

of height h + 1. e is demoted to height h. The two h-sequences on either

side of e are then joined, or if need be joined and immediately split. In the

former case this results in a state 0 end h-sequence, and the demotion of e

reduces the index of the end (h + 1)-sequence by 1 (or if it was at state 0

may leave its state unchanged). Crucially, we will demonstrate below that

the (h + 1)-sequence was not previously in state -2 (that is, there are no

consecutive state -2 sequences in the stack), which means that the demotion

of e does not cause the (h + 1)-sequence to now violate Invariant 4, and no

further repairs are necessary. In the latter case (a join followed by a split),

this results in a state 0 end h-sequence, while the (h + 1)-sequence remains

unchanged (since it lost the item e and gained another item due to the split).

It is left to ensure that there are no consecutive state 2 or state -2 se-

quences in the stack. This will be achieved by the following state distribution

invariant.

Invariant 5. (i) State 2 sequences on the stack are separated by at least

one sequence which has state c ≤ 0 or which is null. Similarly, state

-2 sequences on the stack are separated by at least one sequence which

has state c ≥ 0 or which is null.

(ii) The state 2 sequence with the lowest index in the left stack is preceded

by a sequence which has state c ≤ 0, or which is null. Similarly, the

61

state -2 sequence with the lowest index in the right stack is preceded by

a sequence which has state c ≥ 0, or which is null.

Prior to adding an item e of height ⌈log w⌉ to the left end of the skip list,

we bring all end h-sequences for h ≤ ⌈log w⌉ to state -1,0, or 1 by performing

splits and joins on the sequences in increasing h order. In addition, σ, the

next end h-sequence in state ±2 (in increasing h order), if any, is also brought

to state 0. Following this, item e is added to the end ⌈log w⌉-sequence, and

if this sequence is now in state 2 it is split. Note that all previous end h-

sequences for h < ⌈log w⌉ cease to be end sequences, but as they are in state

-1,0, or 1 they obey Invariants 1 or 2 as appropriate.

Prior to the deletion of an item e of height ⌈log w⌉ from the right end

of the skip list, there are only null end h-sequences for h < ⌈log w⌉. The

sequences that become the end h-sequences for h < ⌈log w⌉ following the

deletion are therefore all in state -1,0, or 1, as they obey Invarants 1 and 2.

Prior to the deletion, the end ⌈log w⌉-sequence is brought to state -1,0, or

1 (if not already there), and the next higher end h-sequence in state ±2 (if

any) is brought to state 2. Now item e is removed.

Lemma 3.7.1. The procedure maintains Invariants 1–5.

Proof. We start by considering an insertion of item e of weight w. We begin

by claiming that prior to adding e to the ⌈log w⌉-sequence, the lowest state

±2 h-sequence (if any) is preceded by an h′-sequence, h′ < h, in state 0 with

h′ > ⌈log w⌉. It then follows that when e is added, Invariant 5(i) holds.

62

If the ⌈log w⌉-sequence is then split, Invariant 5(i) still holds, and the new

⌈log w⌉-sequence, in state 0, restores Invariant 5(ii). To see the claim, note

that the state ±2 h-sequence (h > ⌈log w⌉) that was brought to state 0 prior

to e’s addition provides one state 0 sequence between the ⌈log w⌉-sequence

and the next state ±2 sequence.

That Invariants 1–4 continue to hold is clear from the description of the

splits and joins.

Exactly the same reasoning shows that the deletion procedure maintains

the invariants.

Comment. We conjecture that essentially this construction can be applied to

the biased search trees of Bent et al. [6].

The next issue to mention is what happens when a reweighting or non-

end update performs a split or join on an end sequence. This is performed

as usual, with the corresponding sequence being updated in the stack. In-

variant 5 continues to hold, as in the proof of Lemma 3.7.1.

Theorem 3.7.2. The modified biased skip list structure stores a set of weighted

ordered items supporting searches in O(log W
w

) time, reweightings in O(log W
wm

)

time, and end updates in O(log w) time.

63

3.8 Linear space and efficient storage of friends

lists

We have previously shown that the number of hierarchical points appearing

explicitly is O(n): Lemma 3.3.1 demonstrates that only O(n) points have

friends, so O(n) points appear explicitly due to their having friends. Further,

the insertion scheme stipulates that an insertion or promotion adds O(1)

explicit points that lack friends. This accounts for O(n) points.

However, we have stipulated that we store the friends list of each point,

and this requires 2Θ(λ)n space, which is superlinear. To this end, we must

relax the condition that all friends lists be stored. Instead, only some points

will have their friends list stored.

Suppose that we knew λ, the doubling dimension of the space. We know

then the maximum number of friends that any ball may possess; this quantity

is 2O(λ), or 2λ′

for brevity. If we keep friends lists for only n/2λ′

points then

the resulting structure uses linear space. Since there are O(n/2λ) points at

height λ or greater in the modified biased skip lists, it suffices to store friends

lists for only these points.

As we do not know λ′, instead we limit the length of a point’s friends list

according to the height in the skip list of the node that stores the point; a

point stored by a node at height 2i or 2i + 1 will be allowed to store a list of

length at most 2i. Any point that has more friends than can fit in its list is

marked as incomplete. Again, this uses linear space.

64

The search proceeds as before, until we reach a node whose point is

marked incomplete. In this scenario, we backtrack in the biased skip list

until we reach a level at which all the nodes being examined store points

with complete friends lists; that is, at most up to height 2λ′. We then pro-

ceed with the containment search by descending λ′ levels in a manner similar

to the search procedure of [28] (described in Section 2.2.2): At each level

the search maintains 2O(λ) nodes that store points that cover q, inspects all

children of these nodes, and takes the children that store points that cover

q. The search time increases by an additive term of λ′2O(λ) = 2O(λ). We

conclude that:

Theorem 3.8.1. The data structure may be implemented in O(n) space.

65

Chapter 4

Application: A spanner

Now that we have fully described the hierarchy of Kraughgamer and Lee [28],

as well as the new hierarchy, we move to creating a spanner for the point set

S. In Section 4.1, we will build a (crude) spanner using the old hierarchy. In

the next section (Section 4.2) we will build on these techniques to create a

better spanner.

4.1 A first-attempt spanner

The hierarchy described in Section 2 can be used as a backbone for a geomet-

ric spanner. A few definitions are necessary. First recall that for a spanner

H , dH(x, y) is the spanner distance between x and y. A point x ∈ Y2i is a

parent of y ∈ Y2i−1 if x covers y. If more than one point covers y then the

closest one of these points is chosen to be the parent of y. A point x is an

66

ancestor of y if there exists a series of points 〈x, . . . , y〉 such that each point

in the series is a parent of the subsequent one.

We use the hierarchical partition to decide which edges are included in

the spanner. There are two types of edges. The first type consists of parent-

child edges that connect each point in Y2i to its parent in Y2i+1 . A point in

Y2i+1 may have 2O(λ) children, so this adds 2O(λ) child-parent edges for each

occurrence of a point in the hierarchy. The second type consists of lateral

edges which connect points in the same level when the distance between them

is below some threshold. Specifically, in level Y2i we add an edge between

any two points that are within distance c · 2i (for some constant c that will

depend on the desired precision ε). A point in level Y2i may have cO(λ) points

within distance c · 2i, so this adds cO(λ) lateral edges for each occurrence of a

point in the hierarchy.

Let H be a spanner that contains the aforementioned parent-child and

lateral edges, and let c ≥ 16(1
ε

+ 3
4
). We can show that H has low stretch.

Before proving this, we note a simple property of the hierarchy:

Property 3. Let x′ ∈ Y2i be an ancestor of x ∈ Y2j (i > j). Then dH(x, x′) ≤
∑i

k=j+1 2k = 2 · 2i − 2j+1 < 2 · 2i.

The main lemma of this section follows.

Lemma 4.1.1. H is a 1 + ǫ spanner for S.

Proof. We must show that for any two points x, y ∈ Y1,
dH(x,y)
d(x,y)

< 1 + 1
c
16

− 3
4

.

67

If d(x, y) ≤ c then x and y are connected by a lateral edge, so dH(x, y) =

d(x, y) and we are done.

Otherwise, let x′, y′ ∈ Y2i be the lowest ancestors of x and y (respectively)

which are connected by a lateral edge. Since x′ and y′ are connected by a

lateral edge dH(x′, y′) = d(x′, y′). Also note that by Property 3, dH(x, x′)

and dH(y, y′) are both less than 2 · 2i, from which it follows that d(x, x′) and

d(y, y′) are also less than 2 · 2i.

Now, the spanner distance from x to y is dH(x, y) ≤ dH(x, x′)+dH(x′, y′)+

d(y′, y) < 2·2i+d(x′, y′)+2·2i = d(x′, y′)+4·2i. The true distance from x to y

is d(x, y) ≥ d(x′, y′)−d(x′, x)−d(y′, y) > d(x′, y′)−2·2i−2·2i = d(x′, y′)−4·2i.

It follows that the stretch of the spanner is less than dH(x,y)
d(x,y)

= d(x′,y′)+4·2i

d(x′,y′)−4·2i =

1 + 8·2i

d(x′,y′)−4·2i . This term reaches its maximum when d(x′, y′) reaches its

minimum.

It remains only to place a lower bound on d(x′, y′). By assumption, the

children of x′ and y′ on the paths to x and y (in level Y2i−1) are not connected

by a lateral edge, so the distance between them is greater than c · 2i−1. The

distance from x′ to its child (and the distance from y′ to its child) is less than

2i. It follows that d(x′, y′) > c · 2i−1 − 2i − 2i = c · 2i−1 − 2 · 2i.

The stretch of the spanner is less than 1 + 8·2i

d(x′,y′)−4·2i < 1 + 8·2i

c·2i−1−6·2i =

1 + 1
c
16

− 3
4

. Choosing c ≥ 16(1
ε

+ 3
4
) yields a (1 + ε)-spanner.

Since a point may appear in O(logα) levels of the hierarchy, it may have

cO(λ) log α = O(log α
εO(λ)) lateral edges incident upon it in the spanner, and so

the degree of the spanner is O(log α
εO(λ)).

68

To understand why the spanner construction guarantees low stretch, note

that the path from two points x, y ∈ Y1 consists of a set of parent-child edges,

followed by a single lateral edge, followed by a second set of parent-child

edges. Choosing a large value for c causes the length of the lateral edge to

dwarf the lengths of the other edges, and this results in dH(x, y) being close

to d(x, y).

We have already reviewed in Section 2.4 how the hierarchical partition of

[28] can be maintained dynamically in O(log α
εO(λ)) update time, and it is an easy

matter to maintain the aforementioned spanner in the same time as well.

4.2 The new spanner

In this section, we build upon the new hierarchy of Section 3 to create a

(1 + ε)-spanner with degree (1/ε)O(λ). This spanner can be maintained dy-

namically in O(log n
εO(λ)) time; we defer a discussion of dynamic updates to

Section 4.2.7. We assume that we have access to the hierarchy and its asso-

ciated spanning tree T . (In describing the spanner, it will be easier to refer

to the uncompressed tree T as opposed to the compressed tree T ′.)

4.2.1 Motivation: An incremental spanner.

Suppose for the moment that we wished to maintain a spanner under inser-

tions alone, so that the hierarchy contained no deleted points. Then it would

be possible to maintain a dynamic spanner in O(log n
εO(λ)) time using the new

69

hierarchy as a backbone. The spanner is created by assigning parent-child

and lateral edges to all points.

This construction guarantees low stretch: As before, the path from two

points x0 and y0 at the bottom of the hierarchy consists of a set of parent-

child edges from x0 up to one of its ancestors, followed by a single lateral

edge to an ancestor of y0, followed by a second set of parent-child edges down

to y0. Choosing a large value for the bound on the size of lateral edges causes

the length of the lateral edge to dwarf the lengths of the other edges, and

this results in the spanner having low stretch. (We omit the exact analysis,

which is similar to what was shown in the previous section.)

The difficulty with this approach is that the hierarchy contains deleted

points which cannot appear in the spanner. Further, since a point may appear

in many levels of the hierarchy, and possess lateral edges for each level, the

degree of the spanner may be very large. Below, we will use the spanning tree

T to create a new hierarchy that addresses both of these problems: The new

hierarchy contains no deleted points, and each point appears in the hierarchy

at most three times (once in the bottom level and up to twice more in higher

levels). We will use this new hierarchy to create a spanner that mimics the

spanner described above.

Let the hierarchy, tree and spanner described above be called the full

hierarchy, tree and spanner. Below, we present the new hierarchy in two

steps. The first step (in Section 4.2.2) prunes nodes of T to create a smaller

tree T 1. The points stored in the nodes of T l are a subset of the points of the

70

full hierarchy. We call T 1 the intermediate tree, and the points stored in T 1

constitute the intermediate hierarchy. We then give a scheme that replaces

points stored in the internal nodes of T 1 by non-deleted points. The final

tree T 2 (presented in Section 4.2.3) is the tree T 1 after the point replacement.

T 1 stores the final hierarchy, which contains no deleted points, and in which

each point appears at most three times.

4.2.2 Step 1. Pruning the spanning tree

Recall that each node of tree T stores a point of the full hierarchy. The

first step in creating a new hierarchy involves pruning T in a straightforward

manner, thereby creating a new spanning tree T 1 which stores fewer points.

Let real nodes (or leaves) in T be nodes that store non-deleted points,

and Steiner nodes (or leaves) be those nodes that store deleted points (which

are known as Steiner points). We create T 1 from T in two steps: First,

we remove from T all Steiner leaves, as well as all nodes that have no real

leaf descendant. Then we compress all single-child paths. (A single-child

path is a maximal chain of parent-child nodes where each node, including

the final one, has only one child. In compressing the path we retain only the

first node, and link it to the single child of the final node.) The resulting

tree is T 1. By construction, parent-child relationships in T 1 may have been

ancestor-descendant relationships in T . Also, all remaining internal nodes

have at most 2O(λ) children, and have real leaf node descendants. Each node

either has at least two children, or has a child with at least two children.

71

(For a node v ∈ T that survives in T 1, we may refer both to v ∈ T and to

v ∈ T 1.)

The nodes of T store points in the full hierarchy, and so the nodes of T 1

(which are a subset of the nodes of T) store a subset of points of the full hier-

archy. We will call this subset of points the intermediate hierarchy. Because

the construction of T 1 compressed single-child paths, the intermediate hier-

archy obeys the packing property but not the covering property. However,

the presence of parent-child connections between points in different levels of

the hierarchy implies that it does obey a somewhat weaker covering prop-

erty, where every point in level Y5i is strictly within the radius of some point

residing in a higher level (but not necessarily in level Y5i+1).

4.2.3 Step 2. Creating a better hierarchy

A slight modification to the intermediate hierarchy will yield the final hier-

archy with the properties we want: It contains no deleted points, and each

point appears in at most three levels.

Recall that T 1 contains no Steiner leaves, but may contain other Steiner

nodes. Since Steiner nodes store deleted points, the intermediate hierarchy

contained deleted points. We will create from T 1 a tree T 2 that stores the

final hierarchy. We first introduce the following assignment scheme to as-

sociate each internal node with a leaf node: Assume an arbitrary left-right

ordering on the children of internal nodes. As an outcome of the single-path

compression, each internal node of T 1 either has at least two children or has

72

a child that has at least two children. This means that there are fewer than

two internal nodes for each leaf node, which allows us to assign a leaf node

to at most two ancestral internal node. For example, to each internal node v

with at least two children, we assign to v the leftmost leaf descendant of v’s

rightmost child. To each internal v node with one child, we assign to v the

same leaf node assigned to its child. Note that this scheme assigns a unique

leaf node to each internal node that has at least two children, and a unique

leaf node to each internal node that has one child. Hence, each leaf node is

assigned to at most two ancestral internal nodes.

T 2, the tree that stores the final hierarchy, is created from T 1 using the

assignment scheme. T 2 is initialized as an exact copy of T 1 (along with

its assignment scheme). Then, for each internal node on T 2, we replace

its stored point by the point stored in its assigned leaf node descendant.

T 2 now stores the points of the final hierarchy. The replacement step that

creates the final hierarchy can be viewed as removing each point yl in the

intermediate hierarchy and replacing yl by a descendant z0. By the close-

covering property, d(y, z) < 4
5
·5l−1; hence x and y are relatively ‘close’, and

the final hierarchy can be viewed as a minor perturbation of the intermediate

hierarchy. Crucially, the final hierarchy contains no deleted points, and each

point appears in at most three levels.

Now that we have derived the final hierarchy and its spanning tree T 2, we

can use it to extract a spanner. For presentation purposes, we will first give a

spanner for the intermediate hierarchy (which contains Steiner points), since

73

this spanner is more intuitive. The spanner for the final hierarchy is almost

identical to the spanner of the intermediate hierarchy, only with the points

of the intermediate hierarchy replaced by their descendants according to the

assignment scheme.

4.2.4 Step 3. A spanner for the intermediate hierarchy

We wish to construct a spanner for the intermediate hierarchy; the new

spanner should resemble the full spanner, and have the equivalent of parent-

child edges and lateral edges. As before, the length of the lateral edges dwarf

the lengths of parent-child edges, resulting in a spanner with low stretch.

Type I edges. The new spanner will have edges that mimic the behavior

of parent-child edges in the full spanner.

Consider node v that survives in T 1. v has a parent node in T , and in

the full spanner the points stored by these nodes have a parent-child edge

connecting them. v’s parent in T 1 was the parent or ancestor of v in T , and

the points they store are an ancestor-descendant pair in T , and a parent-

child pair in T 1. We add a spanner edge between these two points; this is a

parent-child edge for the intermediate spanner.

We will need another type of edge to make up for the fact that the in-

termediate hierarchy obeys only a weak covering property. (That is, a point

may be covered by another point at a much higher level). This new edge is

similar to a parent-child edge: Let xk and zm (k > m) be two points in the

intermediate hierarchy that are an ancestor-descendant pair. Let yl (l > m)

74

be the lowest point in the hierarchy that covers zm (or, if many points in that

level cover zm, an arbitrary one of these). If yl is below xk (that is, k > l),

then yl becomes the step-parent of zm. We add a spanner edge between yl

and zm; this is a step-parent edge.

(We will see in Section 4.2.6 that step-parent edges are key to attaining

low spanner degree. Note also that we did not specify how y can be located;

we defer a description of this to Section 4.2.7.)

Type II edges. The new spanner will have edges that mimic the behavior

of lateral edges in the full spanner.

Consider node v that survives in T 1. The point in the hierarchy stored in

v, say yl, is present in the intermediate hierarchy, and was also found in the

full hierarchy. In the full spanner, yl possessed a lateral edge to all level Y5l

points within distance c · 5l of yl; Let R be the set of these points. For each

point xl ∈ R that is present in the intermediate hierarchy, we add to the new

spanner a lateral edge connecting x to y. Now, for each point xl ∈ R that is

not present in the intermediate hierarchy, we must find an equivalent for the

now missing lateral edge from xl to yl: Let zm be the highest descendant of

xl (in the full hierarchy) that is still present in the intermediate hierarchy.

We add a replacement lateral edge from yl to zm.

However, there is an exception to this rule: If zm has a step-parent in level

Y5l or lower, then we will not replace the missing lateral edge from xl to yl.

The intuition behind this exception is that there now exists an alternate path

from zm up to Y5l or a lower level, so with respect to zm it is not necessary

75

to replace the missing lateral edge. (We will see in Section 4.2.6 that this

step-parent exception is key to attaining low spanner degree.)

Finally, for all point pairs x and y connected by a lateral edge or by a

replacement lateral edge, we add lateral refinement edges between x and the

children of y, between y and the children of x, and between the children of x

and y. The purpose for this will become clear in the proof of Theorem 4.2.1

immediately below.

Proof of low stretch

Let H be the spanner for the intermediate hierarchy described above (where

c ≥ 25
ε

+ 5
2
); H is a spanner for S, but uses Steiner points.

Theorem 4.2.1. H is a (1 + ε)-spanner for S.

Proof. To prove this, we define the notion of an ancestral path from a point

y0 in the intermediate hierarchy towards some level Y5m . The path begins

at y0, and at each step proceeds to the current point’s step-parent. If the

current point has no step-parent, then the path proceeds to its parent in the

intermediate hierarchy. The path terminates when the next candidate point

is above level Y5m. The spanner distance (and true distance) from y0 to any

other point xp on the path is less than 5p
∑∞

i=0(
1
5
)i = 5

4
5p ≤ 5

4
5m.

Let x0, y0 be any two points at the bottom level of the hierarchy. We will

show that dH(x0,y0)
d(x0,y0)

< 1 + ε. First define m by (c − 5
2
) · 5m−1 ≤ d(x, y) <

(c− 5
2
) ·5m. Let the last node in the ancestral path from x0 (y0) towards level

76

Y5m be x′ (y′). We will show below that x′ and y′ are connected by a lateral

edge in the spanner (that is, x′ and y′ are connected either by a lateral edge,

a lateral replacement edge, or a lateral refinement edge); this implies that

there is a path from x0 to y0 which consists of the edges between points on

the ancestral path from x0 to x′, followed by a single lateral edge from x′

to y′, followed by the edges between points on the ancestral path from y′ to

y0. As before, the length of the lateral edge dwarfs that of the other edges,

resulting in low stretch.

More rigorously: We know that d(x′, y′) ≤ d(x0, y0)+d(x0, x′)+d(y0, y′) <

d(x, y) + 5
4
5m + 5

4
5m = d(x, y) + 5

2
5m. It is also true that dH(x0, y0) ≤

dH(x′, y′)+dH(x′, x0)+dH(y′, y0) < dH(x′, y′)+ 5
4
5m+ 5

4
5m = dH(x′, y′)+ 5

2
5m.

We will show below that there is a lateral edge between points x′ and y′, so

dH(x′, y′) = d(x′, y′). It follows immediately that dH(x0, y0) ≤ dH(x′, y′) +

5
2
5m = d(x′, y′)+ 5

2
5m < d(x0, y0)+ 5

2
5m + 5

2
5m = d(x0, y0)+5 ·5m. Therefore,

the stretch of the spanner is dH(x0,y0)
d(x0,y0)

< d(x0,y0)+5·5m

d(x0,y0)
= 1 + 5·5m

d(x0,y0)
. This term

is maximized when d(x0, y0) assumes its minimum possible value, which was

defined above to be (c− 5
2
) ·5m−1. It follows that the spanner has stretch less

than 1 + 5·5m

(c− 5
2
)·5m−1 = 1 + 25

c− 5
2

. Taking c ≥ 25
ε

+ 5
2

yields a (1 + ε)-spanner.

It remains only to demonstrate that x′ and y′ are indeed connected by a

lateral edge in the spanner. Now, if x′ and y′ are both found in level Y5m, we

have that d(x′, y′) ≤ d(x0, y0)+d(x0, y′)+d(y0, y′) < (c− 5
2
)5m+ 5

4
5m+ 5

4
5m =

c·5m, and so x′ and y′ are connected by a lateral edge. Otherwise, one or both

of x′ and y′ are found in a level below Y5m . In this case, let x′′ ∈ Y5l be the

77

step-parent of x′ in the intermediate spanner (or x′’s parent if x′ has no step-

parent), and let y′′ ∈ Y5k be the step-parent of y′ in the intermediate spanner

(or y′’s parent if y′ has no step-parent). Assume without loss of generality

that k ≥ l, and note that since x′′ and y′′ are not in the ancestral path, l > m.

If k = l, then we have that d(x′′, y′′) ≤ d(x0, y0) + d(x0, x′′) + d(y0, y′′) ≤

(c − 5
2
)5m + 5

4
5l + 5

4
5l < (c − 5

2
)5l + 5

2
5l = c · 5l; in this case, x′′ and y′′

are connected by a lateral edge, and so x′ and y′ are connected by a lateral

refinement edge. If k > l, then let ỹ′′ be the ancestor of y′ in level Y5l of the

full hierarchy. (ỹ′′ did not survive in the intermediate hierarchy.) By the same

argument as above, d(x′′, ỹ′′) < c · 5l. It follows that in the full spanner, x′′

and ỹ′′ are connected by a lateral edge, and so in the intermediate spanner, x′′

and y′ (the child of ỹ′′) are connected by a replacement lateral edge. Hence,

x′ and y′ are connected by a lateral refinement edge.

4.2.5 Step 4. A spanner for the final hierarchy

The spanner for the final hierarchy is similar to the one for the interme-

diate hierarchy, only with points of the intermediate hierarchy replaced by

their assigned points. Recall that the replacement scheme replaces a point

in level Y5m by some descendant, and distance from the original point to

any descendant is less that 4
5
5m. In the intermediate spanner, points xm

and ym were connected by a lateral edge if d(xm, ym) ≤ c · 5m. The re-

placement scheme implies that in the final spanner, we can only make a

weaker guarantee: Points xm and ym are connected by a lateral edge if

78

d(xm, ym) ≤ c·5m− 4
5
5m− 4

5
5m = (c− 8

5
)·5m. In the intermediate spanner, the

distance from xm to its step-child zp was less than 5m. In the final spanner,

the distance from xm to zp is less than (1+ 4
5
)5m + 4

5
5p < 2 · 5m. (This upper

bounds the distance from a point to its child as well.)

Let H be the spanner for the final hierarchy (where c ≥ 50
ε

+ 33
5
); H is a

spanner for S, and does not use Steiner points.

Theorem 4.2.2. H is a (1 + ε)-spanner for S.

Proof. The proof is similar to the proof of Lemma 4.2.1. As before, an

ancestral path towards level Y5m in the final hierarchy begins at y0, pro-

ceeds to the current point’s step-parent (or parent), and terminates when

the next candidate point is above level Y5m . The final spanner distance

(and true distance) from y0 to any other point xp on the path is less than

2 · 5p
∑∞

i=0(
1
5
)i = 2 · 5

4
5p = 5

2
5p < 5

2
5m.

Let x0, y0 be any two points at the bottom level of the hierarchy. We will

show that dH(x0,y0)
d(x0,y0)

< 1 + ε. First define m by (c − 33
5
) · 5m−1 ≤ d(x, y) <

(c − 33
5
) · 5m. Let the last point in the ancestral path from x0 (y0) towards

level Y5m be x′ (y′). We will show below that x′ and y′ are connected by a

lateral edge in the spanner (that is, x′ and y′ are connected either by a lateral

edge, a lateral replacement edge, or a lateral refinement edge); this implies

that there is a path from x0 to y0 which consists of the edges between points

on the ancestral path from x0 to x′, followed by a single lateral edge from x′

to y′, followed by the edges between points on the ancestral path from y′ to

79

y0. As before, the length of the lateral edge dwarfs that of the other edges,

resulting in low stretch.

More rigorously: We know that d(x′, y′) ≤ d(x0, y0)+d(x0, x′)+d(y0, y′) ≤

d(x, y) + 5
2
5m + 5

2
5m = d(x, y) + 5 · 5m. It is also true that dH(x0, y0) ≤

dH(x′, y′)+dH(x′, x0)+dH(y′, y0) < dH(x′, y′)+ 5
2
5m+ 5

2
5m = dH(x′, y′)+5·5m.

We will show below that there is a lateral edge between points x′ and y′, so

dH(x′, y′) = d(x′, y′). It follows immediately that dH(x0, y0) ≤ dH(x′, y′) +

5 · 5m = d(x′, y′) + 5 · 5m ≤ d(x0, y0) + 5 · 5m + 5 · 5m = d(x0, y0) + 10 · 5m.

Therefore, the stretch of the spanner is dH(x0,y0)
d(x0,y0)

< d(x0,y0)+10·5m

d(x0,y0)
= 1+ 10·5m

d(x0,y0)
.

This term is maximized when d(x0, y0) assumes its minimum possible value,

which was defined above to be (c − 33
5
) · 5m−1. It follows that the spanner

has stretch less than 1 + 10·5m

(c− 33
5

)·5m−1 = 1 + 50
c− 33

5

. Taking c ≥ 50
ε

+ 33
5

yields a

(1 + ε)-spanner.

It remains only to demonstrate that x′ and y′ are indeed connected by a

lateral edge in the spanner. Now, if x′ and y′ are both found in level Y 5m
, we

have that d(x′, y′) ≤ d(x0, y0)+d(x0, y′)+d(y0, y′) < (c− 33
5
)5m+ 5

2
5m+ 5

2
5m =

(c− 8
5
)·5m, and so x′ and y′ are connected by a lateral edge. Otherwise, one or

both of x′ and y′ are found in a level below Y5m . In this case, let x′′ ∈ Y5l be

the step-parent of x′ in the intermediate spanner (or x′’s parent if x′ has not

parent), and let y′′ ∈ Y5k be the step-parent of y′ in the intermediate spanner

(or y′’s parent if y′ has not parent). Assume without loss of generality that

k ≥ l, and note that since x′′ and y′′ are not in the ancestral path, l > m.

If k = l, then we have that d(x′′, y′′) ≤ d(x0, y0) + d(x0, x′′) + d(y0, y′′) <

80

(c− 33
5
)5m + 5

2
5l + 5

2
5l < (c− 33

5
)5l + 5 · 5l = (c− 8

5
)5l; in this case, x′′ and y′′

are connected by a lateral edge, and so x′ and y′ are connected by a lateral

refinement edge. If k > l, then let ỹ′′ be the ancestor of y′ in level Y5l of

the full hierarchy. (ỹ′′ did not survive in the intermediate hierarchy.) By the

same argument as above, d(x′′, ỹ′′) < (c − 8
5
) · 5l. It follows that in the full

spanner, x′′ and ỹ′′ are connected by a lateral edge, and so in the intermediate

spanner, x′′ and y′ (the child of ỹ′′) are connected by a replacement lateral

edge. Hence, x′ and y′ are connected by a lateral refinement edge.

4.2.6 The degree of the final spanner

In this section, we prove that the spanner for the final hierarchy has degree

cO(λ) = (1/ε)O(λ). In proving low degree for the spanner of the final hierarchy,

it will be useful to refer back to the spanner of the intermediate hierarchy.

Before beginning the proof, we will need an important structural lemma for

the intermediate hierarchy. Recall that a point xj b-covers a point zm (j > m)

if and only if d(zm, xj) ≤ b · 5j.

Structural lemma

Lemma 4.2.3. Let wi and zm (i > m), be a parent-child pair in the inter-

mediate hierarchy, and b > 1 be a parameter.

(i) If zm has a step-parent yj (i > j > m), then there exist only bO(λ)

points of the intermediate hierarchy in levels Y5j down to Y5m+1 that

81

b-cover zm.

(ii) If zm has no step-parent, then there exist only bO(λ) points of the inter-

mediate hierarchy in levels Y5i down to Y5m+1 that b-cover zm.

Proof. For case (i) let k = j−1, and for case (ii) let k = i−1. First note that

only bO(λ) points in each individual level of the intermediate hierarchy may

b-cover zm. Hence, levels Y5k+1 and Y5k contain only bO(λ) points that b-cover

zm. It therefore suffices to prove the lemma for points in levels Y5k−1 down

to Y5m+1 . To this end, consider the set B of all level Y5k points in the full

hierarchy that b-cover zm; |B| = 2O(λ). The proof of the lemma utilizes B,

and follows in two steps: We first show that any point in levels Y5k−1 down to

Y5m+1 of the full hierarchy that b-covers zm must be a descendant of a point

in B. This implies that it is sufficient to consider only descendants of B. We

then show that each point of B possesses only bO(λ) descendants that both

b-cover zm and also survive in the intermediate hierarchy. This implies that

only bO(λ) points of the intermediate hierarchy b-cover zm.

We will first show that, as a consequence Property 2 (the close-covering

property), any point of the full hierarchy in levels Y5k−1 through Y5m+1 that

b-covers zm must be a descendant of some point in B (or is itself in B): Let xl

(k > l > m) be a point in the full hierarchy that b-covers zm, d(xl, zm) < b·5l.

By Property 2, the distance from xl to its full hierarchy ancestor in level Y5k

is less than 4
5
5k − 5l. It follows that the distance from zm to this ancestor is

less than 4
5
5k − 5l + b · 5l = 4

5
5k + (b − 1) · 5l < b · 5k, which implies that the

82

ancestor b-covers zm.

We will now show that each point in B possesses only bO(λ) descendants

which both b-cover zm and also survive in the intermediate hierarchy. Con-

sider a point xk ∈ B. Suppose that xk survives in the intermediate hierarchy.

Since xk was not assigned as the step-parent of zm, and zm’s step-parent or

parent is above xk, it must be that xk does not cover zm. Recall that all

descendants of xk are strictly within distance 4
5
5k of xk, and therefore at

distance greater than 5k − 4
5
5k = 1

5
5k = 5k−1 from zm. Now, since points at

level Y5k−1−log5 b have radius 5k−1

b
, we may conclude that no descendants of xk

at level Y5l−1−log5 b or lower can b-cover zm. Therefore, only descendants of

xk in levels Y5k−1 down to Y5k−1−log5 b can b-cover zm, and there are only bO(λ)

such descendants.

If xk does not survive in the hierarchy, consider instead xk’s highest sur-

viving descendant x̃l (k > l), and repeat the previous argument for xk on x̃l:

Since x̃l was not assigned as the step-parent of zm, and zm’s step-parent or

parent are above x̃l, it must be that x̃l does not cover zm. All descendants

of x̃l are strictly within distance 4
5
5l of x̃l, and therefore at distance greater

than 5l− 4
5
5l = 1

5
5l = 5l−1 from zm. Now, since points at level Y5l−1−log5 b have

radius 5l−1

b
, we may conclude that no descendants of x̃l at level Y5l−1−log5 b or

lower can b-cover zm. Therefore, only descendants of x̃l in levels Y5l−1 down

to Y5l−1−log5 b can b-cover zm, and there are only bO(λ) such descendants.

83

Proof of low degree

Now that we have the structural lemma, we can prove that the final spanner

has degree (1/ε)O(λ). Recall that there are two types of edges incident on a

point. Type I edges include parent-child and step-parent edges, and Type II

edges include three different types of lateral edges. In proving low degree for

the spanner of the final hierarchy, it will again prove useful to refer back to

the spanner of the intermediate hierarchy.

Type I edges. For each occurrence of a point y in the intermediate hierar-

chy, y possesses 2O(λ) parent-child edges. Similarly, for each occurrence of y,

y possesses a single step-parent (and an edge to this step-parent). We will

show that occurrence yl can serve as a step-parent for at most 2O(λ) other

points which it covers.

To see that the occurrence serves as a step-parent for at most 2O(λ) other

points, note that each step-child of yl has a unique ancestor in level Y5l of

the full hierarchy; this ancestor did not survive in the intermediate hierarchy.

By Property 2, the distance from this step-child to its ancestor is less than

4
5
5l. The distance from step-child to y is less than 5l (since y covers the

step-child), so the distance from the ancestor to y is less than 4
5
5l + 5l = 9

5
5l.

There are 2O(λ) points in level Y5l of the full hierarchy that are this close to

y, so y ∈ Y5l can have only 2O(λ) step-children.

Since a point in the final hierarchy replaces at most three occurrences

of points in the intermediate hierarchy, each point has at most 2O(λ) Type I

84

edges incident upon it.

Type II edges. For each occurrence of point y in the hierarchy, say at level

Y5l, y is given lateral edges to each point xl of the full hierarchy that satisfies

d(yl, xl) ≤ c · 5l and survives in the intermediate hierarchy. These account

for cO(λ) edges incident on y.

If there exists a point xl in the full hierarchy that satisfies d(yl, xl) ≤

c · 5l but does not survive in the intermediate hierarchy, then y is given a

replacement lateral edge to xl’s highest surviving descendant (but only if the

descendant’s step-parent is above Y5l). This accounts for an additional cO(λ)

edges incident on y.

Let wj (j > l) be the step-parent of yl in the intermediate hierarchy, or

its parent if it has no step-parent. If j > l + 1, then yl possessed ancestors

in levels Y5j−1 through Y5l+1 of the full hierarchy that did not survive in the

intermediate hierarchy. For each such ancestor ỹk (j > k > l), y was given

replacement lateral edges to all points of the full hierarchy within distance

c · 5k of ỹk that survive in the intermediate hierarchy. Since y is 4
5
-covered

by each ancestor, it is necessarily (c + 4
5
)-covered by each point to which it

is given a replacement lateral edge. By Lemma 4.2.3, there are only cO(λ)

points in levels Y5j down to Y5l+1 that (c + 4
5
)-cover yl, so this accounts for

only cO(λ) additional replacement lateral edges incident on y.

Now, recall that lateral refinement edges take two points connected by

lateral and lateral replacement edges, and connect each point to every child

of the other, as well as connecting the children of one point to the children

85

of the other. For each lateral or lateral replacement edge, this adds 2O(λ)

refinement edges incident on y, for a total of cO(λ) refinement edges.

It follows that a point occurrence accounts for cO(λ) lateral, lateral re-

placement, or lateral refinement edges. Since a point in the final hierarchy

replaces at most three occurrences of points in the intermediate hierarchy,

each point has at most cO(λ) Type II edges incident upon it. We may con-

clude:

Theorem 4.2.4. The degree of the final spanner is cO(λ) = (1/ε)O(λ).

4.2.7 Dynamic updates

In this section we discuss how to maintain the spanner dynamically under in-

sertions and deletions of points to the set. It suffices to show how to maintain

T 1 and the intermediate spanner, since the final spanner is yielded by point

replacement applied to the intermediate spanner, and it is straightforward

to maintain the replacements as updates occur.

Maintenance of T 1

We begin with the dynamic maintenance of the spanning tree T 1. (Recall that

T is maintained dynamically by the centroid path decomposition.) A single

insertion into the point set translates into the insertion of 2O(λ) nodes in T .

These new nodes include only a single leaf node; this is the leaf node storing

the newly inserted point. By construction, the new leaf node will appear in

86

T 1, although the newly added internal nodes each have at most one child

and will not appear in T 1. It is however possible that the addition of the leaf

node may result in a preexisting internal node of T being added to T 1; this

can occur when the internal node had previously been compressed but now

has the leaf node as a second child in T 1. (Note that this internal node may

readily be found in O(log n) time using the centroid path decomposition).

By construction, no other internal node may be added to T 1, although many

internal nodes may have been added to T . (In particular, a node added to

T as the result of a promotion is considered to have no real descendants at

the time of promotion, and does not appear in T 1.)

Similarly, the deletion of a point results in a single leaf node of T being

marked as deleted, and that leaf node being removed from T 1. The removal

of a leaf node from T 1 may result in the removal (due to contraction) of a

single internal node from T 1. (Again, this internal node may be found in

O(log n) time using the centroid path decomposition).

It follows that T 1 – and the intermediate hierarchy it represents – can be

maintained along with T in O(log n) update time. An update to the point

set translates into at most two updates in the intermediate hierarchy.

Maintenance of the intermediate spanner

Now that we have detailed the changes that occur to T 1, we can show how

to maintain the intermediate spanner. Before we begin, we will describe two

query subroutines which we will make use of.

87

Colored ancestor queries. Consider a tree with some nodes that are

colored. A colored ancestor query 〈v,c〉 on node v and color c asks for the

lowest ancestor of v which is colored c. (Elsewhere this is called a marked

ancestor query [1].) Multiple colored ancestors can be found by executing a

series of queries, each subsequent query on the node returned by the previous

query. Colored ancestor queries can be supported (for a constant number of

colors) in O(logn) query and update time. We could accomplish this, for

example, by making use of the dynamic centroid path decomposition of the

tree. For each centroid path, the c-colored nodes on that path are stored in a

balanced tree. Then an ancestor query 〈v,c〉 is executed by first discovering

the centroid path on which v is found, and then finding the highest c-colored

node on that path, all in O(1) time. If the highest c-colored node on the

path is above v, then a binary search on the balanced tree returns the lowest

ancestor. If the highest c-colored node on the path is below v (or there are no

c-colored nodes on the path), then the search ascends to the first ancestral

centroid path that has c-colored nodes (in O(log n) time), and returns the

lowest c-colored node on that path.

Highest surviving descendant queries. Consider the full and interme-

diate hierarchies. A highest surviving descendant query 〈v〉 provides a node

v of T that does not survive in T 1, and asks for the highest descendant of v

that survives in T 1. A highest surviving descendant query can be supported

in O(log n) time using the centroid path decomposition. We first locate the

centroid path of v, and then consult the centroid path’s balanced tree for

88

real nodes (introduced in Section 3.6.4) in O(log n) time. If the balanced

tree contains no nodes below v, then there is no surviving descendant. If

it contains two or more nodes below v, then the highest one of these is the

highest surviving descendant. If it contain a single node, then the search for

a surviving descendant continues on the off-path subtree of this node. The

new search takes only O(1) time on the next centroid path (since the query

node is at the top of the path and so a binary search on the balanced tree

is not necessary), and if need be can descend all centroid paths in O(logn)

time.

We can now proceed to describe the maintenance of the intermediate

spanner. We will focus on Type I and Type II edges separately.

Type I edges. A newly added occurrence xl in the intermediate hierarchy

is given parent-child edges to its new parent and children, and these may be

readily found by consulting tree T 1. If a child of xl formerly had a different

parent, the old parent-child edge is removed.

We must also locate the step-parent of xl, which is the lowest point wk

(k > l) that covers xl (d(wk, xl) < 5k), if any, and is below xl’s parent. To

find this point, we turn to the full hierarchy, and recall that the distance from

xl to its ancestor in level Y5k is less than 4
5
5k, so the distance from wk to this

ancestor node is less than 5k + 4
5
5k = 9

5
5k. To find the point that covers xl, we

search the full hierarchy for the lowest ancestor of xl that has a neighboring

point within distance 9
5

of its radius, and check if the neighbor covers xl. If it

does not, we find the next lowest ancestor of xl with this property, stopping

89

when the parent level is reached. It follows from Lemma 4.2.3 that at most

2O(λ) ancestor neighbors can be inspected. Such an ancestor search may be

executed using T : We maintain a coloring scheme where each node is colored

r if it stores a point that has a neighbor in the intermediate hierarchy within

9
5

of its radius. We execute a colored ancestor query on the current ancestor

of xl to find the next lowest ancestor colored r. At most 2O(λ) searches are

undertaken, each requiring O(logn) time, so all this can be done in 2O(λ) log n

time.

If xl is the lowest point in T 1 covering some point zm (l > m), then xl

is zm’s step-parent. zm must be given a step-parent edge to x, and the edge

from zm to its old step-parent edge (if any) is deleted.

To find all step-children of xl, we note that the distance from a step-child

zm to xl is at most 5l, and by Property 2 the distance from xl to the ancestor

of zm in level Y5l of the full hierarchy is less than 5l + 4
5
5l = 9

5
5l. For each of

the 2O(λ) points in level Y5l of the full hierarchy that is within distance 9
5
5l

of xl and does not survive in the hierarchy, we check if its highest surviving

descendant is covered by xl. If the descendant is covered by xl, and xl is lower

than the point’s current step-parent (if any), then xl is its new step-parent

and replaces the previous step-parent. This entails 2O(λ) highest surviving

descendant queries, and can be done in 2O(λ) log n time.

When a point occurrence is removed from the intermediate hierarchy, all

edges to that point are deleted. Its parent and child are instead given parent-

child edges to each other, and the child may gain a new step-parent. If the

90

removed point was a step-parent of some other point, that point is given a

new step-parent; its new step-parent is located as above. This can all be

done be done in 2O(λ) log n time.

Type II edges. For a newly added occurrence xl in the intermediate hier-

archy, xl is given lateral edges to each point in the intermediate hierarchy at

level Y5l within distance c · 5l of xl. There are cO(λ) such points, and they

may be found in cO(λ) time by ascending and then descending O(log c) levels

of the tree T .

If there is a point within distance c · 5l of xl in the full hierarchy, but

that point does not survive in the full hierarchy, then its highest surviving

descendant is given edges to xl in the intermediate hierarchy. (This occurs

only if the descendant’s step-parent is above xl.) There may be cO(λ) such

points in level Y5l of the full hierarchy, and we can execute a highest surviving

descendant on each one in cO(λ) log n time.

Let wj (j > l) be the step-parent of xl in the intermediate hierarchy, or

its parent if it has no step-parent. If j > l + 1, then xl possessed ancestors

in levels Y5j−1 down to Y5l+1 of the full hierarchy that did not survive in

the intermediate hierarchy. For each such ancestor x̃k (j > k > l), xl must

be given replacement lateral edges to all points of the full hierarchy within

distance c · 5k of x̃k that survive in the intermediate hierarchy. We can use

colored ancestor queries to locate each ancestor in levels Y5j−1 down to Y5l+1

that has surviving points within c times its radius (and given the ancestor we

can find the nearby surviving points). To find these ancestors, we maintain a

91

coloring scheme where each a point yl of the full hierarchy is colored b if it is

within distance c · 5l of some level Y5l point that survives in the intermediate

hierarchy. We have already shown that each point has at most cO(λ) lateral

replacement edges incident upon it, which implies that only cO(λ) ancestors

must be located, and so this can all be done in 2O(λ) log n time.

If a newly added occurrence xl is the new step-parent of zm, then all

lateral replacement edges between zm and points above level Y5l are deleted.

This can be done in cO(λ) time.

When a lateral or lateral replacement edge is deleted or inserted, 2O(λ)

lateral refinement edges are deleted or inserted as well. This has no asymp-

totic effect on the run time of lateral or lateral refinement edge deletion or

insertion.

If xl is deleted from the hierarchy, all lateral or lateral replacement edges

due to xl are deleted from the hierarchy. If xl served as a step-parent of some

point, that point is given a new step-parent and possibly new lateral edges.

These can be found as above.

Lemma 4.2.5. The intermediate spanner can be maintained in cO(λ) log n =

O(log n
εO(λ)) update time.

Recall that the final spanner is derived from the intermediate spanner by

replacing point occurrences in the intermediate hierarchy with their assigned

points.

Corollary 1. The final spanner can be maintained in O(log n
εO(λ)) update time.

92

Chapter 5

Further applications

We have already described the nearest neighbor search structure and its

major application, the spanner. In this chapter we discuss two additional

applications of the search structure. These are the maintenance of the closest

pair of points in the point set, and the extraction of a well separated pairs

decomposition of the point set.

5.1 Closest pair

An application of the spanner is dynamic maintenance of the closest pair

of points in the set S. Note that in a (2 − ε)-spanner (ε > 0), the pair (or

pairs) of closest points must have an edge between them, or else their spanner

stretch would be greater than 2− ε. By storing the edges in a heap based on

weight, we can answer a closest pair query in O(1) time.

93

5.2 Well separated pairs decomposition

A Well Separated Pairs Decomposition of a point set X with constant s > 0

is a set of pairs {{A1, B1}, . . . , {Al, Bl}} such that

• Ai, Bi ∈ X for every i.

• Ai ∩ Bi = ∅ for every i.

• ∪l
i=1Ai ⊗ Bi = X ⊗ X.

• d(Ai, Bi) ≥ s· max{diam(Ai), diam(Bi)}.

The WSPD was introduced by Callahan and Kosaraju [12], who gave a se-

quential algorithm for its derivation. They gave a dynamic data structure for

X in d-dimensional Euclidean dimension that supports updates in 2O(d) log n

time; given this data structure, a WSPD can be derived in sO(d)n time. Fur-

ther, their WSPD has only sO(d)n pairs. For X in doubling dimension λ, [25]

showed how to construct a linear size WSPD in 2O(λ)n log n+sO(λ) time. Our

navigating net data structure immediately yields a dynamic structure that

supports updates in 2O(λ) log n time; given our navigating net, a WSPD can

be found in sO(λ)n time.

Given our spanning tree T ′, the procedure for deriving a WSPD is a

straightforward extension of the one given in [12]. For the purpose of the al-

gorithm, we will treat all points of the hierarchy as if they were represented

explicitly. Our algorithm is defined recursively, beginning at the top point

94

of the hierarchy: Let V be a set of points at level Y5k which have real de-

scendants in S. Consider in turn each pair of points of V , say x and y. if

d(x, y) ≥ 2s5k, then take x and y to be a well-separated pair. Otherwise,

call the algorithm on the children of x and y in S.

As in [12], this algorithm produces a WSPD. As a consequence of the

packing property applied to the navigating net, the algorithm runs in sO(λ)n

time and produces sO(λ)n pairs.

95

Bibliography

[1] S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestor problems. Sym-

posium on Foundations of Computer Science, 534–544, 1998.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, A. Y. Wu. An

optimal algorithm for approximate nearest neighbor searching in fixed di-

mensions. J. ACM, 45(6):891–923, 1998.

[3] S. Arya, D. M. Mount, and M. Smid. Dynamic algorithms for geometric

spanners of small diameter: Randomized solutions. Computational Geom-

etry: Theory and Applications, 13:91–107, 1999.

[4] A. Bagchi, A. L. Buchsbaum and M. T. Goodrich. Biased skip lists.

Algorithmica, 42(1):31–48, 2005.

[5] R. E. Bellman. Adaptive Control Processes. Princeton University Press,

1961.

[6] S. W. Bent, D. D. Sleator and R. E. Tarjan. Biased search trees. SIAM

J. Comput., 14(3):545–68, 1985.

96

[7] J. L. Bentley. Multidimensional binary search trees used for associative

searching. Communications of the ACM, 18(9):509–517, 1975.

[8] J. L. Bentley and J. B. Saxe. Decomposable searching problems I: Static-

to-dynamic transformation. J. Alg., 1(4):301–358, 1980.

[9] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest

neighbor. International Conference on Machine Learning, 97–104, 2006.

[10] A. Borodin, R. Ostrovsky and Y. Rabani. Lower bounds for high di-

mensional nearest neighbor search and related problems. Algorithms and

Combinatorics Series 3143, 252–274, Springer-Verlag 1999.

[11] P. Bose, J. Gudmundsson, and P. Morin. Ordered theta graphs. Com-

putational Geometry: Theory and Applications, 28:11–18, 2004.

[12] P. B. Callahan and S. R. Kosaraju. A decomposition of multi-

dimensional point sets with applications to k-nearest-neighbors and n-body

potential fields. J. ACM, 42:67–90, 1995.

[13] E. Chavez, G. Navarro, R. Baeza-Yates, and J. L. Marroquin. Proxim-

ity searching in metric spaces. ACM Computing Surveys, 33(3):273–321,

September 2001.

[14] T. Chan. Approximate nearest neighbor queries revisited. Symposium

on Computational Geometry, 352–358, 1997.

97

[15] B. Chazelle. An optimal convex hull algorithm in any fixed dimension.

Discrete Computational Geometry, 10:377–409, 1993.

[16] K. L. Clarkson. A randomized algorithm for closest-point queries. SIAM

J. Comput., 17:830–847, 1988.

[17] K. L. Clarkson. An algorithm for approximate closest-point queries.

Symposium on Computational Geometry, 160–164, 1994.

[18] K. L. Clarkson. Nearest neighbor queries in metric spaces. Discrete

Computational Geometry, 22(1):63–93, 1999.

[19] R. Cole and R. Hariharan. Dynamic lca queries. SIAM J. on Comput.,

34(4):894–923, 2005.

[20] J. Erickson. New lower bounds for convex hull problems in odd dimen-

sions. SIAM J. on Comput., 28(4):1–9, 1999.

[21] G. N. Frederickson. A data structure for dynamically maintaining rooted

trees. J. Alg., 24(1):37–65, 1997.

[22] J. Gao, L. Guibas, and A. Nguyen. Deformable spanners and appli-

cations. Computational Geometry: Theory and Applications 35(1):2–19,

2006.

[23] L. Gottlieb and L. Roditty. Improved algorithms for fully dynamic ge-

ometric spanners and geometric routing. ACM Symposium on Discrete

Algorithms, 591–600, 2008.

98

[24] A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded geometries, frac-

tals, and low-distortion embeddings. IEEE Symposium on Foundations of

Computer Science, 534–543, 2003.

[25] S. Har-Peled and M. Mendel. Fast construction of nets in low dimen-

sional metrics, and their applications. SIAM J. Comput., 35(5):1148–1184,

2006.

[26] D. Karger and M. Ruhl. Finding nearest neighbors in growth-restricted

metrics. ACM Symposium on Theory of Computing, 63–66, 2002.

[27] L. Roditty. Fully dynamic geometric spanners. ACM Symposium on

Computational Geometry, 373–380, 2007.

[28] R. Krauthgamer and J. R. Lee. Navigating nets: simple algorithms for

proximity search. ACM-SIAM Symposium on Discrete Algorithms, 798–

807, 2004.

[29] R. Krauthgamer and J. R. Lee. The black-box complexity of nearest

neighbor search. Theoretical Computer Science, 348(2–3):262–276, 2005.

[30] J. S. Salowe. Constructing multidimensional spanner graphs. Int. J.

Comput. Geometry Appl, 1(2):99–107, 1991.

[31] J. Soares. Approximating euclidean distances by small degree graphs.

Discrete & Computational Geometry, 11:213–233, 1994.

99

[32] P. M. Vaidya. A sparse graph almost as good as the complete graph on

points in K dimensions. Discrete & Computational Geometry, 6:369–381,

1991.

[33] G. M. Ziegler. Lectures on Polytopes, Volume 152 of Graduate Texts in

Mathematics. Springer-Verlag 1994.

100

