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Chapter 1. Overview  

1.1 Motivation: The Role of Image Understanding 

 

In the fields of computational vision and image understanding, the object recognition 

problem can often be formulated as a problem of matching a collection of model features 

to features extracted from an observed scene.  This dissertation is concerned with the use 

of feature-based match similarity measures and feature match algorithms in object 

detection and classification in the context of image understanding from complex 

signature data.  Our applications are in the domains of target vehicle recognition from 

radar imagery, and binocular stereopsis.  

In what follows, we will consider “image understanding” to encompass the set of 

activities necessary to identify objects in visual imagery and to establish meaningful 

three-dimensional relationships between the objects themselves, or between the object 

and the viewer.  The main goal in image understanding then involves the transformation 

of images to symbolic representation, effectively providing a high-level description of an 

image in terms of objects, object attributes, and relationships between known objects.  As 
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such, image understanding subsumes the capabilities traditionally associated with image 

processing, object recognition and artificial vision [Crevier and Lepage 1997]. 

In human and/or biological vision systems, the task of object recognition is a natural 

and spontaneous one.  Humans can recognize immediately and without effort a huge 

variety of objects from diverse perceptual cues and multiple sensorial inputs.  The 

operations involved are complex and inconspicuous psychophysical and biological 

processes, including the use of properties such as shape, color, texture, pattern, motion, 

context, as well as considerations based on contextual information, prior knowledge, 

expectations, functionality hypothesis, and temporal continuity.  These operations and 

their relation to machine object recognition and artificial vision are discussed in detail 

elsewhere [Marr 1982], [Biederman 1985], but they are not our concern in this thesis. 

In this research, we consider only the simpler problem of model-based vision, where 

the objects to be recognized come from a library of three-dimensional models known in 

advance, and the problem is constrained using context and domain-specific knowledge. 

The relevance of this work resides in its potential to support state-of-the-art 

developments in both civilian and military applications including knowledge-based 

image analysis, sensors exploitation, intelligence gathering, evolving databases, 
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interactive environments, etc.  A large number of applications are reviewed below in 

section 1.4.  Experimental results are presented in Chapters 5, 6, and 7. 

1.2 Object Recognition as Feature Matching 

1.1.1 Introduction 

Model-based object recognition techniques involve finding patterns of features within 

an image, guided by a priori models.  That is, we wish to identify modeled objects in a 

scene by relating stored geometric model properties and projection parameters to salient 

features extracted from sensor data. 

The choice of model representation is thus essential to the process.  The 

representation should be rich enough to allow reliable discrimination and to account for 

complex variability, and yet terse enough to enable efficient matching.  In the end, this 

question reduces to the selection of stable and discriminative features for use in the 

matching process.  In practice, objects and models are represented as abstract “patterns,” 

or collections of “locally defined” features (see the discussions about features in 

subsection 1.1.2. and about models in section 1.2.) 

Matching is one of the central issues of model-based recognition and an important 

component of most object recognition systems.  A common goal is to project a three-

dimensional model in a scene at roughly the correct position, with a similar scale and 
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similar orientation to the object in the scene.  In that way, the accuracy of the match 

between the object model and the image data can be measured and compared, and 

candidate hypotheses can be validated in a verification stage.  Accomplishing this task 

requires that relevant and comparable information be extracted from both the sensor data 

as well as the model database.   

Traditional object recognition systems comprise the following five stages: (1) model 

construction, (2) data acquisition, (3) feature extraction, (4) feature matching, and (5) 

verification.  For the most part in this work, we will only be concerned with the matching 

stage but will briefly review the general paradigm.  The discussion about models is 

deferred to section 1.2. 

1.1.2 Data and Features 

The meaning of the word “features” is in general highly application-dependent.  In 

this dissertation, a feature is considered to represent the outcome of an event, which is 

conditioned on some test, which in turn depends on the input data stream.  The fact that 

the test is satisfied means that the feature is present, and feature parameters can then be 

estimated accordingly from local data.  When the data stream is an image, the output 

parameters will normally include a “location” for the feature.  As an example, an edge 

detector might compute the local gradient magnitude in an image at every pixel.  We 
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might declare the feature to be present whenever the gradient magnitude exceeds some 

threshold.  In that case, the feature will consist of the location and the actual gradient 

magnitude, as well as a discretized angle measure determining the direction of the 

gradient at that location.  The collection of features from the image would then be a 

listing of all pixels and associated attributes where the gradient magnitude exceeds the 

threshold. 

Since the determination of a feature generally requires that some functional be 

applied to the input data stream, and that functional is typically stationary (i.e., it is 

reapplied at each individual “location” in the input stream), the output of such a 

functional is sometimes called the “feature” information.  Indeed, the output information 

is a feature of the image in the previous sense, where the test is always true.  However, 

we can also view the output information in a different way. 

Specifically, if the functional is applied to the entire data stream and no test is 

performed, then the output is also a data stream.  The output data stream can have 

multiple components at each input datum and so it can be viewed as a vector-valued 

output.  A “feature map” usually refers to a slice of that output data stream, where one 

component of the vector data has been selected.  Clearly, the notions of a feature map, 

and the notion of a feature as an attributed event that has passed some test are two 

different things.  Unfortunately, the term “feature” can be applied to both of them, and 
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thus leads to confusion.  In this work, a feature generally refers to a collection of 

attributes together with a location, and it is based upon a functional that has passed a test.  

This is consistent, for example, with the concept of features as “interest operators” 

[Moravec 1980, 1981]. 

Therefore, in the realm of image processing, features are typically thought of as a 

discrete collection of prominent locations in the image supplemented with attribute 

information.  More generally, a feature can be augmented with a vector of components 

from some heterogeneous multidimensional space describing feature properties and 

parameters.  Hereafter, this is what we mean by a “feature vector” or simply a “feature.” 

When viewed as a problem of matching collections of feature vectors, we identify the 

following three sub-problems within the object recognition problem: 

1. Finding correspondences between extracted and model features, after the model has 

been suitably transformed into the image domain; 

2. Computing a score similarity measure based on those correspondences, by means of a 

measure for the distance between sets of features; 

3. Finding the transformation that best superimposes a model view into the image in 

order to optimize the ultimate score. 
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We will initially focus on the scoring problem (item 2 above), since the problem of 

determining the best correspondences depends on the score, and the problem of finding 

the optimal transformation can be handled through an iterative process of approximation 

and refinement, or by other transformation-space approaches (subsection 1.1.3.)  All of 

them rely ultimately on a sensible score function. 

1.1.3 Match and Search 

In general, the matching process in object recognition involves some type of search 

since there are many unknown factors governing the appearance of an object in a given 

scene.  Search is interesting and important because the potential complexity can be very 

high.  From the algorithmic point of view, most object recognition systems fall into one 

of two approaches: those that search in the space of features (or correspondences) and 

those that search in the space of transformations (or parameters.) 

When the search takes place over the set of extracted features and recognizable 

models, the system attempts to determine correspondences between subsets of model and 

image features and these correspondences should be consistent with the permissible 

transformations. 

Alternatively, if the search takes place in the space of allowed transformations, the 

system attempts to find a transformation that brings subsets of model and image features 
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in close correspondence with one another.  The classical example representative of this 

approach is the generalized Hough transform, in which object recognition is achieved by 

recovering the transformation that brings a large number of model features in 

correspondence with image features.  Each transformation is described in terms of a 

number of transformation parameters, and votes for these parameters are accumulated by 

hypothesizing matches between subsets of model and image features [Illingworth and 

Kittler 1988]. 

Related to the transformation approach is the algorithm known as geometric hashing 

[Lamdan, Schwartz and Wolfson 1988], [Wolfson and Hummel 1988], [Rigoutsos and 

Hummel 1992], [Tsai 1993], [Liu and Hummel 1995] which performs a Hough-like 

transform and an indexing search in a quantized transformation space.  The potential 

transformations are precomputed (in an offline phase) and encoded by transformation-

invariant features; and putative correspondences are then used to index (in the online 

phase) into an appropriate data structure containing the models and transformations, and 

other (score) information.  The indexing keys used are geometric invariants such as 

coordinates of scene points computed in the coordinate system defined by ordered groups 

of scene points. 

We consider a model as a three-dimensional representation of a physical object that 

can give rise to an image realization by applying a parametric transformation from some 
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set of allowable transformations followed by a projection in image or feature space.  A 

particular realization of a model can then be viewed as a two-dimensional image.  The 

process of obtaining a model instantiation or realization from a 3D model is known as 

model prediction. 

We will show in Chapter 5 that a simple implementation of geometric hashing can 

handle a variety of match score functions and correspondence algorithms and can be used 

to select the best-fit pair of model and transformation. 

1.3 The Meaning of Models 

in Model-Based Object Recognition 

Most object recognition research is model-based or model-driven, in that it relies 

heavily on the use of known geometrical models for the objects of interest.  Model vision 

systems depend on the building of three-dimensional descriptions and representations, 

and the prediction, description, and interpretation take place largely in three dimensions 

[Binford 1981].  Experience has shown that for realistic applications, it is not possible to 

rely on simple image comparison or template matching schemes, but instead it is 

necessary to incorporate three-dimensional properties of the objects and the scene. 

Models are built from the objects themselves with precise geometric primitives, 

volumetric descriptions and well-defined transformation properties.  These geometric 
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entities and transformations are generally used to predict the appearance of features in 2D 

images based on photometry of the 3D models and the reflectance and illumination 

properties of the scene, the sensor, and the imaging geometry.  For example, at least the 

following sources of variability in the image must be taken into account by the modeling 

process: viewing position, illumination, lighting and photometric effects, object setting 

and context, occlusion and self-occlusion, object articulation, structural composition, 

texture and shape.  

The terminology is confusing due to the fact that sometimes the model patterns in 

image or feature space are often referred to as “models,” as opposed to model 

realizations, instantiations, or exemplars. 

1.4 Related Work 

The problem of object recognition in machine vision has a long history and is 

extensively reviewed in [Besl and Jain 1985], [Chin and Dyer 1986], [Fischler and 

Firschein 1987], [Suetens et al 1992] and more recently, in the online bibliographic 

surveys of Rosenfeld [Rosenfeld 1998].  [Binford 1982] provides a comprehensive 

documentation of many earlier object recognition systems. 

In the remainder of this section, we briefly survey a number of representative systems 

for object recognition, in order to present a broad picture of the research, as well as to 
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illustrate diverse paradigms for recognition, and the breadth of techniques that are 

available.  We only consider approaches that are related to the research presented in this 

thesis.  While some of these descriptions are limited to specific techniques and 

implementations, most of them are representative of generic paradigms for image 

understanding.  For example, many of the following strategies fall in the category of 

hypothesis generation, testing, verification, and refinement.  Much of this material is 

paraphrased from [Suetens 1992] and from [Wolfson 1990].  Finally, we show various 

specific areas of application in the next section. 

Hierarchical Models and Symbolic Constraints.  One of the first object recognition 

systems was ACRONYM [Brooks 1983], [Binford 1982].  The models in ACRONYM were 

volumetric 3D models based on generalized cones and generalized cylinders, which 

represent object classes and their spatial relationships.  ACRONYM used symbolic 

constraints to control and effectively prune the search space.  Interpretation proceeds by 

combining local matches of shapes to individual generalized cylinders into more global 

matches for more complete objects, exploiting local invariance of features and requiring 

consistency among related families of constraints.  ACRONYM incorporates an effective 

constraint manipulation system, and an online prediction process that finds viewpoint-

invariant characteristic features and builds composite object shapes from different 

generalized cylinders in a manner consistent with the constraints. 
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Heuristic Tree Pruning and Hill Climbing.  The HYPER system [Ayache and 

Faugeras 1988] is an example of a robust tree-pruning approach.  The system is able to 

identify and accurately locate touching and overlapping flat industrial parts in an image.  

Object models and segmented image patterns are described by first-degree polynomial 

approximations to their contours.  Matching is performed by a heuristic tree search 

procedure, where a rigid model contour is iteratively matched to the image pattern 

segments by successively adding compatible segments to the current partial contour 

match.  At each iteration, a dissimilarity measure is calculated between the active model 

segment and each image pattern segment.  This measure is a weighted sum of three 

terms: the difference between the orientation of the model segment and the image 

segment, the Euclidean distance between their midpoints, and the difference between 

their lengths.  The model segment is then matched with the best image segment, that is, 

the image segment with the minimal dissimilarity.  The estimates of the transformation 

parameters are then updated.  For each hypothesis, a quality measure at each iteration of 

the search measures the length of the identified model relative to the total model length.  

At the end of the heuristic search procedure, a final verification is done on the hypothesis 

with the highest quality measure, and the hypothesis is accepted if the quality measure is 

above a pre-specified threshold. 
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Perceptual Grouping of Structures.  The SCERPO system [Lowe 1987] extended 

and refined the ACRONYM system, and was able to recognize polyhedral 3D objects from 

intensity images under perspective transformation, using perceptual grouping of image 

features and a hierarchical search strategy with backtrack capability.  Simpler features 

such as edges and straight lines are combined into perceptual structures, that is, instances 

of collinearity, proximity, and parallelism.  Next, these primitive relations are combined 

into larger, more complex structures such as polygonal shapes.  These generic structural 

patterns are then used to limit the search by hypothesizing the location of manufactured 

parts, which is then backprojected onto the edge data to verify the hypothesis. 

Constraint Propagation and Interpretation Trees.  The paradigm advocated in 

[Grimson 1990a] consists on the application of geometric constraints to prune the search 

for correspondences and arrive at coherent explanations of labeled scenes.  The approach 

performs a depth-first backtracking search of a tree of possible interpretations.  At each 

node, unary and binary constraints on the relative shapes of data and model features are 

applied to cut off fruitless paths in the tree.  Any leaf of the tree reached by the process 

defines an hypothesis for a feasible interpretation; solving for the pose of the object and 

verifying that such a pose is consistent with the other components of the interpretation.  

Other heuristic criteria for search termination can be employed to handle missing and 
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spurious data [Grimson 1990b].  An alternative to the use of binary geometric constraints 

is the use of attributed features [Hummel 1995], [Liu and Hummel 1995]. 

Generic Parts Structures and Model-Driven Optimization.  The system of 

Pentland [Pentland 1990] uses a general-purpose “parts” representation to recognize 

natural 3D objects in range images.  Objects are described in terms of shapes of the 

component parts, which are modeled as deformable superquadrics.  A binary image is 

first obtained by automatic thresholding of texture, intensity, or range data.  A set of 2D 

binary patterns, whose shapes are 2D projections of 3D superquadrics, is then fit to the 

binary image using template matching.  The detected parts are subsequently considered 

as hypotheses, and a minimum description length criterion is used to select the subset of 

part hypotheses that best describes the binary image data.  Given a segmentation into 2D 

patterns, the corresponding 3D parts of similar width, length, and orientation are 

deformed in order to minimize the error between the visible surface of the 3D object and 

the available range measurements. 

Linear Subspaces and Dimensionality Reduction.  Numerous statistical pattern 

recognition approaches have their origin in linear subspace methods.  The central idea 

underlying these methods is to represent images in terms of their projection into a 

relatively low-dimensional space that captures most of the important characteristics of the 

objects to be recognized.  Examples of this category include linear combination of 
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models [Ullman and Basri 1991], Eigenfaces [Turk and Pentland 1991], and other regular 

shape descriptors and point distribution models.  Many of these schemes use intermediate 

representations based directly on two-dimensional views rather than explicit 3D models.  

Other related techniques such as sparse representations, robust metrics, and matching 

pursuits need to be devised in order to deal effectively with occlusions, cluttered 

background, and extraneous objects [Liu et al 1996]. 

Energy Minimization and Active Contour Models.  Image contour models called 

Snakes, are useful for the dynamic specification of shapes as deformable templates using 

curvilinear features.  Curves are implemented as splines that can be deformed under the 

influence of image constraints to attract them towards features of interest in the data, as 

well as internal continuity constraints that force them to remain smooth.  Both constraints 

are realized as additive energy fields, and the best compromise between them is achieved 

by deforming the curve in order to minimize of its total energy [Kass et al. 1987]. 

Rule-Based Interpretations.  In the system described by [Ohta 1985] for outdoor 

scene analysis, models are semantic networks that contain properties of scene entities and 

their relational constraints.  A rough interpretation –called a plan– is obtained by coarse 

segmentation and probabilistic relaxation labeling operating in large patches, tentatively 

merged with surrounding small patches into homogeneous compact regions.  A set of 
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heuristic rules operates subsequently on the preliminary patches and the plan, in order to 

arrive at a detailed interpretation. 

Context Driven Recognition and Learning.  The Condor system (for context-driven 

object recognition) from [Strat 1992] incorporates judicious use of contextual information 

to control all different levels of reasoning, in a hierarchical knowledge-based strategy for 

recognition of natural scenes.  Hypotheses are generated using low-level special-purpose 

operators whose invocation is controlled by context sets, which explicitly define the 

conditions and assumptions necessary for successful invocation.  Condor produces a 3D 

interpretation of the environment, labeled with terms from its recognition vocabulary; 

that is used to update the terrain database for use during the analysis of subsequent 

imagery.  Candidates for each label are ranked using various measures, so that the best 

ones can be tested first for consistency, detecting and rejecting physically impossible 

combinations of hypotheses. 

Model-Driven Correlation-Based Hypothesis Verification.  The 3DPO system 

[Bolles and Horaud 1986] locates overlapping industrial parts, generating and verifying 

its hypothesis and refining its pose estimate by backprojecting the prediction onto the 

range data.  The comparison is performed with template matching using correlation, and 

thus the approach requires rigid objects and detailed models of the physics of data 

acquisition.  The generation of hypotheses is done using maximum clique finding in a 
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relational graph.  A high-level strategy uses clusters of features to generate hypotheses, 

which are then compared with complementary features in a low-level verification and 

parameter refinement step. 

Bipartite Matching and Relaxation Labeling.  [Kim and Kak 1991] used bipartite 

matching together with discrete relaxation to perform recognition of 3D objects from bin 

parts using the output of an structured light scanner.  This represents to our knowledge 

one of the first attempts to use the technique of bipartite matching in computer vision. 

Each object is represented by an attributed graph whose nodes are surface features, and 

whose arcs are edges between the surfaces.  Every node in the graph of a scene object is 

assigned a set of labels for the corresponding model features on the basis of binary 

similarity criteria.  These label sets are then pruned by enforcing relational constraints.  If 

the iterative application of the constraint enforcement leads to a unique labeling, then it 

provides a consistent interpretation of the scene. 

We illustrate a different application of bipartite matching to find an optimal 

maximum likelihood interpretation of a scene in Chapter 4.  Our approach differs from 

this in that they use bipartite graphs to encode surface features and binary relational 

constraints between them and they are concerned with complete one-to-one mappings 

from scene to model features, whereas we use an explicit quantitative score to measure 
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the similarity of matching between point features to arrive at a maximum likelihood or 

maximum a posteriori interpretation in terms of a particular assignment (Section 3.7). 

Geometric Hashing and Affine Invariant Matching.  Lamdan, Schwartz and 

Wolfson [Lamdan et al. 1988a], [Wolfson and Hummel 1988], [Wolfson 1990] present a 

general and efficient recognition scheme using a transformation invariant hashing 

scheme.  Invariant geometric relations among object features are used to encode model-

to-scene transformations using minimal feature subsets as reference coordinate frames in 

which other features can be represented by their transformation invariant coordinates.  

The recognition procedure has two major steps.  In the first step the representation of the 

database objects is precompiled in a hash table; this step is executed off-line on the 

database objects and is independent of the next phase of the algorithm.  The second step 

is executed on the image scene using the hash table for fast indexing and recovering of 

candidate models and transformations.  The hash table serves as an associative memory 

over the set of all model objects, allowing for retrieval of “similar” feature subsets and 

hence effectively prunes the space of candidate model features. 

Massively Parallel Bayesian Model Matching.  The geometric hashing approach 

discussed above is attractive because it is able to deal with arbitrary groups of 

transformations, multiple feature types, and is inherently parallel.  The main 

parallelization effort was undertaken by [Rigoutsos 1992], [Rigoutsos and Hummel 1995] 



 

19 19 

who describe scalable algorithms for hypercube SIMD architectures and an 

implementation in the Connection Machine with similarity and affine invariance.  They 

also introduced Bayesian weighted voting with a Gaussian error model.  In this work, we 

demonstrate how more general scoring functions involving feature correspondences can 

be implemented in geometric hashing. 

Bayesian Hashing and Matching with Attributed Features.  A detailed tradeoff 

error analysis such as those undertaken in [Grimson and Huttenlocher 1990], [Sarachik 

1992], shows that minimal feature vectors do not provide adequate discrimination 

capability in practical systems.  The use of features augmented with attribute information 

can enhance system performance and reduce false alarm rates [Hummel 1995].  Liu and 

Hummel [1995] used attributed features and Bayesian score functions as a means for 

false alarm reduction in geometric hashing.  They describe a similarity-invariant 

geometric hashing system that uses line features together with line orientation 

information, in order to filter candidate matches and significantly reduce the false alarm 

rate. 

Model-Based Bayesian Indexing.  A different approach to Bayesian indexing is 

presented in [Ho and Chelberg 1998] who use local surface groups as index features and 

statistical estimates of the discriminatory power of each feature.  Domain-specific 

knowledge is compiled offline from CAD models and used to estimate posterior 
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probabilities that define the discriminatory power of features for model objects.  In order 

to speed up the selection of correct objects, object hypotheses are generated and verified 

in the order of their estimated discriminatory power. 

1.5 Applications of Object Recognition 

Among the numerous applications of object recognition, we can mention the 

following: 

§ Automatic Target Detection and Recognition.  Automatic Target Recognition 

(ATR) generally refers to the autonomous or aided target detection and recognition by 

computer processing of data from a variety of sensors .  It is an extremely important 

capability for targeting and surveillance missions of defense weapon systems 

operating from a variety of platforms.  The major technical challenge for ATR is 

contending with the combinatorial explosion of target signature variations due to 

target configuration and articulation, target/sensor acquisition geometry, target 

phenomenology, and target/environment interactions.  ATR systems must maintain 

low false alarm rates in the face of varying and complex backgrounds, and must 

operate in real time.  The main objective is to locate and identify time-critical targets 

and vehicles of military interest to aid in surveillance operations, battlefield 

reconnaissance, intelligence gathering, remote sensing, weapons guidance, and 
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exploitation of imagery from unmanned aerial vehicles and other reconnaissance 

platforms [Dudgeon et al 1993].  A second application is to look for militarily 

significant change detection, site monitoring, battle damage assessment and activity 

tracking.  An operational goal is to significantly reduce the volume of imagery 

presented to a human image analyst.  The ATR field has evolved from using 

statistical pattern recognition approaches to model-based vision, recognition theory, 

and knowledge-based information exploitation systems.  For a recent survey, see 

[Bhanu et al 1997]. 

§ Autonomous Robots.  Any mobile robot needs to sense its environment to maintain a 

dynamic model of the external world and develop an intelligent computational 

capability for visual processing.  The visual analysis of shape and spatial relations is 

used in many other tasks, such as object manipulation, planning, grasping, guiding 

and executing movements in the environment, selecting and following a path, or 

interpreting and understanding world properties [Horn 1986].  Modern home and 

service robots work in complex environments with complex objects and are able to 

perform a variety of tasks both indoors and outdoors [Moravec 1998]. 

§ Vehicle navigation and obstacle avoidance.  This category includes mobile robots 

as well as autonomous vehicles, smart weapons, and unmanned platforms that 

navigate through an unknown or partially-known environment.  Research in this field 
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has received considerable attention in the past two decades due to the wide range of 

potential applications, from surveillance to planetary exploration.  Autonomous 

vehicle control, symbolic planning and environment exploration involve the actions 

of moving around, tracking objects of interest, planning a safe route to avoid 

collision, servoing to guide motion with respect to road constraints, and integrating 

sensor information for efficient navigation [Kanade et al 1994]. 

§ Industrial Visual Inspection.  The traditional examples of object recognition come 

from the domain of visual inspection of industrial parts.  Among the numerous 

applications we can mention the following: assembly control and verification, 

metrology, precision measurements of machine parts and electronic patterns, 

unconstrained material handling, geometric flaw inspection, surface scan and 

assembly, food processing, quality control, manufacturing, modeling and simulation 

[International Journal of Machine Vision, Special Issue 1999]. 

§ Face Recognition.  People in computer vision and pattern recognition have been 

working in automatic recognition of human faces for more than 25 years  [Kanade 

1977], [Turk and Pentland 1991].  Recently there has been renewed interest in the 

problem due in part to numerous security applications ranging from identification of 

people in police databases to video-based biometric person authentication, and 

identity verification at automatic teller machines.  Numerous commercial systems are 
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currently available.  The potential applications include, but are not limited to: video 

surveillance and monitoring, building security, site monitoring, videoconferencing, 

law enforcement operations, photo interpretation, medical, commercial and industrial 

vision.  The literature is vast, especially on the web.  

§ Medical Image Analysis.  Medical image analysis has developed into an independent 

flourishing branch of computer vision and image processing as is evidenced by the 

tremendous interest and growth in the field.  Medical imaging concerns both the 

analysis and interpretation of biomedical images through quantitative mensuration 

and manipulation of objects, and the visualization of qualitative pictorial information 

structures [Kalvin 1991].  The main purpose of current research in medical imaging is 

to improve diagnosis, evaluation, detection, treatment and understanding of 

abnormalities in internal physiological structures and in their function.  The last 

decades have witnessed a revolutionary development in the use of computers and 

image processing algorithms in the practice of diagnostic medicine.  Images of both 

anatomical structure and physiological functioning are now produced by a host of 

imaging modalities: computerized tomography, magnetic resonance imaging, optical 

sectioning, positron-emission tomography, cryosectioning, ultrasound, thermography 

and others.  This has enabled the acquisition of detailed images carrying vast amounts 

of multidimensional information.  Furthermore, we have seen the appearance and 
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dissemination of online digital libraries of volumetric image data, such as the “Visible 

Human” project, undertaken by the U.S. National Library of Medicine, which 

comprises the construction of highly detailed templates for human anatomies from 

various digital sources.  Medical Imaging is one of the most dynamic research fields 

in action today, and there are regular international conferences and academic journals 

[IEEE Transactions on Medical Imaging]. 

§ Optical character recognition.  The importance of document image analysis and 

optical character recognition has increased markedly in recent years, since paper 

documents are still the most dominant medium for information exchange, while the 

computer is the most appropriate device for processing this information.  Document 

image understanding and retrieval research seeks to discover efficient methods for 

automatically extracting and organizing information from handwritten and machine-

printed paper documents containing text, line drawings, graphics, maps, music scores, 

etc.  Its characteristic problems include some of the earliest attempted by computer 

vision researchers.  Document analysis research supports a viable industry stimulated 

by the growing demand for digital archives, document image databases and paperless 

sources, the proliferation of inexpensive personal document scanners, and the 

ubiquity of fax machines.  Related areas of research include document image 

databases, information filtering, text categorization, hand-written document 
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interpretation, document image understanding and retrieval, etc [Kanai and Baird 

1998], [International Journal of Computer Vision, Special Issue 1999]. 

1.6 Scope of this Dissertation 

This thesis is about a theory of feature matching in the domain of object recognition.  

The work arose in the context of a DARPA project on Automatic Target Recognition 

using synthetic aperture radar (SAR) images.  We discuss this application in detail in 

Chapter 6.  In SAR imagery, peaks of the magnitude image form the most salient 

features, and patterns of peaks (both their spatial arrangements and the relative amplitude 

at the peak locations) form signatures that are characteristic of the objects.  Accordingly, 

many of the concepts and the terminology used in this thesis have been motivated by this 

application.  The main challenges when dealing with matching of features have to do 

with the following problems: 

• Noise that causes the features not to line up; 

Association ambiguity resulting from the noise; 

• Missing features, in either the reference or the test pattern; 

• Statistics of the underlying processes that determine the features; 

• Algorithmic issues in implementation of matching methods. 
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We confront these issues throughout this thesis, using a Bayesian framework to guide 

the scoring.  The objective is to provide an efficient and effective method for recognizing 

objects based on extracted features, by matching against large databases of characteristic 

signature patterns.  The database of realizations of the models can be built off-line and 

stored or alternatively, can be built dynamically as required during a hierarchical search 

for the matching pattern and the projection parameters.  The latter approach uses the 

notion of “model-based technology” and is the approach that forms the baseline 

application that motivated this work.  However, the issue of prestored models versus 

dynamic image formation is largely orthogonal to the matching problems considered 

here. 

Our principal contributions are in the form of theory and experimental results 

comparing multiple feature match similarity measures and matching algorithms.  We 

emphasize the extensibility, robustness, and scalability of our results and document 

performance statistically by use of rigorous analysis. 

This thesis is organized as follows: 

• Chapter 1 is a brief outline of the problems presented in this thesis, and in particular 

reviews the field of object recognition and image understanding in artificial vision. 
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• Chapters 2 and 3 present an overview of the theory of feature-based matching in 

object recognition, and discuss the notions of observation models, match similarity 

measures and match scoring functions.  We present a Bayesian formulation for object 

recognition that relies on maximizing a posterior expected utility to select the best 

model hypothesis for a given collection of image features.In Chapter 4 we present the 

problem of matching per se, that is, to determine potential correspondences between 

model and image features.  

• Algorithmic implementation issues are discussed in Chapter 5, especially regarding 

the efficient implementation of geometric hashing to handle multiple association 

algorithms and match score functions.  The subject of invariance theory is also 

reviewed briefly. 

• In Chapters 6 and 7 we discuss experiments and present experimental results in two 

application domains respectively. 

• In Chapter 8, we conclude with a general summary of results and suggestions for 

future research work. 
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Chapter 2. Observed Features 

2.0 Overview 

 

The matching process is one of the essential components of the model-based 

paradigm in image understanding.  Here we describe the architecture of the match 

module in an abstract setting. 

The main inputs to the match process consist of two feature sets, namely a model 

feature set and a data feature set.  Feature sets are understood as random vectors that 

characterize a particular modeled object or as a collection of properties extracted from 

measured data that represent an observation.  A model feature set will be denoted as 

{ }m

ii 1=Y  and a data feature set as { }s

jj 1=
X .  The number of features in these sets can also be 

considered as realizations of random variables M  and S  respectively.  Model features 

arise from a Target Model Hypothesis defined below.  Random vectors iY  and jX  take 

values in an abstract feature space that contains an appropriate representation of 

measured characteristics of the objects of interest; these representations should be in 

some sense isomorphic in order to be able to compare individual model and data features 
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by means of some measure of similarity ( )jid XY , .  The specification of features includes 

probability density functions that capture uncertainty and statistical variability in the 

feature modeling process as well as sensor noise, modeling errors, and other (known or 

unknown) sources of error.  Therefore, in an ideal situation, we would have a precise 

specification of the feature space with joint probability density functions on all the 

measurements of interest.  As an example, if each feature consists of a pixel location in 

the image plane together with an amplitude or grayscale value and if we assume these 

two are independent of one another, then the inputs could specify two-dimensional 

Gaussian distributions for the image locations (for both model and data) as well as a 

Rayleigh distribution for the measured amplitude and a Beta distribution for the model 

amplitude; in this case we would have two collections of features for model and data 

respectively, characterized by parameters of the corresponding probability densities.  

Observe that these features sets are independent of one another and there is in principle 

no relationship between individual features iY  and jX ; in other words, there are no a 

priori correspondences between feature sets; if necessary, those correspondences need to 

be found by other means.  

The primary output of the match process is a quantitative measure of similarity 

between the two feature sets.  Ideally, this measure would involve some parameterized 
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form of the input in order to permit comparisons between different models.  As an 

example, a generalized likelihood ratio test would require us to compute 

{ } { }( ),...,,  Pr MSji XY  but in practice we can only get a rough approximation to this 

quantity; the main difficulty behind this being the burden of statistical computations 

required to come up with such a measure.  In principle, the measure of similarity doesn’t 

need to be related to a probability — there is a lot of latitude in what is considered to be 

an acceptable measure of match similarity. 

In our work, however, the key to evaluating the quality of a match is a conditional 

density function, { } { }( )ijf YX   , which is the (differential) probability of observing the 

feature information { }jX  under a specific hypothesis that yields the prediction { }iY .  This 

chapter is about means of modeling this conditional density function.  In Chapter 3, we 

discuss the matching theory itself and review different match similarity criteria using this 

function as a basis for statistical models. 
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2.1 Introduction 

 

As discussed in Chapter 1, our constrained version of the object recognition problem 

consists of finding subsets of model instantiations embedded in a given image, subject to 

invariance under some group of transformations.  An instance of a model is a projection 

of an object’s three-dimensional model into an image domain according to parameters of 

the position of the object and parameters of the sensor imaging system. 

For applications in image processing, it is customary to view a model instance as an 

image “chip,” i.e., a small subset of an image, representing a segmentation of the target 

object from the background.  However, in this work, we view a model as being 

represented by a parameterized mapping from a three-dimensional physical object to a 

collection of image features, together with information about the statistics of those 

features conditioned on the occurrence of the model.  A collection of features can then be 

thought as a “pattern,” since they form a “dot pattern” when the features are associated 

with nominal image locations.  Pattern points can contain attribute information as well.  

We refer to such a model, being projected onto the feature space, and to the resulting 

projected pattern as a signature, which uniquely characterizes an instance or realization 

of the model.  
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In the hypothesize-and-test paradigm [Winston 1992], [Binford 1982], instances of a 

predefined model are supposed to be present in an observed scene and evidence is sought 

in the sensed image to support or reject each candidate hypothesis.  Search strategies are 

used to guide the hypothesis evidence accrual process, which continues until a decision is 

made about the identity of particular objects appearing in the image.  Alternatively, an 

empty decision could be advocated, implying that the evidence is not strong enough (in 

some statistical sense) to support any of the existing model hypotheses.  The search 

process not only identifies the actual objects, but also determines the geometric 

transformation that best superimposes the model features into the scene.  The criterion on 

which the decision is based is typically a score function derived from local evidence, as 

defined below and illustrated in Chapter 3. 

2.2 An Abstract Formulation of Matching Theory 

2.2.0 Background 

The essential components of the matching engine that form the core of the matching 

process, are 

1. Discriminative features to measure characteristic attributes in the signatures and 

statistical models capturing uncertainty and variability of features across the data. 
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2. An observation generation model, describing how observed features will be 

generated given the validity of a prediction.  This model will give a class conditional 

density function for the observed features. 

3. A feature match quality measure used to compare two individual features, namely a 

feature predicted from a 3D model against a feature extracted from measured data. 

4. A match score function to quantify the global similarity between two feature sets, 

namely predicted and measured. 

5. A search/match decision logic to assess the feasibility of statistical hypotheses over 

the hypothesis space consisting of (models, parameters, interpretations, others.) 

In the rest of this Chapter and in the next Chapter we cover each of these topics as 

follows: 

After a brief discussion of model and image features in 2.2.1, we discuss in 

subsection 2.2.2 feature generation models and their relation to observed features, feature 

density functions and feature uncertainty.  In the next Chapter in subsection 3.1.1 we 

describe match score functions and their definition in terms of feature match quality 

measures which are the subject of subsection 3.1.2.  Finally, in subsection 3.1.3 we 

address search decision logic and search match functionality. 
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2.2.1 Features 

Features are discussed in Section 1.1.2 in Chapter 1.  Here we simply recall that 

features are particular to each application and that feature spaces should be isomorphic in 

order to be able to compare model features against image features. 

Useful features for model-based reasoning should include models of the statistical 

variability representative of features across the data of interest.  This variability is 

effectively accounted for by a conditional probability density function over the feature 

space. 

Consider two examples.  First, in SAR imagery, a feature might be simply the 2D 

image location of a peak.  For an observed feature extracted from an image, we would 

then have ( )jjj cr ,=X .  For a predicted peak feature, we might have a Gaussian 

distribution function characterized by a mean location ( )ii cr ,  and a covariance iC .  As a 

second example, every pixel might be a feature, with the attribute of a gray level 

magnitude.  For each observed pixel, the feature information consists of the location and 

magnitude for the pixel ( )jjjj acr ,,=X .  For a predicted pixel, the information consists 

of the location for the pixel, and a probability density function over the set of possible 

magnitudes, as in ( )( )⋅= iiii fcr ,,Y . 
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2.2.2 Model Hypotheses and Interpretation Hypotheses 

Features arise on the predicted side from a Model Hypothesis and on the extracted 

side from measured signatures and a feature extraction process. 

A feature observation generation model provides the link between extracted features 

and a parametric model of the feature extraction process that allows us to represent joint 

conditional density functions of specific feature sets.  This model provides a unique 

explanation for how the observed features are generated in terms of the model features. 

In the next paragraph we define the concept of model hypothesis and how it relates to 

the feature generation models. 

The Model Hypothesis.  In order to specify uniquely an object of interest that can 

potentially be present in the image, we introduce the concept of a model hypothesis.  

Definition.  A model hypothesis ( )Θ≡ ,TH  consists of:  

A model T  from a fixed but potentially large collection of models, represented as a 

set of features (see the discussion of features in Section 1.1).  

A parametric description Θ  of the configuration of the model in three-dimensional 

space, describing a transformation of the model into its 3D position and orientation.  

The purpose of Θ  is to specify a transformation of the model into the scene, 

depending on some number of unknown parameters; these parameters are intended to 
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describe in a unique way the location and orientation of the object, as well as potential 

articulation, configuration and variations of the original model.  We assume that we have 

detailed models of objects that allow arbitrary configuration states parameterized by Θ . 

We will assume that the model hypothesis gives rise to a unique collection of features 

(a signature) that one expects to see in the observed scene under the assumption that the 

model is present at the given pose.  These features will be denoted by ( ) YY ≡Θ,T  

{ }mYYY ,,, 21 K= .  The iY  are in fact random vectors with values in an abstract feature 

space.  The random vectors iY  are characterized by probability density functions 

( ) ( ) ( )hHftff iHiTi iii
==≡ Θ yyy YYY θ, ,  capturing the uncertainties involved in the 

modeling process and the intrinsic model variability [Hummel 1996a], [Hummel 1996b]. 

The collection ( ) =Θ,TY  { }m

ii 1=Y  forms an instantiation of a model pattern in feature 

space that characterizes the model/parameter pair ( )Θ,T  in terms of the features of 

interest.  Hereafter, we refer to each iY  as a model feature and to the collection of { }m

ii 1=Y  

as a model pattern or model signature. 

On the other hand, as a result of the image extraction process there will be a set of 

extracted features { }sXXXX ,,, 21 K=  representing the evidence obtained from image 

data.  These are also random processes in some appropriate feature space with probability 
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densities ( )jj
f xX , and result in observed realizations sxxx ,,, 21 K .  Note that the number 

of features s  is also an observation, and that the indexing of the image features is 

performed after they are observed.  Typical features in digital images include edges 

(linear and curvilinear segments), corners or multi-corners (curvature extrema), as well as 

curvature discontinuities or other prominent landmark points.  Such features need to be 

characteristic of the object and useful for discrimination among the objects of interest.  

A predicted model is conceptually represented as a set of features, as opposed to an 

ordered tuple of features.  Likewise, the image extraction process also produces a set of 

features.  There is no natural ordering of the features in the sets, even though we have 

numbered them.  As a consequence, some of the jX  may not correspond to any model 

feature iY  and some iY  may not result in an observation jX  (subsection 2.2.2.1.) 

A feature generation model specifies the way in which particular feature realizations 

can arise from predicted model patterns accounting for uncertainty.  As such, it stipulates 

an algorithmic procedure that models how image features are generated from a 

hypothesis H  and the corresponding model features { }iY .  It is often the case that there 

might appear implicit correspondences or interpretations in the evaluation of the model.  

We do not treat the associations as random events nor as nuisance parameters nor hidden 

latent variables that must be integrated out, but instead we postulate different models that 
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may contain implicit correspondences that should be determined or approximated in 

order to compute the relevant class conditional densities. 

Here we define the notions of interpretation hypothesis and correspondence 

hypothesis, which will be used in the definition of certain feature generation models. 

The Interpretation Hypothesis.  Given the assumption that a particular object is 

present in the scene (i.e., a model hypothesis), a number of different realizations of the 

model are possible.  Each of them is completely characterized by a correspondence 

hypothesis or by an interpretation hypothesis.  We define these concepts below, as we 

consider the issue of feature correspondences. 

Definition.  A correspondence hypothesis consists of:  

(a)  A partition )()( UM YYY U=  of the set of predicted features into those which are 

actually detected )(MY , and those which are presumed to be present in the image but are 

missing because of sensor or measurement errors, inaccurate parameters or unexpected 

obscuration, namely )(UY ; 

(b)  A partition of the extracted features into disjoint sets )()( UM XXX U= , namely 

those that correspond to explicitly modeled and detected features, and those that are 

spurious to the model;  
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(c)  A bijection )()(: MM XY →Ω  mapping each detected predicted feature to an 

associated extracted location in the discretized feature space.  

Without loss of generality, and only for notational convenience, let us assume that the 

features have been labeled in such a way that 

{ }n
M YYYY ,...,, 21

)( = ,   { }mnn
U YYYY ,...,, 21

)(
++= , 

{ }n
M XXXX ,...,, 21

)( = ,  { }snn
U XXXX ,...,, 21

)(
++= , 

and 

{ }),(,),,(),,( 2211 nn XYXYXY K=Ω . 

More generally, we can define an Interpretation Hypothesis by conditions (a), (b) 

and (c) as above, but where the mapping in (c) is not required to be a bijection and is 

replaced by an arbitrary binary relation on )()( MM XY ×  (hereby called ω .)  In this case, 

the set of model features that are matched, )(MY , is the domain of ω  and the set of 

matched features in the image )(MX , is the range of ω .  The graph relation induced by ω  

can thus contain arbitrary cycles and cliques of mutually matched features. 

For notational simplicity and uniqueness, we will in practice represent ω  and Ω  as 

mappings and relations between index sets, with the underlying sets X  and Y  being 
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implicitly understood.  That is, we will write ( ) ω∈ji, , ( ) ji =ω  or ( ) ji =Ω  instead of 

the more accurate but cumbersome ( ) ω∈ji XY , , ( ) ji XY =ω , ( ) ji XY =Ω . 

2.2.3 Feature generation models 

A feature generation model provides a joint conditional density for the observed 

feature set given a model feature set.  Such a model depends on the specific individual 

density functions involved and how are they combined to form joint class conditional 

densities. 

We consider only the following examples of feature generation models: 

2.2.3.1 Independent associative model with correspondences 

In what follows we assume that ( )⋅ig  is a parametric probability density function with 

location parameter iy .  For example, a Gaussian density function with mean iy  and 

covariance matrix iΘ  will be denoted by ( ) ( )iiii yygyg Θ−= ; . 

In the simplest case of the independent associative model, each model feature iY  

generates with probability one an observed feature iX  according to a density ( )⋅ig .  We 

then get the fully independent one-to-one model with no “dropouts.” In this case, the joint 

density function is given by: 
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( ) ( ) ( )∏
∈

Θ−⋅=
X

X yxX
jx

jjjjSH gmHSf  ;  Pr  ,|  

Note that the correct interpretation hypothesis in this case pairs each iY  with iX  for 

mi L,1= , and sm = , and that )(uX  and )(uY  are empty. 

More generally, there would be s  observations that would be classified in two 

disjoint subsets of matched features and spurious features and the resulting joint 

conditional density function could be written as 

( ) ( ) ( )
( )

( ) ( )∏∏∏
∈∈

∈
∈

−⋅⋅Θ−⋅=
)()()(

1 ;  Pr  ,

,

|
U

i
U

j
M

j

i

y
i

x
j

ji
x

iijSH qgqsHSf
YXX

X xyxX ρ

ω

  (2.2.3.1) 

Here iq  is the probability that model feature iY  is observed, and )( jxρ  is the density 

distribution for spurious observed features. ( )sSPr  is the probability that s  features will 

be observed in the image.  A simple model for ( )sSPr  would be a Poisson distribution on 

the integer s , namely ( ) !Pr sS

s

es ΛΛ− ⋅=  where Λ  is the expected number of features 

observed, which depends on the feature extraction algorithms. 

Note that the associations ω  here are part of the model specification and are inherent 

to the model.  There is no randomness involved in assigning predicted to extracted 

features, but instead, the computation above gives a density for a particular association.  
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There is no need to integrate out or sum over correspondences since there is a single 

association involved and other concepts such as “probability of associations” are 

meaningless in this model. 

Also note that strictly speaking the ω  in this example need not be a correspondence, 

but instead can be an interpretation according to the definitions in the previous section. 

2.2.3.2 Independent mixture model 

In the simplest case, the independent mixture model consists of the following: given 

m  predicted features { } mii ,...,1=Y , each one of s  observations jX  is generated 

independently according to a weighted mixture density of the form 

( ) ( )∑ =
−⋅=

mi iii gwg
,...,1

yxx .  In this way, each observation is effectively associated with 

all of the predictions. Note that with this model, all observations might, with one 

particular realization, lie near a single iy .  The joint density function is thus: 

( ) ( )∏ ∑∑
∈ ==









Θ−=

X
X yxX

jx

m

i
i

m

i
iijiH qgqHSf

11
|   ;     ,  

More generally, the observations are divided in two disjoint subsets of matched 

features and spurious features and the resulting joint conditional density function can be 

written as 
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( ) ( ) ( ) ( )∏∏ ∑∑
∈∈ ==

⋅







Θ−⋅=

)()( 11
|   ;   Pr  ,

U
j

M
j x

j
x

m

i
i

m

i
iijiSH qgqsHSf

XX
X xyxX ρ   (2.2.3.2) 

2.2.3.3 Diffusive scattering model 

This model has first been proposed by [Irving et al. 1997], [Irving 1997].  Our version 

of this model has the form 

( ) ( ) ( ) ( ) ( )∏ ∑
= =









Θ−⋅⋅+⋅−⋅=

s

j

m

i
iijijSH gqkRsHSf

1 1
0| ;     expPr, yxxXX λ   (2.2.3.3) 

In this model each predicted model feature iy  gives rise to a Poisson-distributed 

random number of extracted features, and the locations of the extracted features 

“associated” with a given predicted feature are randomly perturbed away from the 

nominal predicted feature location; in this case, this perturbation is modeled as an 

independent random vector with density specified by ( )iig yx − .  Furthermore, additional 

extracted features are created via a Poisson point process with rate 0λ  (which can be 

spatially varying, as )(0 xλ ).  Therefore, each predicted feature has an associated spatial 

concentration region in which extracted features are assumed to occur according to a non-

homogeneous Poisson point process with local rate ( )iiii gq yx −⋅=µ ; this, together with 

the clutter process, results in a compound Poisson process with mean rate 
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( ) ( )∑ −⋅⋅+= iii gqk yxx  0λλ .  The density distribution (2.2.3.3) follows [Irving et al. 

1997].  The parameter k  provides an overall control gain for the target Poisson process 

and T  is a scaling constant related to the area of the region of interest in which features 

occur. 

Analogous to the independent mixture model, this model effectively involves a “mean 

field” approximation for both the matched and unmatched observations, which accounts 

for a smoothing of the resulting components.  Therefore, the “associations” are implicit in 

this model and are taken into account by modeling each observation as a realization from 

a mixture distribution. 

2.2.3.4 Strong scattering model 

The structure of this model is similar to the diffusive scattering model but the mixture 

density is replaced by a single density involving only one predicted feature for each 

generated feature.  Each feature commits to a single association.  The conditional joint 

density function is then 

( ) ( ) ( ) ( ) ( )( )
( )

∏
Ω∈

=

Θ−⋅+⋅−⋅=
s

ji
j

iijijSH hzTsHSf

,
1   

0| ;     expPr, yxxXX λ        (2.2.3.4) 
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Each iz  is a Bernoulli random variable with ( ) qZi ==1Pr  and ( )⋅h  is a uniform 

density function on a disk of fixed radius ε   [Irving et al. 1997]. 

2.2.3.5 Bifurcation models 

This model is related to the one introduced in (2.2.3.1) but involves a generic 

association relation and a sum over an arbitrary subset of associations instead of a single 

association for each observed feature.  Then 

( ) ( ) ( ) ( ) ( )∏∏∏ ∑ −⋅⋅







Θ−⋅⋅=

∈ )()()(

1  ; Pr  
),(

|
UUM

ij
ji

iijSH qxgcsHf
YXX

X yxX ρ
ω

ω      (2.2.3.5) 

This density contains both components from the models (2.2.3.1) and (2.2.3.2). 

2.2.3.6 Permanent model 

The formula for this model is 

( ) ( ) { }( ) ( )∑∏
Ω =

Ω−⋅=
s

j
kijjSH HgsHSf

1
| PrPr, 1 YYXXX   

( ) ( )kk QPs oPermPr ⋅=           (2.2.3.6) 

This model involves a full summation over all one-to-one mappings of model features 

into observed features.  Compare with (2.2.3.3) and (2.2.3.5). 
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The permanent model is related to the so-called “exact point features model” from 

[Morgan 1992], [Morgan et al. 1996].  The motivation behind the later model involves 

the integration of correspondences considered as nuisance variables.  This model is 

relevant to the general theory here only insofar as the association is often unknown, and 

must be approximated by some means.  Thus, for observation generation models that 

incorporate independent associations, one possible way to “guess” the proper association 

is to sum over all possible associations.  Of course, the approximation is only good if all 

incorrect association contribute little or nothing to the overall score, when summed 

together. 

2.2.3.7 Feature vector models 

The concept of feature generation model subsumes the classical statistical theory of 

pattern recognition as a special case. 

By using a random vector distribution ( )⋅g  for a single observation, a feature 

generation model encapsulates arbitrary statistical properties of random ensembles of 

patterns.  The feature space consists of vectors (ordered tuples) of measurements with a 

given joint distribution of the vector components.  A predicted model can be constructed 

from first principles and prior knowledge of the problem domain or can be learned 

empirically from existing data. 
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For a particular example of a feature vector model see the Hausdorff quality metric in 

section 2.4. 

2.2.3.8 Models with stochastic attributes 

Features in any of the above models can be enriched with stochastic attributed 

features to improve discriminability and reduce false alarms [Liu and Hummel 1995].  

The density functions are modified by the inclusion of terms based on the density 

distributions of attributes.  For example, the  

2.2.3.9 Other hybrid models 

Arbitrary combinations of the above models can be built in order to produce 

generalized feature observation models in an abstract setting.  We have restricted our 

attention to models that involve some sort of independence between observations.  This is 

clearly an oversimplification of realistic conditions but is nevertheless useful to provide 

an understanding and it has been successful in applications.  Observe that this 

independence assumption doesn’t imply that individual components of vector features are 

independent among themselves and doesn’t preclude arbitrary joint distributions of 

feature components. 
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2.2.3.10 Clutter generation models 

As a special case of a feature generation model, a model for clutter generation 

provides a formula to account for the appearance of clutter features by means of the 

clutter densities ( )0| ,
0

HSf H XX .  Here we only discuss the (non-homogeneous) Poisson 

mixture model. 

For applications in traditional image processing, where clutter represents a random 

ensemble of features originating from non target-like objects, sensor noise, or other 

sources of error; these can be modeled as a spatial Poisson process with expected density 

rate of 0λ .  If the spatial distribution is ( )0 ; 
0

ΘxHg , then the resulting clutter density 

distribution will have the form:  

( ) ( ) ( )∏
=

⋅=
s

j
jHH HgsHSf

1
00| 00

Pr, XXX        (2.2.3.10) 

2.3 Summary 

 

Following Section 2.2.0, we have reviewed in this Chapter the concepts of observed 

features and feature generation models.  These models provide formulas for conditional 

density distributions as functions of the observed features given a hypothesis.  In the next 
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Chapter we continue by considering in turn the following topics: feature match quality 

measures, feature match scores, and search/match decision logic.  

We might note here that some of the formulas for the conditional density functions 

rely on associations or correspondences between model and observed features.  These 

associations are known by the observation model, but are unknown if we are only given a 

set of observations.  Chapter 4 deals with the problem of reconstructing associations or 

correspondences under these circumstances. 
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Chapter 3. Feature Matching 

3.0 Overview 

 

In this Chapter, we consider the notions of feature similarity and feature matching, 

that is, how to assign a statistical measure of likeness between collections of features in 

the presence of uncertainty.  Our point of departure is the discussion in Chapter 2 about 

the components of the Matching process in object recognition.  In particular, we consider 

the last three components outlined in Section 2.2.0, namely: feature match-quality 

measures, feature match scores and decision logic.  The first two notions deal with the 

comparison of individual features and of feature sets respectively, and the last notion 

deals with the algorithmic processes for optimizing feature scores across large sets of 

hypotheses. 
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3.1 Deriving Feature Match Scores from conditional density distributions 

3.1.1 Feature match score 

A feature match score provides a quantitative measure of the global similarity 

between two feature sets. 

The matching score can also be viewed as a global (cost) energy function to be 

optimized over all possible hypotheses and interpretations.  It can alternatively be 

regarded as a loss function in the context of utility theory.  The first formulation is 

prevalent in physics and thermodynamics applications and has also been popular in the 

computer vision literature, while the second approach is favored in the Bayesian 

paradigm in statistical decision theory. 

We discuss here two Bayesian approaches for determining a feature match score: 

§ The posterior odds ratio, based on a maximum a posteriori estimate. 

§ The maximum likelihood, based on a generalized likelihood ratio test. 

3.1.2 Posterior estimates 

The essential idea is to compute the posterior odds ratio  

( )
( )X

X

0Pr

Pr

H

H k
k ≡Π  
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in terms of the individual pairwise “distances” ( )jid XY ,  (Section 3.2) where kH  is 

the hypothesis under consideration, and 0H  is the reference hypothesis, hereby referred 

to as the “Clutter Hypothesis.”  The matrix of pairwise distances is denoted by D .  In 

practice, we approximate a monotonic function of the resulting kΠ  value as the score 

( )DkS  for hypothesis kH .  The decision logic for determining the correct hypothesis 

usually attempts to maximize this function of kΠ  over all k .  A critical component in the 

computation of kΠ  will be the joint class conditional density ( )kHf |X , as developed in 

Chapter 2. 

Note that the denominator in the definition of kΠ  depends upon the data, so that an 

appropriate normalization has taken place based on the observed evidence.  In many 

cases, extracted features can be assumed to occur with some frequency even when none 

of the “target” hypotheses is correct.  The clutter hypothesis accounts for these 

occurrences of clutter features.  

The posterior estimate method is similar to the odds formulation of uncertainty 

reasoning in artificial intelligence [Tanimoto 1995], but rather than computing a ratio of 

an hypothesis and the negation of the hypothesis, we use a “match hypothesis” and a 

“reference hypothesis.”  The reference hypothesis is based on the notion that the observed 

features are part of a cluttered background.  That is, the observed features do not match 
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any of the candidate target models, but rather match a generic notion of noise or clutter.  

Of course, this generic notion requires that we have a model of clutter, which is how we 

compute, in practice, the log probability of the reference hypothesis. 

Given a feature match similarity measure ),( ⋅⋅d  and a matrix of match qualities =D  

( ) ( ){ }sjmidd jiij LL 1,1   , === XY , our objective is to compute a numerical score for 

each potential model hypothesis, which will represent the support for that particular 

hypothesis in view of the evidence extracted from the data.  The match score is a 

functional ( ) =DkS ( )( )XYD ,kS  of the similarity matrix D  (Section 3.2.) 

The score function should be based on pairwise feature affinities as given by D , and 

it should incorporate as well appropriate information in the form of local and/or global 

constraints, such as uniqueness or correspondence consistency requirements.  What we 

are really after is a function that resembles a joint density function whose arguments are 

the feature sets X  and Y .  The quantities D  and ( )DkS  are then statistics that 

summarize this joint distribution.  As before, in practice D  is often approximated as a 

family of conditional densities of jX  given iY  for all pairs ( )ji, . 

In the approach that we consider here, the function ( )DkS  will be evaluated as a log 

posterior odds ratio 
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which can be computed in terms of the class conditional models for X  and Y  and the 

clutter models defined in subsection 2.2.2.10. 

Observe next that the quantities t can be written as Radon-Nikodym derivatives, i.e., 

probability density functions. Under fairly general regularity assumptions, they can be 

expressed as evaluations of density functions at the measured realization of the data jX , 

that is ( ) ( )kjHkj HfH
kj

XX X |Pr =  where this quantity represents the class-conditional 

probability density function of the extracted feature jX  obtained from a feature 

generation model.  This fact is a consequence of the Radon-Nikodym theorem 

[Halmos 1950].  The essential property required is the absolute continuity of the density 

functions.  The subtlety consists in that probabilities are usually computed on continuous 

events, such as [ ]ε+≤≤ jjj xXx , rather than discrete evidence, such as [ ]jj xX = . 

Specifically, if the probability measure induced by jX  on the Borel sets in ℜ  

(assuming for simplicity that jX  is a real-valued random variable) 

( ) [ ]Β∈=Β jXX Prµ  Bℑ∈Β  
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is absolutely continuous with respect to the Lebesgue measure λ  on the real line (which 

is written as λµ <<X ), then the Radon-Nikodym derivative of Xµ  with respect to λ  

exists and is denoted as λµ ddf XX = , and satisfies almost everywhere ( λ ) the following 

identity 

( ) ∫Β
⋅=Β λµ dfXX  Bℑ∈∀ B  

Here )(⋅Xf  is a λ -measurable function defined on all Borel sets in the real line, and 

in particular when ( ]x,∞−=Β  we have, 

( ) ( ]( ) ∫ ∞−
⋅=∞−=

x
duufxxF

jj
)(, XXX µ . 

Therefore, Xf  can be formally identified with the density function for jX . 

This fact will allow us to rewrite (3.1.1) in terms of the class conditional densities 

given by a particular observation generation model 
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where kB  is the prior odds bias 
( )
( )0Pr

Pr

H

H
B k

k = , which is independent of X . 
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3.1.3 Maximum likelihood estimates 

A generalized likelihood ratio test is based on maximizing the following log-

likelihood ratio 

( )
( )0|

|

0
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kH
k

k

X

X

X

X≡Λ      (3.1.2) 

The objective is to maximize kΛ  over the space of all model hypothesis ( )Θ= ,kk TH  

and over all interpretations ω .  In order to understand the dependency of (3.1.2) on the 

models, parameters, and interpretations we rewrite it for the independent associative 

model with Gaussian density functions as 
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Therefore, maximum likelihood estimation involves not a simple linear discriminant 

test but an optimization over a large space of correspondences (ω) and parameters. 

Given our simplified models, the likelihood scoring function (3.1.2) is functionally 

similar to the posterior score in (3.1.1) except for the prior bias term and the relative 

argument of the logarithmic function.  Indeed, since a prior probability for the likelihood 
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of a complex hypothesis is often impossible to obtain, the maximum likelihood estimate 

is in some sense preferable, since it doesn’t require such priors.  Of course, their use is 

equivalent to assuming that all priors are equal.  In the following we consider instead a 

variation of the former estimate, which is actually just the log of the ratio of likelihoods, 

not the log-likelihood ratio (compare with 3.1.1 and 3.1.2):  

( )( )
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



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
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=Π′=′
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|
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kk
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YXD

X

X
   (3.1.3) 

We use primes to distinguish these scores from the corresponding posterior estimates 

(3.1.1). Our next task is to rewrite the class conditional densities ( )kHX HXf
k

 in terms of 

individual “distances” ( )jid XY , , ie., feature match similarities.  We define possible 

feature match-quality measures in the next section. 

3.2 Feature match quality 

 

In the next section, we apply the feature generation models from section 2.2.2 as we 

identify functions of probability densities ( )yx −ig  with similarity measures between 

individual features iY  and jX . 
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Given a model feature iY  and an extracted feature jX , a feature match quality 

measure is a function ( )jid XY ,  with the following property: 

The function ( )jd X,  ⋅  takes a unique global maximum over iY  that occurs whenever 

the event [ ]ji XY =  takes place. 

In general the function ( )⋅⋅,d  will depend on the statistics of the random aggregates X  

and Y , that is, on the probability densities ( )⋅⋅,,YXg , ( )⋅Xg  and ( )⋅Yg , as well as in the 

actual realizations x , y .  In practice it will often be the case that the features are 

decomposed in such a way that 

( ) ( ) ( )∫ ⋅⋅= yyyxXY YYX dggd
iijji |log,    (3.2.1) 

which is independent of the realization of iY , whenever the quantities involved are well 

defined. Another possible choice would simply be 

( ) ( ) ( )yyxXY YYX iij
ggd ji |log, = .    (3.2.2) 

In the first case, d  is called the “log predictive density” of jX  given iY , and iY  

provides parameters for the model.  In the second case, the density is conditioned on a 

prototype realization ii yY = .  Alternatively, we could use a maximum likelihood 
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estimate iY
~

( iy~ ). The conditional densities should be understood in the Radon-Nikodym 

sense. 

Furthermore, often the distance measure ( )jid XY ,  can be interpreted as some variant 

of a localized energy function that is minimized when jX  and iY  are coincident.  

For example, when the priors on iY  are Gaussian and the pairwise conditionals of jX  

given iY  are also Gaussian we have,  

( ) ( )ikiH GHg
ki

Ó ;ì-  iiyYY =  and ( ) ( )jijij Gg
ij

Î ;  yxYXYX −=  

where ( )G  is the Gaussian density function given by ( ) 2/11)2(;
−−= ÓÓu πG  

( )uÓu 1
2
1exp −− T .  Therefore,  

( ) ( ) ( )
( )jiij

kiiHiijkjH

G

dHggHg
kjijkj

ÎÓ;ì

 ,  ì,  ,  ,,

+−=

Ω−⋅Ω−=Ω ∫ ΩΩ

X

YYYYXX YYXX
 

In this case, the resulting quality measure yields a negative metric 

( ) Ad ji =XY ,
2

2
1

2
1    log

ÎÓ
ìXÎÓ

+
−−+− ij  
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and is related to a multidimensional Mahalanobis distance, namely uÓuu
Ó

12 −= T . This is 

the case also for any distribution in the exponential family.  Note that ( )⋅⋅,d  depends on 

iY  only through the parameters iì  and iÓ . 

The above example illustrates the convolution argument involving the convolution of 

two Gaussian uncertainties.  In other words, the model and observed uncertainty 

measures (represented here by covariance matrices) just add up in this case to give a 

global joint uncertainty matrix ji ÎÓ + .  This represents the Bayesian conjugate Gaussian 

pair, that is, the posterior function corresponding to a Gaussian prior (with covariance iÓ ) 

and a Gaussian likelihood (with covariance jÎ ) is itself a Gaussian whose covariance is 

given by ji ÎÓ + . 
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3.3 Feature match scores in terms of feature match quality measures 

 

In this section, we use the observation generation models of Chapter 2 to write joint 

conditional density functions, which can then be used in the posterior estimates (or the 

maximum likelihood estimates) to provide match scores, that can therefore be formulated 

in terms of the pairwise feature “distances” ( )jid XY , .  We only provide the modified 

posterior estimates (3.1.3) here, and we use a spatial Poisson background clutter model.  

Authentic posterior estimates would require a modification based on prior probabilities, 

and other normalization methods are possible. 

3.3.1 Independent associative model with correspondences 

( )( ) ( )
( )

( )

( )
( ) ( )

( )
( )

( )

( )
( ) ( )

∑∑∑

∑∑∑

∏∏∏

++=

−++








 Θ−
+=
















−⋅⋅

Θ−
=′

∈

∈∈
∈

∈

)()(

)()()(

)()()(

  

0
,

  0

0
,

0

   

1loglog
 ; 

loglog

1
 ; 

 log,

UU

UUM

U
i

U
j

M
j

i

ijij

i
j

j

ji
j

iij
i

y
i

x j

j

ji
x j

iij

abd

q
gg

g
q

q
gg

g
q

YX

YXX

YXX

x

x

x

yx

x

x

x

yx
YXDS

ω

ω

ω

ρ

ρ

 (3.3.1) 

where the a’s, b’s, and d’s stand for the corresponding terms in the previous equation.  

The d’s correspond to normalized match-quality measures: 
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In Chapter 4 we review again this model, and we present an algorithm to solve the 

resulting search optimization problem (Section 3.4) as a bipartite assignment problem. 

3.3.2 Independent mixture model 
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This model is considered in [Ettinger et al 1996].  The “pseudo-distances” d use here 

are  
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3.3.3 Diffusive scattering model 
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where d is defined as 
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This model constitutes an approximation to the exact points model and is discussed 

by [Irving 1996a]. 

3.3.4 Strong scattering model 
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As opposed to the previous model (3.3.3), this model incorporates a random Bernoulli 

term; in other words, the sum contains an indefinite number of terms, depending on 

omega. 

3.3.5 Bifurcation models 
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As we have seen before, this model is an hybrid from (3.3.1) and (3.3.2). 

3.3.6 Permanent model 
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This model requires a different treatment and comments are provided in Chapter 4. 
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3.4 Search/Match Decision Logic 

 

We are now in a position to formulate the object recognition problem as an 

optimization search over a space of models, parameters, hypotheses and interpretations.  

Multiple algorithms and search strategies are conceivably possible. 

The output of an object recognition system is based on a decision logic which 

optimizes some criteria depending on the match scores for different hypotheses, in order 

to select the optimal hypothesis value and to declare which objects are present in the 

image, if any.  The aim of the object recognition system is to compute and execute the 

system’s decision logic.  

In a simple system, the decision logic merely requires the maximum match score over 

all possible hypotheses, and declares that hypothesis to be the winner.  More 

sophisticated decision logic systems take into account:  

(a) The possibility that the winning hypothesis is not good enough, and the best 

declaration is that no match has been found;  

(b) The fact that the various hypotheses must be determined dynamically and tested in 

a hierarchical fashion, so that it is impossible to test against all hypotheses sequentially.  

In this case, the decision logic incorporates a search strategy over the hypothesis space. 
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More generally, the search problem can become arbirtrarily complex incorporating 

stochastic payoffs and utilities resulting in sequential decisions and optimal control 

design parameters to find the optimal navigation and observation strategy which leads to 

a final decision [Pressman and Sonin 1990]. 

The general search problem is not considered in this work; interested readers should 

consult [Wissinger et al. 1996] and [Wissinger et al. 1999]. 

3.5 Summary 

 

In this Chapter we have constructed match score functions from the density functions 

given by particular observation-generation models of Chapter 2. 

In this way, we have seen how the basic observation-generation models lead to various 

score functions that will be used in subsequent chapters to present results that allow us to 

compare between different  

§ Observation-generation models (such as (2.2.3.1).) 

§ Match score functions (such as (3.3.1).) 

§ Feature match-quality measures (such as (3.3.1').) 

In this Chapter we have seen how all these components of the match process together 

with the search decision logic provide an algorithmic framework for the match 

subproblem in object recognition.  In the following two Chapters we offer the particular 
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algorithmic details pertaining to the implementation, and finally we present the results 

developed in this work in the final Chapters.  
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Chapter 4. Feature Correspondences 

4.1 Introduction 

 

We have seen in the previous Chapter that the computation of a match score often 

depends on an interpretation.  That is, in order to compute a match score (which depends 

on the class conditional density function evaluated on the observed data), an 

interpretation that pairs off observed features with predicted features is often required.  

Alas, the interpretation is not known in advance. 

The models that required an interpretation were:  

§ Independent associative model with correspondences 

§ Strong scattering model 

§ Bifurcation models 

Other models lead to density functions that do not require an interpretation, since 

there is no explicit association between observed features and predicted features.  This is 

a great advantage of those models.  However, observation generation models involving 
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associations are more realistic in many applications.  We examine below some of the 

implications of requiring an interpretation, versus methods that don’t require an 

interpretation.  

For those methods that require an interpretation, a method is needed to compute the 

density functions without prior knowledge of the interpretation.  This can be 

accomplished by one of three methods:  

§ Guessing at a set of correspondences, thereby determining a likely interpretation.  We 

then use the estimated interpretation. 

§ Attempt to approximate the score, despite the fact that the interpretation is unknown, 

but summing over all possible correspondences (hoping that incorrect correspondences 

contribute negligible amounts to the score), or taking a weighted sum over 

correspondences. 

§ Maximize over all possible interpretations, and assume that the interpretation yielding 

the maximum score is correct. 

In this Chapter we are concerned with algorithmic methods for putting features in 

correspondence, and we consider examples of these three previous methods.  
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4.2 Pattern Recognition and Signature Recognition 

 

In previous chapters, we have seen how an observation-generation model provides an 

statistical realization for the observed features that can be used to determine the class 

joint conditional density function.  However, when confronted with real data from which 

observed features, and eventually hypothesized objects are extracted, we must 

manufacture an interpretation, or pairing between observed and predicted features. In this 

section, let us consider the situation in the absence of a precise observation-generation 

model. 

In nearly all recognition problems, features are extracted from an observed object, in 

order to perform discrimination.  We now distinguish between two flavors of feature 

extraction.  

If the aggregate collection of features forms a multi-component ordered tuple, then 

the implication is that each feature component can be compared with a corresponding 

model component, and the degree of similarity between the components is a measure of 

the similarity of the observed component values.  The essential point in this case is that 

the components are ordered.  Thus, the first component extracted from an observed 

signature is supposed to match up with the first component of the hypothesized model.  
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The ordering of feature components means that this particular matching of signatures 

belongs to the field of “pattern recognition.”  

As an example, a region might be segmented from a scene, and the features of the 

segment might be defined as the (1) area, (2) perimeter, (3) eccentricity (suitably 

defined), (4) centroid and (5) circular moment of inertia about the centroid.  These five 

components are uniquely defined and ordered, and so can be used to compare against five 

identically defined components of a region predicted from the model. 

The classical theory of statistical pattern recognition [Duda and Hart 1973], [Devivjer 

and Kittler 1982], [Therrien 1992] relies on such feature vector models of an object’s 

characteristics.  Objects are represented as the ordered lists of their global characteristic 

features, each of which corresponds to a point in feature space.  Objects are classified by 

comparison of the feature vectors of the object instance to those of a prototype or 

“model.”  Most of the techniques amount to generating a partition of the feature space 

into regions corresponding to different object models; this allows the assignment of 

unknown objects to known object classes.  The decision boundaries are usually 

constructed during a learning or training phase using some variation of one of the 

following approaches: discriminant functions, nearest-neighbor classification rules, 

decision trees, clustering algorithms, neural networks, etc.  
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On the other hand, in many cases, the features extracted from a signature form a set of 

features, as opposed to an ordered tuple.  Indeed, the number of features that will be 

extracted is unknown in many of these cases.  This is the situation, for example, when the 

features are the locations of peaks extracted from a region of interest in a radar image.  

The collection of such peaks forms a set of features, where each feature is an image 

location.  When performing recognition based on sets of features, we might say that we 

are in the realm of “signature recognition.”  In this domain, we have a set of features, 

where each feature can be a vector, but there is no obvious ordering of the set.  

An important issue arises when performing signature recognition.  Consider the 

problem when the observed signature gives rise to a set of s  features, and the 

hypothesized signature contains m  features.  Not only might there be a different number 

of features in each set, but there is no obvious way to find a correspondence between the 

observed and the predicted features.  Indeed, it can happen that certain extracted features 

do not have corresponding predictions in the model, and certain model features do not 

have corresponding image features.  In this case, we might say that part of the problem is 

the determination of a candidate interpretation for the observed features, in light of the 

predicted features.  This interpretation might involve a set of correspondences, or might 

arise in some other fashion.  In the remainder of this section, we consider methods for 
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finding such an interpretation.  These methods will in turn provide means to produce a 

“best-guess” interpretation. 

4.2.1 One-to-one versus many-to-many 

Our nominal notion of a feature is that a predicted feature should match up with 

exactly one observed feature when the model is present.  

However, extracted features might be absent, due to noise in the feature extraction 

process, obscuration of the object in the scene, or other variability.  In this case, a model 

feature should be labeled “unmatched.”  In other cases, there might be extra features 

extracted from the scene, due to noise, extraneous objects, or extraction errors.  In this 

case, the extracted feature is “unmatched.”  

There are also situations where features can be matched to multiple features.  That is, 

features might be non-exclusive.  As a simple example, we can imagine a single feature 

called the “unmatched label,” where we would have one such feature for the model 

features, and one for the extracted features; then every unmatched predicted feature 

matches to the single unmatched label of the extractions.  A similar one-to-many pairing 

can occur with the unmatched label of the predictions.  A less trivial case can occur with 

bifurcation of peak locations in SAR imagery (Chapter 6.)  For example, a single 

predicted peak might actually be resolved into a pair of peaks in the observed image.  In 
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that case, both extracted peaks should be matched to the single predicted peak.  It might 

also occur that a pair of peaks in the predicted image is not actually resolved in the scene.  

One might view one peak as being matched, and the other unmatched, but instead one 

can view the pair of predicted peaks as both matching the single observed peak.  

One of the crucial assumptions in many approaches is the fact that feature 

correspondences arise in a one-to-one fashion, or can be approximated by one-to-one 

mappings.  In general, the one-to-one situation seems to be simpler, because we need 

only to deal with correspondence sets from a permutation group.  However, as we will 

see, the many-to-many situation permits certain computational simplifications, and so is 

potentially advantageous.  One of the prime obstacles with the many-to-many 

correspondences is that it is difficult to take into account the prior probabilities of 

correspondences that are not permutations.  

The number of potential correspondences grows exponentially with the number of 

model features )(m  and scene features )(s . 

Specifically, the number of one-to-one assignments can be seen to be 
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Considering all sorts of correspondences and allowing for clutter and obscured 

features we arrive at the numbers shown in Table 4.1. 

Model    Scene Interpretations Injective 
     Interpretations 
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One      Many sm )1( +  ( ) ( )smmm ms ≤⋅+ − 1 1 !  sm  

Many       One ms )1( +  ms  ( ) ( )msss sm ≤⋅+ − 11 !  

Many     Many sm⋅2  ( )ms 12 −  ( )sm 12 −  

Table 4.1.  Number of interpretations 

In subsequent sections we consider three flavors of the problem of searching for 

correspondences and interpretations. 

4.2.2 Greedy Interpretations and its Variations 

Finally, we consider algorithmic methods for determining interpretations that provide 

“guesses” or likely associations between observed features and predicted features.  This 

section considers a collection of methods collectively called “greedy interpretations.” 
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The greedy one-to-many model-to-image interpretation is given by 

( ) ( ){ }Xxxyy ∈=∗ :,maxarg ii dω   for mi ,,2,1 K= .          (4.2.2.1) 

On the other hand, the image-to-model greedy interpretation is a many-to-one partial 

association defined as 

( ) ( ) ( ){ }Yyxyx ∈=
∗− :,maxarg1

jj dω   for sj ,,2,1 K= .        (4.2.2.1') 

We can define the one-to-one versions of these greedy schemes by simply eliminating 

those pairs ( )xy,  in a greedy fashion as necessary until we obtain a bijection between 

subsets of X  and Y . 

Yet another variation arises if we wish to designate elements of X  and/or elements of 

Y  as being unmatched.  A simple way of doing this is to eliminate any pairings ( )xy,  

whose distance (namely its match-quality measure) falls outside a permissible range.  

This could be done either before or after eliminating non-one-to-one pairings. 

4.2.3 Diffuse Interpretations 

Although the Diffuse Scattering model (2.2.3.3), (3.1.3.3) does not involve explicit 

correspondences or interpretations, it leads to a match score evaluation formula 

equivalent to a weighted sum over all possible many-to-one products of individual 

correspondences [Ettinger et al. 1996].  The weights are proportional to prior 
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probabilities of detection of the predicted features iq .  In order to see this, observe that 

the product appearing in (3.1.3.3) is 
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and this product can be rewritten as follows: 
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To see this, observe that the right-hand side of the preceding equation is obtained by 

expanding its left-hand side using the following general formula: 

( ) ( ) ∑=++⋅⋅++
SM

mmmsms aaaaaaa
a

LLLL
:

)()2(2)1(11111
ω

ωωω . 

There are exactly ( )sm 1+  product terms in the sum in the right-hand side of (4.2.3.1).  

Each such term corresponds to a different interpretation including the possibility of null 

or vacuous correspondences.  This approach includes all the many-to-one image-to-

model interpretations in addition to the one-to-one interpretations.  Therefore, there are 

no explicit correspondences in the evaluation of the left-hand side of (4.2.3.1) but the 

right-hand side formula can be considered as an exhaustive enumeration over many-to-
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one image-to-model interpretations.  See the next subsection 4.2.4 for an alternative 

model. 

However, the left-hand side formula can be computed in time proportional to )( smO ⋅  

and there is no explicit need for correspondences although they are implicit in the 

product. 

4.2.4 Permanent Correspondences 

As an alternative to the previous formula, here we discuss the situation when we 

consider only the one-to-one interpretations only, instead of arbitrary products of 

correspondences. 

This is the case for example for landmark point features when the image resolution is 

high enough that features are well separated from one another, or when correspondences 

can otherwise be considered to be one-to-one on a phenomenological basis. 

In this case, the sum can be expressed as a permanent function on a related matrix as 

in (3.1.3.6). 
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Note the similarity of this equation with the corresponding one arising from (4.2.3.0) 

and (4.2.3.1), although there is no evaluation simplification here analogous to (4.2.3.1). 

Though none of the other observation-generation models leads to a requirement to 

sum over all one-to-one correspondences, we might nonetheless be interested in the 

permanent model computation because it will give an over-estimate of the match score 

for the maximum-likelihood one-to-one interpretation ∗Ω  (Subsection 4.2.5).  The error 

incurred by including correspondences that are “incorrect” might be small if the “correct” 

correspondence dominates the sum. 

Unfortunately, the computational complexity of the permanent of an n  by n  matrix 

turns out to be )!(nO , although there are some useful approximations and bounds that can 

be applied.  Nonetheless, the number of operations required to compute the sum is 

exponential in the number of features. 

In the next section, we present an efficient method of computing the maximum 

likelihood one-to-one interpretation ∗Ω . 

4.2.5 Bipartite Correspondences 

We have discussed above methods for normalizing over possible correspondences by 

summing over permutations or mappings.  However, another method for normalizing 

would be to determine a maximum over possible correspondence sets.  Consider the 
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problem of finding the maximum likelihood or the maximum a posteriori interpretation 

∗Ω  or ∗Ω
~

. 

The independent associative model of equation (3.2.4.1) results in a match score 

function given by 
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 (4.2.5.1) 

It is easy to see that equation (4.2.5.1) can be written as a sum of weights for a given 

one-to-one correspondence hypothesis of predicted to extracted features.  Namely, we 

can write a weighted bipartite assignment problem as follows: 

∑∑∑∑ ++
j

jj
i

ii
i j

ijij xbyazc     maximize  (4.2.5.2.0) 

subject to 

1=+∑ i
j

ij yz  for mi ,,2,1 K= . (4.2.5.2.1) 

1=+∑ j
i

ij xz  for. sj ,,2,1 K= . (4.2.5.2.2) 
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The coefficients ijji cba ,,  are not necessarily nonnegative, but it is easily seen that the 

problem is equivalent to 

 

( ) ( ) ( )∑∑∑∑ −+−+−
s

i
jj

m

i
ii

m

i

s

j
ijij xbMyaMzcM         minimize 2

1
2
1  (4.2.5.3) 

subject to the same constraints (4.2.5.2.1), (4.2.5.2.2).  In fact, the solutions to both 

problems are the same.  As a consequence, the original problem can be converted to a 

minimization problem where all the coefficients are nonnegative, by simply choosing a 

sufficiently large value for M .  We can therefore assume that the original weights are 

nonnegative. 

By introducing appropriate slack variables, the problem can be further rewritten as 

the following problem in canonical form, which can then easily be solved. 

The modified problem is 
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1~ =∑
+sm

i
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where the matrix ( )ijc  is defined in terms of the values ia , jb , and ijc  as follows: 

↓

↑
↓

↑



























∞+

∞+
∞+

∞+

=

s

m

b

cc

a

cc

C

j

msm

i

s

OO

OO

OL

MOM

OL

0 

 

~ 1

111

 

To prove this, observe that any feasible solution to (4.2.5.2.1), (4.2.5.2.2) will give 

rise to a solution of (4.2.5.4.1), (4.2.5.4.2).  Conversely, a solution { }jiij xyz ,,  to the 

former problem can be obtained from the solution to the latter one by reading off the 

values: ijij zz ~=  for mi ≤≤1 , sj ≤≤1 , and jjmj zx ,
~~

+=  for sj ≤≤1 , isizy += ,
~  for 

mi ≤≤1 .  The values isjmz ++ ,
~  are just slack variables for the original problem and are 

uninteresting. 

Therefore the original problem can be seen as a weighted minimization in a bipartite 

graph where m  model feature nodes are supplemented with s  extra nodes, one for each 

image feature to serve as potential no-match nodes, and the s  image features are 

supplemented with m  no-match nodes, one for each model feature.  
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In this way, a combinatorial number of possible assignments can be examined and an 

optimal assignment can be obtained in polynomial time.  The essential ingredients is the 

structure of the match score as a sum of nonnegative weights, and this formulation in turn 

depends on using log-likelihood functions and conditional independence assumptions. 

For a practical implementation, the critical issue is the estimation of parameter values 

that provide the penalization terms jρ and iq . 

For a detailed presentation of the algorithms, see [Garcia and Hummel 1997]. 

Previous Use of Bipartite Matching in Computer Vision 

Many authors have made use in the past of various algorithms to solve assignment 

problems in order to pair features or to accomplish other tasks requiring correspondences. 

Baird [1985] points out that given a registration and assuming no spurious or missing 

feature points, the problem of finding an optimal matching can be transformed to an 

instance of the assignment problem in quadratic time.  He then uses a suboptimal strategy 

based on constraining the set of feasible matchings by imposing a bounded error model, 

and presents an algorithm to find a matching and a similarity transformation in average 

quadratic time. 
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[Kim and Kak 1991] made use of bipartite matching together with discrete relaxation 

to perform recognition of objects from bin parts using the output of an structured light 

scanner producing range depth data.  Each object is represented by an attributed graph 

whose nodes are surface features, and whose arcs are edges between the surfaces. 

Bipartite matching is used for two different tasks: in an early stage to prune large 

segments of the search space by quick wholesale rejection of inapplicable models, and in 

the final stage to determine the compatibility of a scene surface with potential model 

surfaces, taking into account local compatibility constraints. 

[Breuel 1990] used pruned correspondence search and bipartite matching to solve for 

the best interpretation using alignment. 

[Cox et al. 1995] use bipartite matching for hierarchical grouping of edge and line 

features.  Edge measurements are assigned to possible tracks (partial hypotheses) that 

provide an evolutionary description of image contours.  Assignments of measurements to 

tracks are organized into a hypothesis tree where each node is characterized by a 

probability computed from track estimators and priors.  At each iteration in the process, 

the top few segmentation hypotheses are selected, and current parameter estimates are 

updated according to new measurements.  Grouping decisions are postponed until a 

sufficient amount of information is available.  Variations of Murty’s Algorithm [Murty 
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1968] and Multiple Hypotheses Tracking [Raid 1979] are used to keep the computation 

within feasible time bounds during the search process. 

[Wolfson et al. 1991] used bipartite matching to find edge pieces when constructing 

jigsaw puzzles.  In this case, pieces from the jigsaw puzzle with flat sides must belong to 

the boundary, and there are two kinds of such pieces –even or odd—which form a natural 

bipartition of the set of boundary pieces.  The formulation follows by maximizing the 

number of pieces being matched. 

[Poore 1995] has used weighted multidimensional assignment in the context of 

multiple hypothesis tracking. 

4.2.6 Generalized models 

In the same way we can formulate and solve an arbitrarily constrained problem over a 

subset of the possible interpretations or correspondences as a problem of finding a 

maximum cut or a maximum flow over a graph or matroid structure.  For example, when 

joint distributions of the sets X  and Y  are considered in order to take account of 

possible dependencies among multiple subsets of extracted and predicted features, we can 

arrive at complex combinatorial optimization problems.  As a particular case, pairwise 

dependencies lead to a quadratic or higher-order multidimensional assignment problems 

discussed in [Pardalos and Wolkowicz 1995].  Solving such problems may require 
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exponential time and space but the particular form of the underlying combinatorial 

structures can be exploited.  This remains a topic of future research; see also [Geiger and 

Ishikawa 1998]. 

4.3 Summary 

In this chapter we have seen examples of how to establish interpretations and 

correspondences between model and scene features; such interpretations are necessary to 

evaluate particular instances of the class density functions appearing in many 

observation-generation models.  

In this context, observe that correspondences and interpretations are inherent to the 

particular observation-generation model.  The fact that they happen to be unknown to the 

observer is not considered to be an attribute of the model.  
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Chapter 5. Geometric Hashing 

5.0 Overview 

 

In this Chapter, we discuss algorithmic methods for implementing match scoring 

functions that were presented in Chapters 2 and 3, and that have been used for 

experiments described in subsequent chapters.  The main challenges are to achieve 

transformation invariance of the features (such as invariance to translation when 

searching for target objects), and efficient implementation.  We discuss the use of 

geometric hashing to handle both of these challenges. 

5.1 Transformation Invariance 

 

The matching problem is complicated by the fact that the position of the model in the 

scene is not necessarily known in advance.  That is, the model can undergo a 

transformation prior to being corrupted by noise and embedded in the scene. 

The important point of invariance theory is the idea that a collection of features can 

be replaced by a new collection of features such that the new collection is invariant under 

some class of transformations.  For example, if we have a collection of point locations, 
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then a larger collection of the differences of all pairs of point features forms a new pattern 

that will be translation-independent.  Similar transformations, involving all triples of 

point features, can render a new collection of features translation and rotation, or 

translation, rotation, and scale invariant. 

5.2 Overview of Geometric Hashing 

 

We have first discussed geometric hashing in Section 1.9.  The attractive aspect of 

this technique is that offline computation is used to replace online computation by pre-

compiling an index table, which is then used as an associative memory at runtime for fast 

retrieval of promising candidate hypotheses.  Exhaustive references describing the 

method can be found in [Rigoutsos 1992].  We limit the presentation here to a brief 

overview and we mention only those aspects that are relevant in subsequent discussion. 

In geometric hashing, the collection of models is used in a preprocessing phase 

(executed offline and only once) to build a hash table data structure, which provides, for 

each normalized feature in the observed scene, a list of candidate model/parameter pairs.  

In this way, the hash table encodes information about the models in a redundant way, 

including all potential interpretations indexed by minimal subsets of transformation-

invariant features.  During the online recognition phase, when the algorithm is presented 
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with an observed scene and extracted features, the hash table is used to recover candidate 

matching models by accumulating votes for potential models and transformations on the 

basis of partial correspondences between subsets of features.  A search is still required 

over scene features, but no search is needed over model features and/or correspondences. 

The novel approach in our implementation of geometric hashing is that it is able to 

handle multiple match score functions used as criteria for selecting the best hypotheses 

during the voting procedure.  The concept and initial implementation for this approach 

owe much to James Russell and to Eric Freudenthal; subsequent work by the author and 

others refined the software and its ability to handle multiple match metrics. 

5.3 Algorithmic Implementation 

 

We present below a pseudo-code implementation of the algorithm’s online phase, 

using an object-oriented SETL-like language [Schwartz et al. 1986]. 

The crucial step in the algorithm is the accumulation of votes in the innermost loop, 

which can be fully implemented in parallel SIMD processors [Rigoutsos and Hummel 

1990].  This implementation shows how arbitrary score function computations can be 

achieved in geometric hashing by maintaining a separate accumulator for each one of the 

scene features. 
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At the end of the first inner loop over each basis set, the accumulator arrays contain 

the value of contributions for each predicted model and transformation, i.e., the first loop 

efficiently computes the quantities 

( )∑
Θ

Θ=Θ
),(

, ,score, votes ][][
T

ijj

i

TT
Y

YXX   (5.3.1) 

for all possible models and transformations and for all observed features jX  

Afterwards, in the second loop over model/transformation pairs with nonzero votes, 

the contributions for individual features can be combined using an arbitrary function Φ to 

evaluate a match score for the model hypothesis ( )Θ,T  

{ } { }( )][][][ , votes,, stotal_vote
1

ΘΦ=Θ
=

TT j
n

jj XX   (5.3.2) 

The right-hand side usually contains an additive bias term, which depends on the 

model T only, and is independent of the features Xj, and can therefore be preloaded at the 

initialization stage. 

The critical issue is the distribution of entries in the hash table, so that the list of 

nonzero vote-getting entries should be short enough.  Upper bounds on the list length and 

the number of entries depend on the distribution of entries in the hash space and on the 

noise model  [Rigoutsos and Hummel 1990]. 
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Details about the code and the implementation are described in the following 

paragraphs. 

Given pattern EP, Hash Table HT 

for ebasis in EP.enumerate_bases() loop 1 

 initialize votes, nonzero_votes, total_votes 2 

 for ef in EP.features loop 3 

  transformed_feature = ef.normalize(ebasis) 4 

  for entry in HT.entries(transformed_feature) loop 5 

   ppb = entry.pattern_basis 6 

  votes[ef][ppb] = entry.increment_score(transformed_feature) 7 

   nonzero_votes += { ppb } 8 

  end loop 9 

 end loop 10 

 for ppb in nonzero_votes loop 11 

  total_votes[ppb] = EP.bias(); 12 

  total_votes[ppb] = + / [ votes[ef][ppb] :  ef in EP.features ]  13 

 end loop 14 

 assert exists pbasis in nonzero_votes | 
  total_votes[pbasis] = max / total_votes 15 

 if stop_criteria( total_votes[pbasis] ) then output(pbasis,ebasis)   16 

end loop 
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5.3.1 Code description 

It is assumed that model and observed features are transformed to a nominal 

coordinate system in order to account for geometric invariance; the required 

transformation is known as normalization and is implemented by the function 

normalize.  A basis is a minimal transformation-invariant subset of features and 

therefore describes a unique coordinate transformation, which is required by the function 

normalize.  Accordingly, in line 1, a basis is chosen from the set of bases for the 

extracted pattern EP.  The function enumerate_bases provides a heuristic 

enumeration of bases that effectively accomplishes a search over observed scene features 

and scene transformations. Invariance is accomplished by applying the function 

normalize to each of the features ef in EP, in line 4. 

The hash table structure provides, for each normalized feature in the scene, a list of 

candidate model/parameter pairs (known as entries).  The parameter pair is a 

designation of the basis that was used at the time that the entry was created.  Thus in line 

5, we access the hash table at the location indicated by the normalized feature, and walk 

down the list of entries at that location.  For each entry, there is a candidate model and a 

basis within that model, which is encoded as an index ppb as extracted in line 6.  The 

function increment_score is explained for each of the observation generation 

models in Section 5.4.  Keeping track of entries with nonzero votes allows sub-linear 
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time performance of the algorithm [Hummel and Wolfson 1988].  Lines 11 to 14 perform 

the accumulation of the scores for each of those entries; this is the function Φ of (5.3.2).  

The search in line 15 is over the same set of entries with nonzero votes.  The notation 

+/list adds together the elements in the list, and the notation max/list returns the 

maximum in the list. 

At the end of the outermost loop, or when stop_criteria is satisfied in line 16, 

the current best model and transformation comprise the output of the recognition 

algorithm. 

5.4 Geometric Hashing Implementation of Match Score Functions 

 

In this section, we show how some of the match score functions from Chapter 3 can 

be implemented using Geometric Hashing within the general framework of Section 5.3. 

We show the necessary score increment functions that need to be plugged in (5.3.1) 

and the Φ  functions in (5.3.2) in order to compute the match score metrics from Chapter 

3. 

Observe that the traditional interpretation that has historically been associated with 

geometric hashing is a greedy image-to-model interpretation (Section 4.2.2) but we could 

use other variations as well (see the examples below).  
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For example, the independent mixture model 5.4.2 and the bifurcation model in 5.4.5 

permit the inclusion of arbitrary interpretations ω . 

5.4.1 Independent associative model with correspondences 

In this case we simply see that (5.3.1) and (5.3.2) reduce to 

∑∑
−−

++=Θ
)()( 11

  , votes ][][
i

i
i

ijjj adbT
ωω

X   (5.4.1) 

∑∑ ∑∑ ++=Θ
∈ )()( ),(

][ , stotal_vote
UU

i
ji

ijj adbT
YX ω

 (5.4.1') 

where ( )ji,  characterize the interpretation ω, and the bias term is { }( ) ∑≡Ψ
)(U

jj b
X

X  and 

the definitions of a, b, d are as in (3.3.1) and (3.3.1') namely 

( ) ( )
( ) 








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⋅=≡

j

iij
ijiij g

g
qdd

x

yx
XY

0

;
log,    (3.3.1') 

These terms can be directly computed from the values of entry and ef in the code 

above. 

5.4.2 Independent mixture model 

Following (3.3.2) and (3.3.2') 

( )∑=Θ
i

ijj dT exp  , votes ][][X     (5.4.2) 
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∑∑ +=Θ
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This model requires an interpretation hypothesis. 

5.4.3 Diffusive scattering model 

From (3.3.3) and (3.3.3')  

( )∑+=Θ
i

ijjj dbT exp  , votes ][][X    (5.4.3) 

( )∑ ∑ 







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where the definitions are as in (3.3.3) and (3.3.3')  
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and the bias term here is { }( ) Rj −≡Ψ X .  Observe that an interpretation is not needed in 

this model. 
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5.4.4 Strong scattering model 

This model follows from (3.3.4) 

( )
jjjj dbT

)(1exp, votes ][][ −+=Θ
ω

X    (5.4.4) 

( )( )∑
∈
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ijj dbTT   (5.4.4') 

5.4.5 Bifurcation models 

For this model we have according to (3.3.5)  
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Any variations of the above schemes involving arbitrary interpretations are possible. 

5.4.6 Permanent model 

The score function for the permanent model cannot be represented as in (5.3.1), 

(5.3.2) and therefore an implementation using geometric hashing is not efficiently 

realizable. 
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5.5 Summary 

 

In this Chapter we have seen the use of a voting technique in geometric hashing to 

yield an efficient implementation of the match algorithm with the observation- generation 

models and score functions from Chapter 3.  

The use of geometric hashing provides a reliable, fast way of computing the best 

model and interpretation of an observed scene according to a match score function. 

Measures of performance identification and false alarm rates are not a property of the 

algorithmic implementation but rather of the feature attributes and of the match score 

functions used for recognition; therefore, statements like “Geometric hashing yields high 

false alarm rates” are inaccurate since such statements almost surely refer to a particular 

implementation instance using a particular observation-generation model and a particular 

score function (e.g. a count measure.)  We have shown that the technique of geometric 

hashing is able to handle the implementation of score functions successfully used in other 

recognition schemes.  
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Chapter 6. Synthetic Imagery  

6.1 Experiments with Synthetic Data 

 

In this chapter, we report on experiments comparing different match score functions, 

using synthetically generated data.  Although synthetic data are not necessarily realistic 

in the sense of being representative of the real world, it allows us to carefully control the 

model under which data are instantiated, and therefore to compare match measures 

without regard to the validity of underlying noise models.  If we rely only on 

experimental data from a real application, such as the SAR application studied in the next 

Chapter, then it can happen that one model works better than another due to the particular 

application domain or to the errors in the features for that particular domain, and not due 

to superior performance by the match scores. 

6.2 Experiment Design  

 

We discuss here the generation of data, the experiment methodology, the performance 

measures, and the different experiments as a function of the number of clutter and 

occluded features and as a function of the number of models and patterns. 
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6.2.1 Experiment Data 

The baseline test data consists of 20=N  model point sets generated under two 

different observation models: uniform and diffusive.  The test set used for evaluation 

consists of 25=W  corrupted patterns for each of the 20=N  target models for a total of 

500=M  model point sets, in addition to 500=M  clutter point sets.  The experiment 

was repeated 1000=T  times using independent MonteCarlo simulations. 

A. Uniform Target Test Set. 

For each Nk ,...,2,1=  a model kM  consists of n=15 uniformly distributed random 

point locations inside a bounding box of 6 by 3 meters. 

For each target model kM , we have generated W perturbed test patterns based on 

model kM .  The perturbed patterns are constructed as follows: 

An integer d is chosen from a Poisson distribution with mean 5=d .  Then d feature 

points from model kM  are chosen at random, and are deleted from the pattern.  An 

integer e  is chosen from a Poisson distribution with mean 5=e .  Then e  extra feature 

points are generated and added to the test pattern.  The generation of these points is done 

in the same manner as the generation of the model points.  Finally, zero-mean Gaussian 

noise is added to the location of each feature, using a standard deviation of 20.0=σ  



 

 100

meters in each coordinate.  One of the original model points is designated as a basis 

point. 

B. Diffusive Target Test Set. 

This set is similar to the uniform test set (A), with the difference that for each model 

point in kM , a Poisson number of point locations are generated around that point by 

adding independent zero-mean Gaussian noise.  The expected number of points generated 

for each model point is related to the probability of occurrence of that model point 

[Wissinger et al. 1996]. 

C.  Clutter Test Set. 

The clutter set is generated as follows: 

An integer s is chosen at random based on a Poisson distribution with mean 

15=+−= edns .  We generate s independent random point locations inside a 6 by 3 

meter box, according to a uniform distribution. One of the s points is designated as a 

basis point.  We generated M=500 such clutter models. 

6.2.2 Experiment Definition 

Our experiments fall into the following categories: 

A. Comparison of Match Algorithms. 
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For the first set of experiments, we perform recognition assuming that the model can 

be translated in the test scene.  In fact, all test models are translated by a zero amount, 

and a completely correct identification will identify the correct model number, and 

deduce that the translation is zero. 

We measured probability of correct identification (PID) and probability of false alarm 

(PFA) over T=1000 MonteCarlo realizations of the experiment data.  The false alarm rate 

is simply measured as relative correct target identification rate as a percentage over the 

clutter set, and not as a False Alarm Rate per square kilometer. 

We wish to compare the following different match score and algorithm models: 

1 Baseline greedy with model-to-image interpretation 

2 Baseline greedy with image-to-model interpretation 

3 Baseline greedy with one-to-one model-to-image interpretation 

4 Baseline greedy with one-to-one image-to-model interpretation 

5 Baseline with bipartite one-to-one correspondences 

6 MAT MSTAR evaluation score (Many-to-All) 

7 Diffuse scattering score 

8 Two-sided Hausdorff score 



 

 102

9 Permanent score 

As discussed in Chapter 5, geometric hashing can be used to implement each of the 

above scores, except for the Baseline with bipartite correspondences and the Permanent 

score.  We have implemented a fast network algorithm from [Cherkassky and Goldberg 

1998] to evaluate the Bipartite score and we left out the Permanent score from the list due 

to expediency and time considerations. 

Furthermore, we have used the values of ( ) ndnpd −=  for all of the predicted 

points, and ( )enn +=γ .  Of course, here we have assumed that we have perfect 

knowledge of the probabilities with which predicted features fail to match, and the 

extracted features fail to match.  

We performed multiple experiments using different values for the control parameters 

σ , d , e , N  and we chose to report results for those parameter values that were well 

suited to show tradeoffs for the selected performance measures. 

It would be desirable to conduct a sensitivity analysis study as a function of σ , d , 

e , N  (see subsections B, C, D, and E).  A thorough analysis is deferred for future work.  

Instead, we only offer some comments based on limited experience. 
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B. Breakdown with N. 

In both pattern recognition and signature recognition, there is a perception among 

researchers that a sudden breakdown effect will be observed as the number of models in 

the database grows indefinitely.  That is, one expects reasonable performance as long as 

there are not too many different models amongst which we wish to discriminate.  

However, when the number of models becomes too large, we expect the performance to 

suddenly fall to a point that is essentially worthless.  This perception perhaps exists 

because many pattern recognition studies claim good performance, but generally deal 

with relatively few models, whereas many researchers have experience with achieving 

relatively poor performance, and have ascribed the difficulties to real world variability 

and an excessively difficult discrimination task. 

In our experience, we see degradation in performance as N increases, but we have not 

yet seen a breakdown effect.  Perhaps we have not taken N out far enough, and perhaps 

the remaining parameters fortuitously show a graceful performance. 

C. Breakdown with Noise. 

As the amount of Gaussian perturbation is increased beyond the cell resolution, 

performance suffers due to the inherent noise generation and the lesser reliability of the 

matching algorithms. 
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The effect on performance degradation is limited by the inherent greediness of the 

score in the case of the greedy measures and bipartite score or due to the smoothing 

effects for the diffuse scattering model.  

The most significant effect for our purposes, however, is on the running time.  

Overall running time is amplified in geometric hashing since the representation of model 

covariances in the hash table requires many more models to be searched for each 

particular bucket, as the list length in every hash bucket grows.  In the limit, geometric 

hashing becomes tantamount to an exhaustive search over correspondences.  In our 

experiments, the noise breakdown effect occurs for σ  somewhere between 0.45 and 

0.50, such that the search is as inefficient as exhaustive search.  

 

D. Breakdown with Clutter. 

When spurious clutter features are near or inside the “target region,” the effect of 

increased clutter is to reduce the score and to make discrimination harder.  

The effect is relatively minor as long as the number of clutter features is small and the 

penalty is limited, but if the relative number of clutter features goes above 40 percent, 

there is considerable confusion that is observed.  Oftentimes, a spurious correspondence 

occurs with a feature closer than that where a true correspondence would have occurred if 
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there were no clutter.  The result is that all scores are increased, although incorrect 

models can be raised more than the true match, causing miss-ID. 

On the other hand, if clutter features appear outside of the bounding region of the 

target, they are for the most part ignored due to saturation effects and the relative 

penalties on the scores.  This is simply what was to be expected.  

The issue of clutter breakdown is much related to the inherent separability and 

confusability of the underlying models, and as such is an extremely complex subject on 

its own.  Our experiments used the percentage of non-model points as a measure of 

clutter, and our conclusions are that we can handle up to 40% relative non-model 

features. 

Clutter breakdown for
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E. Breakdown with Obscuration. 

The issue of obscuration is a serious one.  Performance in the presence of obscuration 

is dependent on the correlation between features in the occluded region (as in blocking 

obscuration.)  Our approach to obscuration implicitly penalizes the score when features 

are missing, but the penalty is limited by the model for non-target features (i.e., 

background features).  Our approach fails to take into account the fact that obscuration 

usually results in a spatially contiguous region of missing features.  Other approaches are 

possible.  For example, the Markov Random Field model as proposed by [Castañon et. al. 

1999] could provide better results, although others have reported similar results with both 

random obscuration and blocking obscuration [Ettinger and Klanderman 1996] with the 

diffuse scattering model and its equivalent Many-to-All model.  

Our experiments indicate the existence of a breakdown, with approximately 10 to 15 

percent of random obscuration, for the greedy models.  In these experiments, 30 models 

were used.  Better performance should be possible by using an iterative approach, where 

obscuration regions are hypothesized based on preliminary recognitions.  However, we 

have not implemented such a scheme here.  Accordingly, performance with obscuration 

is disappointingly poor, in large part due to the relatively large number of models. 
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6.3 Experiment Results 

 

A. Uniform Target Test Set. 

The table shown below summarizes the correct-identification and false alarm 

probabilities that have been measured in experiments using the uniform target test set as 

described in Section 6.2.1.A above.  We have included error bars as determined by 1000 

Monte Carlo replications of the experiment.  
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Measure PID PFA

Greedy E-to-P 0.853±0.066 0.331±0.041

Greedy E-to-P 1-1 0.871±0.069 0.355±0.056

Greedy P-to-E 0.882±0.065 0.330±0.048

Greedy P-to-E 1-1 0.884±0.069 0.339±0.054

Many-to-All 0.865±0.081 0.320±0.054

Diffusive Scatter 0.865±0.081 0.320±0.054

Hausdorff 2-sided 0.859±0.067 0.331±0.061

Bipartite 0.908±0.039 0.393±0.066
 

We observe that the bipartite measure yields the best PID, but also leads to higher 

PFA.  If we measure rates in a relative fashion, then the increase in false alarm rate of 

10.7 percent for the bipartite score as compared to the [greedy E-to-P one-to-one score] is 

compensated for by a decrease of 0.1908.00.1
871.00.1 −−

−  = 40.2 percent in miss-identification rate.  

In addition, the average translation error associated with those targets correctly identified 

by the bipartite algorithm is 0.19 meters and the standard deviation is 0.02 meters.  The 

corresponding numbers for the greedy score are 0.11 and 0.02 meters.  These are 

relatively small translation errors, in both cases. 
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B. Diffusive Target Test Set. 

It turns out that in the experiment described in (A), the diffusive scattering score 

measure is at a disadvantage, since features were generated according to a uniform model 

that is different than the observation generation model assumed by the diffusive 

scattering measure.  Accordingly, we generated a new test set according to the diffuse 

scattering model (Subsection 6.2.0 B.) 

In this case, the measures for the three top measures are as shown in the following 

figure.  

Measure PID PFA

Greedy E-to-P 0.890+/-0.061 0.381+/-0.067

Diffusive Scatter 0.936+/-0.055 0.339+/-0.051

Bipartite 0.869+/-0.057 0.347+/-0.022
 

As shown, we re-ran the experiment using the baseline greedy measure, the bipartite 

measure and the diffusive scattering score measure.  We see that indeed the diffusive 

scattering score now outperforms the others, as expected.  
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6.4 Experiment Conclusions 

 

• The various methods work fairly similarly.  I.e., performance levels don’t vary 

that much.  We manipulated parameters to attempt to highlight the` distinctions. 

• Greedy methods are all pretty similar; when PID increases, PFA also increases 

some. 

• Bipartite produces considerably better PID, at the expense of a somewhat higher 

PFA.  This makes sense because… 

• If features are generated according to the diffusive scattering model, then the 

diffusive scattering metric yields better performance, both in PID and PFA. 

• Geometric hashing provided implementation efficiencies in terms of run-time. 
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Chapter 7. Experiments with SAR Signature Data  

 

7.1 Introduction 

In this Chapter, we present the results of our experiments using data from a real target 

recognition application.  We first present a brief description of the MSTAR model-based 

target recognition system.  

We have already discussed the MSTAR (Moving and Stationary Target Acquisition 

and Recognition) project in previous chapters.  The MSTAR project has provided a 

public database of sample SAR imagery with a large collection of example vehicles.  

Over 200,000 target chips, and over 100 square kilometers of clutter data were collected 

during three supervised collections under the auspices of the DARPA MSTAR program.  

In this chapter, we describe experimental results of the matching algorithms applied to 

some selected MSTAR imagery. 

7.2 MSTAR Target Recognition  

SAR sensors have many advantages over electro-optical sensors for target recognition 

applications, such as range-independent resolution and superior performance under all-

weather conditions. 
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The detection scenario begins with SAR imagery representing terrain in which an 

unknown number of targets of interest are deployed, each having an unknown location 

and pose.  The objective is to maximize the target detection probability, subject to a 

constraint on the false alarm density.  Targets are detected using a two-stage algorithm.  

In the first stage, a simple pre-screening algorithm (e.g. a two-parameter CFAR 

procedure) is applied to the imagery, thereby yielding a collection of regions of interest 

(ROIs) centered at possible target locations.  In the second stage, point features are 

extracted from each ROI, and a decision is made for each whether the constellation of 

point extractions is consistent with the target hypothesis.  Measuring this consistency 

entails searching through a collection of hypothesized constellations of peaks indexed by 

target type and pose; if a hypothesized constellation is found having point features that 

can be put in suitable good correspondence with the extracted features, then a target is 

declared to be present, and otherwise clutter is declared to be present. 

The ideas and contributions described in this thesis were partially developed in 

conjunction with MSTAR, which is a U.S. government model-based vision Program, 

jointly sponsored by DARPA and AFRL AACA. 

The purpose of the MSTAR system is to develop a demonstration of the capabilities 

of model-based vision to recognize and identify targets in Synthetic Aperture Radar 
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(SAR) data.  The SAR images are nominally one-foot resolution taken from a high 

altitude aircraft.  The targets are military vehicles and the MSTAR program is 

aggressively pursuing a process of increasing the number of possible target types and the 

conditions under which targets may be found. Early in the program ten target types were 

considered, with all targets in nominal configurations and “in the clear.” 

SAR imagery is a challenging object recognition environment because minor changes 

such as small rotations and slight configuration changes can have strong influences in the 

resulting SAR signature. 

The author of this dissertation participated in a research effort at NYU as part of the 

MSTAR program. NYU was under contract from AFRL for the implementation of the 

Match Module as well as assisting in algorithm development of the Search module.  In 

this subsection we will provide an overview of the entire MSTAR system in order to 

place the Search and Match modules in the proper context. The matching algorithms 

described in this thesis were in part inspired by the application needs of the MSTAR 

program. 

Accordingly, after describing the MSTAR System, we present results using the 

matching approaches described earlier to specific MSTAR problems. 
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Finally, in light of all the work required for MSTAR system development and of the 

NYU contribution to this development, we provide a discussion of the system 

engineering process that stimulated the environment for matching research. 

The system consists of two broad subsystems: 

• A front end formerly known as FIX (Focus-of-Attention/Index) which attempts to 

reduce the amount of processing required by focusing on subsets of the Image Space 

and of the Target Hypothesis Space.  This subsystem generates potential “Regions of 

Interest” in the input SAR image and a coarse set of initial candidate hypotheses for 

each of the ROI’s. 

• A back end known as PEMS (Prediction/Extraction/Match/Search) which explores 

the hypothesis space and refines the initial hypotheses estimates by iteratively 

generating online predictions about target appearance and matching them to features 

extracted from the measured image. 

Input image data enters the system through the “Focus of Attention” module.  The 

FOA module attempts to discard image locations that have no chance of containing a 

target, while focusing attention on all regions of interest that might conceivably contain a 

target.  This module uses multiresolution processing in order to analyze local spatial 

frequencies (much like a wavelet transform) to ascertain whether the neighborhood has 
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properties that allow it to be discarded from further consideration.  Ideally, the FOA 

module discards large portions of the input image, and outputs relatively few “Regions of 

Interest” (ROI’s) that contain all targets.  An ROI will often contain “clutter” or some 

other non-target object; however, all instances of actual targets should be processed and 

become an enclosing ROI. 

The Focus of Attention module sends its output to the “Indexing” (IX) module.  This 

module produces a set of hypotheses for each Region of Interest.  The possible 

hypotheses fall into two classes: a target model hypothesis, and “OTHER.”  The latter 

label indicates the possibility that the ROI does not contain a target of interest.  All other 

hypotheses are target model hypotheses, and contain information specifying likely 

parameters for the identity, location, orientation, and other properties of the target. The 

IX module compares the ROI against a template that has been formed from previously 

collected data and which provides representative examples of true target signatures. The 

IX module essentially uses a cross-correlation (which is equivalent to mean square error), 

not of the grayscale data, but of  “feature planes” representing nonlinear functionals 

applied to the data. One such functional consists of zero-crossings from the Laplacian of 

a Gaussian (LoG) applied to the image data.  However, the mean square difference is 

modified by using a distance transform that compares, for example, zero-crossings in the 

observed data against the location of the nearest zero-crossing in the exemplar data.  A 
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contribution to a score is registered inversely according to this distance, with the largest 

contribution if the distance is zero.  In order to build in some robustness, the penalty 

increases with distance to a certain point, at which point the penalty decreases.  That is, 

spurious mismatches do not penalize as much as near mismatches. 

The IX module produces an ordered list of hypotheses. Hypotheses can repeat the 

same target type indifferent locations and different orientations.  One of the hypotheses 

can be “OTHER.” Typically, dozens or even hundreds of hypotheses can be generated, 

but only a few of them (10 or 15) will be considered by the subsequent subsystem. 

The back-end of the System implements a hypothesize-and-test closed-loop 

mechanism for evaluation and refinement of target hypotheses. 

A generic automatic object recognition system is capable of managing numerous 

hypotheses about potential targets.  The system can operate on a single hypothesis by 

refining it (changing pose parameters, for example), rejecting it, or replacing it by 

multiple hypotheses. Further, newly generated hypotheses can be merged with other 

existing hypotheses that subsume them. Accordingly, the (search) system deals with a 

graph of hypotheses where certain nodes are considered live, and edges represent the 

dynamic heritage of hypotheses.  Information in a hypothesis includes the identity of the 

object itself, as well as parameters specifying its three-dimensional location, pose, 
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configuration, articulation, obscuration, surrounding and other environmental factors, and 

uncertainties associated with all of the above elements.  The operations that the system 

performs at each step on a hypothesis can depend upon the current state of the system.  

Given all this flexibility, the challenge is both to design and to express the search logic 

that emulates cognitive reasoning that leads to a decision in the space of hypotheses.  The 

reasoning process needs to be sufficiently flexible and transparent so as to permit easy 

adaptation to varying conditions [Mossing, Ross et. al. 1998].  Since the models and 

hypotheses involve 3D multi-part objects in a 3D world, the reasoning process needs to 

operate with knowledge of three-dimensional geometry and knowledge of semantic parts 

of models.  The procedure involves both symbolic processing, with model parts and 

objects, and quantitative processing, with likelihood and match scores.   

The PEMS subsystem consists of a searching engine driving the hypotheses evidence 

accrual process in a hypothesize-and-test environment, using an on-line prediction 

module and a matching module. PEMS operates as a transformation function in 

hypotheses space which inspects and probes elements of this space and generates new 

elements (likely hypotheses) until some stopping criterion is reached, at which point a 

decision is made about the identity of the object(s) present in each ROI. 
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The purpose of the Match module is to provide a measure of similarity between 

extracted and predicted signatures and to suggest matching improvements by strictly 

local parameter refinement. 

7.3 Experiment Design 

Experiment Goals  

The purpose of these experiments is to assess the feasibility of many alternative 

matching algorithms and to compare different matching schemes, as well as to provide an 

objective analysis of the sensitivity of various parametric assumptions under a subset of 

operating conditions. 

Experiment Data  

The test data set consists of: 

§ 475 measured target chips from nineteen ground-order-of-battle tactical vehicles, and 

§ 323 clutter chips containing various sparsely built-up and built-up environments that 

have been detected as target-like objects by the prescreening modules (i.e., FIX) of 

MSTAR. 

This data set is representative of small deviations from standard operating conditions 

and training data.  Training is involved because the hash tables were constructed from 
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databases of previously computed predictions.  There is no online prediction involved in 

this process. 

7.4 Experiment Results 

Results are presented in the table shown above.  The PID value is measured using a 

percentage of correctly identified target chips among the 475 chips of true target.  We see 

immediately that correct identification rates are much lower than those observed with 

simulated data, as reported in section 6.3.  The false alarm rates give the percentage of 

the trials that a clutter chip (among the 323) is identified as a true target, of one sort or 

another.  The false alarm rates are lower than those seen with the simulated data. 

 M EASURE PID FA 

Greedy E-to-P 0.610 0.289 

Greedy E-to-P 1-1 0.596 0.232 

Greedy P-to-E 0.553 0.219 

Greedy P-to-E 1-1 0.576 0.237 

Many-to-All 0.622 0.239 

Diffusive Scatter 0.622 0.239 

Hausdorff 2-sided 0.591 0.271 

Bipartite 0.571 0.251 
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Among the different schemes, the performance levels vary only slightly, although the 

bipartite method no longer yields the highest identification rates.  The Greedy E-to-P and 

the Many-to-All methods both yield among the best identification rates, with a lower 

false alarm rate for the Many-to-All scheme.  The diffusive scattering and Many-to-All 

schemes yield identical results because they are scaled versions of one another.   

 

 

 

and 

 

Note that with these results, there have been only 475 plus 323 executions of the 

system for each method, and that furthermore, with certain target chips, recognition is 

hopeless because the extended operating conditions makes the observed signature too 

distant from the correct pre-stored prediction.  This is a different situation from the 
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simulation studies of Chapter 6, where each scoring method was executed 1000 times 

against carefully controlled test signatures. 

The extended operating conditions explain the lower identification rates.  The lower 

false alarm rates are explained by the fact that many of the 323 clutter chips are 

considerably different from targets, even though the MSTAR front end (FIX) deemed 

them worthy of further study by the back end. 

7.5 Experiment Conclusions  

Limited conclusions are possible from the studies performed on MSTAR data. 

§ Peak Features modeling in MSTAR is limited by sensor resolution: Empirical studies 

have shown that several scatterers can collude in a single resolution cell, causing 

scintillation and making it difficult to differentiate and track the origin of a peak 

feature in the image.  The search for more discriminative image features is still 

ongoing.  Extended attributed peak features constitute a promising alternative that has 

not been explored in this work.  

§ Limited set of modeling conditions in GH database:  Our Geometric Hashing 

implementation is only an approximate solution due to the fact that only a partial 

subset of operating conditions can be stored in the model database, specifically  
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§ Approximate geometry: elevation and squint corrections; 

§ Approximate sampling of scattering centers; 

§ Nominal model configurations (SOC). 

§ Use of cues and contextual information to mitigate False Alarms by PEMS in the real 

system: The MSTAR system employs a complex search logic that incorporates 

contextual cues, terrain database modeling, Image Analysis heuristics, knowledge-

based information and domain-specific heuristics.  Any target recognition system 

should involve such enhancements.  

§ Complex interaction of elements, diverse technology and expertise from 

multidisciplinary backgrounds:  These are required in order to achieve even modest 

performance levels.  

 



 

 123

Chapter 8. Conclusions 

We have presented a complete theory for model-based feature matching in the 

presence of uncertainty, and we have demonstrated the robustness of the approach in 

realistic applications in automatic target recognition under highly unconstrained image 

analysis scenarios. 

The system performance is improved by the use of novel match quality measures, 

used in conjunction with a Bayesian posterior expected utility to quantify the support for 

model hypotheses.  The matching scores are also used successfully to prioritize search 

strategies and find the most promising directions for hypothesis generation in complex 

systems involving hundreds of models. 

In summary, we have observed improved discrimination performance, false alarm 

reduction and a quantitative measure of the reliability of the system. 

We have also obtained asymptotic results for performance bounds using synthetically 

generated models, and we have verified the results are consistent with the theory. 
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