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ABSTRACT

We discuss the problem of finding the second largest eigenvalue of an operator that defines a

reversible Markov chain. The second largest eigenvalue governs the rate at which the statistics of

the Markov chain converge to equilibrium. Scientific applications include understanding the very

slow dynamics of some models of dynamic glass. Applications in computing include estimating

the rate of convergence of Markov chain Monte Carlo algorithms.

Most practical Markov chains have state spaces so large that direct or even iterative methods

from linear algebra are inapplicable. The size of the state space, which is the dimension of the

eigenvalue problem, grows exponentially with the system size. This makes it impossible to store

a vector (for sparse methods), let alone a matrix (for dense methods). Instead, we seek a method

that uses only time correlation from samples produced from the Markov chain itself.

In this thesis, we propose a novel Krylov subspace type method to estimate the second largest

eigenvalue from the simulation data of the Markov chain using test functions which are known

to have good overlap with the slowest mode. This method starts with the naive Rayleigh quotient

estimate of the test function and refines it to obtain an improved estimate of the second largest

eigenvalue. We apply the method to a few model problems and the estimate compares very

favorably with the known answer. We also apply the estimator to some Markov chains occuring

in practice, most notably in the study of glasses. We show experimentally that our estimator is

more accurate and stable for these problems compared to the existing methods.
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1
INTRODUCTION

In many fields, including statistics, computer science and statistical physics, Markov processes

that satisfy a condition called reversibility are frequently encountered. For many such processes,

most notably in physics, the slowest mode has a physical significance (we consider specifically

the case of kinetically constrained spin models for glass transitions in section 6). The slowest

mode for a reversible Markov process is the eigenfunction corresponding to the second largest

eigenvalue of its transition matrix and its “decay rate” is given by the eigenvalue itself (the

transition matrix, being stochastic, always has the first eigenvalue as 1 and all the eigenvalues in

[−1, 1]).

Another important class of reversible Markov processes occur in Markov Chain Monte Carlo

(MCMC), which is an important tool of scientific computing. The basic idea of MCMC is

that for many distributions which are difficult to sample from directly, a Markov chain which

converges to the distribution can be constructed more readily. The distribution is then sampled

by simulating the Markov chain. Once the chain has been constructed, the other important issue

is how long to perform its simulation. This simulation time of a Markov chain depends on the

time it takes to converge to its equilibrium (invariant) distribution – in other words, its rate of

convergence. For a reversible chain, a concrete bound for the rate of convergence in terms of

the second largest eigenvalue modulus (SLEM) of the transition matrix has been established

(Diaconis and Stroock, 1991, Prop. 3). Following Gade and Overton, 2007, we use the term

reduced spectral radius for the SLEM. We also use the term spectral gap often – it is defined as

the absolute value of the difference between 1 and the reduced spectral radius. The smaller the

spectral gap, the slower the chain converges to stationarity.

To assess the rate of convergence of a Markov chain, it is clearly desirable to have an es-
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timate of its spectral gap. Only for special chains can this quantity be computed exactly – the

Ehrenfest urn model (section 4.2) is an example. A more frequently used approach is to obtain

analytical bounds for the spectral gap – most notably using Cheeger’s or Poincaré’s inequalities

(see Diaconis and Stroock, 1991, Lawler and Sokal, 1988, Sinclair and Jerrum, 1989).

Using an analytical approach to obtain tight bounds for the spectral gap is a hard task – and

one that needs to be performed separately for each Markov chain. For chains for which it has

been done using Cheeger’s and Poincaré’s inequalities Diaconis and Stroock, 1991, the bound

depends on the choice of a so-called canonical path. Moreover, in most cases these analytical

approaches yield bounds which are valid in an asymptotic sense. If one wishes to use them to

determine the run length of the chain in question, the bounds may well have constants which

cannot be ignored in practice.

The other approach to estimate the spectral gap is to use the simulation data generated by

the process itself. There are precedents for a data-based approach, notably Garren and Smith,

2000 and Pritchard and Scott, 2001. The approach in Pritchard and Scott, 2001 is applicable

in the situation where the transition matrix depends on a set of unknown parameters, which

are estimated from the simulation data; the estimate of the spectral gap is then the spectral gap

of the estimated transition matrix. For most chains which occur in practice (for example, the

Metropolis chain for simulating the Ising model), the transition matrix is known exactly, but it is

too large to store, let alone to perform linear algebra operations like eigenvalue computations.

The method outlined in Garren and Smith, 2000 is another data-based approach. It is similar

to the well-known Prony’s method in that it estimates the reduced spectral radius using least

squares fitting of exponentials. It is shown to have good theoretical properties in an asymptotic

sense, but there are no concrete results to show how it works when applied to Markov chains

which occur in practice, the ones we are most interested in. Furthermore, one often has some

intuition of how the slowest mode, the eigenfunction corresponding to the reduced spectral ra-
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dius, should look like for the chain in question. There is no way of incorporating this important

a priori knowledge with the method suggested in Garren and Smith, 2000.

In this paper, we propose a novel simulation data-based method which estimates the spectral

gap (and hence the rate of convergence) of a Markov process. This method is a Krylov subspace

type method and uses, as a starting observable, a function that is known to have a substantial

overlap with the slowest mode. The naive Rayleigh quotient of the function is then refined to

obtain a better estimate of the reduced spectral radius. We then apply the method to a range of

model problems, including examples where the exact spectral decomposition is known (such as

the AR(1) process and Ehrenfest urn process in sections 4.1 and 4.2 respectively). We show em-

pirically that our estimate is more accurate than any existing methods, including Prony’s method

and the Rayleigh quotient estimate. The examples we consider include kinetically constrained

spin models, like the east model and the Fredrickson-Andersen model, where the spectral gap is

small, and hence difficult to estimate.
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2
METHODOLOGY OF MCMC

In this section, we briefly review MCMC, the notion of reversibility and how, when the re-

versibility condition holds, the spectral gap quantifies the rate of convergence of the slowest

mode.

Consider an irreducible, aperiodic Markov chain {Xn, n ≥ 0} on a finite discrete state space

X . If |X | = N , this chain can be represented by an N × N transition matrix P . We use

the terms “transition matrix” and “Markov kernel” interchangeably. For finite state spaces, an

irreducible, aperiodic Markov chain is also called ergodic and the following fact about ergodic

Markov chains is well-known (Bremaud, 1999, Chap. 3 Theorem 3.3, Chap. 4 Theorem 2.1).

Proposition 2.1. Let P be an ergodic Markov kernel on a finite state space X . Then P admits a

unique steady state distribution π, that is,

∀x, y ∈ X , lim
t→∞

P t(x, y) = π(y).

This unique π is an invariant (or stationary) distribution for the chain, that is,

∑
x

π(x)P (x, y) = π(y).

The methodology of MCMC is typically as follows: given a measurable function (frequently

called an observable) f : X → R, one needs to estimate the quantity Eπ[f ], the expectation

of f in the distribution π. If π is difficult to sample from directly, an ergodic Markov chain

{Xt, t ≥ 0} is constructed with π as its invariant distribution; the average of f(Xt), t ≥ 0, is

then an estimate for Eπ[f ]. The basis of this methodology is the following Ergodic Theorem for

Markov chains.
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Proposition 2.2. Ergodic Theorem for Markov chains: Let {Xt, t ≥ 0} be an ergodic Markov

chain with state spaceX and stationary distribution π, and let f : X → R be such thatEπ[|f(X)|] <

∞. Then for any initial distribution ν,

lim
T→∞

1
T

T−1∑
t=0

f(Xt) = Eπ[f(X)] a.s.

From Proposition 2.2, we see that the estimator f̂ν,T =
1
T

T∑
t=0

f(Xt) converges to Eπ[f(X)]

with probability 1 and in fact can be shown to do so with fluctuations of size T−1/2 (central

limit theorem Maxwell and Woodroofe, 2000). Note that the ‘ν’ in f̂ν,T means that X0 ∼ ν, for

some arbitrary distribution ν. The estimator f̂ν,T of Eπ[f(X)] is biased unlike f̂π,T , but it turns

out that the bias is only of the order 1/T and asymptotically much smaller than the statistical

fluctuations that we have. Although in theory, it is acceptable if the sampling is started at t = 0,

in practice a certain initial burn-in time is allowed to elapse before the sampling begins (see

Sokal, 1989, Section 3 for more details).

How long should we simulate the chain to get a good estimate of Eπ[f ]? This run length

depends on the variance of the estimator f̂ν,T – which in turn depends on the correlations among

the samples f(X0), f(X1), . . .. To measure these correlations, we define, for a fixed s, the

equilibrium autocovariance function at lag s, Cf (s) as:

Cf (s) ≡ covπ[f(X0), f(Xs)]. (2.0.1)

From the ergodicity property of the Markov chain, Cf (s) can also be written as:

Cf (s) = lim
t→∞

covν [f(Xt), f(Xt+s)].

The quantity Cf (s) measures the covariance between f(Xt) and f(Xt+s) for very large t –

sufficiently large that the distribution of Xt becomes independent of that of X0. It is clear from
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the definition thatCf is an even function, that is,Cf (s) = Cf (−s). The autocorrelation function

at lag s, ρf (s) is defined as:

ρf (s) ≡ Cf (s)/Cf (0). (2.0.2)

For a given observable f , we define the integrated autocorrelation time, τint,f as:

τint,f ≡
t=∞∑
t=−∞

Cf (t)/Cf (0) =
t=∞∑
t=−∞

ρf (t). (2.0.3)

To simplify things, from now on, let us assume that the distribution ofX0 is π – this is equivalent

to assuming that the sampling begins after the “initial transient” has disappeared. An expression

for the variance of the estimator f̂T = 1
T

∑T
t=0 f(Xt) can now be given in terms of τint,f (Sokal,

1989, Equation (2.20)):

Var[f̂T ] =
1
T
τint,fCf (0) +O

(
1
T 2

)
, for T � τint,f . (2.0.4)

Note an additional factor of 2 in (Sokal, 1989, Equation(2.20)) – which can be attributed to a

difference in the definitions of τint,f (see Sokal, 1989, Equation(2.16)).

2.1 Reversibility

An important notion in Markov chain theory is the notion of reversibility.

Reversible chain: P is said to be reversible with respect to a distribution π if

∀x, y ∈ X , π(x)P (x, y) = π(y)P (y, x).

It is not hard to prove that if P is reversible with respect to π and P is ergodic, then π is the

stationary distribution for P . The condition of reversibility is called the detailed balance condi-

tion in the statistical mechanics literature. In practice, we usually know π up to a normalizing
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constant and we wish to construct an ergodic kernel P for which π is the invariant distribution.

Given π, the kernel P is not uniquely determined and detailed balance is often imposed as an

additional condition because it is more conveniently verified than the invariance of π.

The well-known Metropolis algorithm does this: it starts with a base chain on the relevant

state space and modifies it to construct a chain which is reversible with respect to the target

distribution π Diaconis and Saloff-Coste, 1995. In applications, the state space X is often a huge

set and the stationary distribution π is given by π(x) ∝ e−H(x) with H(x) easy to calculate.

The unspecified normalizing constant is usually impossible to compute. The Metropolis chain is

constructed in such a way that this constant cancels out in the simulation of the local moves of the

chain. See Diaconis and Saloff-Coste, 1995 for a detailed analysis of the Metropolis algorithm.

For an ergodic finite state space Markov chain, the invariant distribution π is strictly positive

on the state space X . Let `2(Π) denote the space of functions f : X → R for which

‖f‖2π =
∑
x∈X
|f(x)|2π(x) <∞.

Then `2(Π) is a Hilbert space with the inner product

〈f, g〉π =
∑
x∈X

f(x)g(x)π(x), ∀f, g ∈ `2(Π).

A necessary and sufficient condition for a transition matrix P to be reversible with respect to π is

that P is self-adjoint in `2(Π) Bremaud, 1999, Chap. 6 Thoerem 2.1. An immediate conclusion

is that all the eigenvalues of P are real and that the eigenvectors form an orthonormal basis in

`2(Π). For any observable f : X → R, the following result (Bremaud, 1999, Equation (7.18))

gives an upper bound for τint,f in terms of the eigenvalues of P .

Proposition 2.3. Let (P, π) be a reversible Markov chain on a finite set X . Let P be ergodic

with eigenvalues 1 = λ1 > λ2 ≥ · · · ≥ λN > −1 and let the corresponding eigenvectors be

7



v1, v2, . . . , vN . The integrated autocorrelation time for f satisfies the bound

τint,f ≤
1 + λ∗
1− λ∗

=
2
α
− 1, (2.1.1)

where the reduced spectral radius λ∗ = max(λ2,−λN ) and the spectral gap α = 1−λ∗. In the

bound above, equality occurs if and only if f = v2 if λ∗ = λ2 and f = vN if λ∗ = −λN .

From the result above, it is clear that λ∗ gives a tight upper bound on the convergence time of any

observable if it is measured in terms of the autocorrelation time. From (2.0.4), for T � τint,f ,

we have

Var[f̂T ] ≈ 1
T
τint,fCf (0) ≤ 1

T
Cf (0)

(
2
α
− 1
)
.

For a particular Markov chain, if we require an estimate of the worst autocorrelation time for

any observable, then estimation of λ∗ is one approach. In the next section, we outline one such

method for estimating λ∗ which uses data from the simulation of the chain. In section 4 and 6,

we apply it to estimate the spectral gap of various model problems.
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3
ESTIMATION OF λ∗ FOR REVERSIBLE CHAINS

USING SIMULATION DATA

Before we describe our approach to estimate λ∗ using simulation data, we need to answer the

first obvious question that arises: why can’t we use linear algebra techniques to compute λ∗?

This is because the size of the Markov chains that occur in practice are usually exponentially

large. For instance, in the Metropolis chain for the simulation of 2D Ising model, the number of

(spin) states is 2n
2

if we start with an n × n grid (each spin can take two possible values: −1

or +1). The size of state space is still finite, but for all practical purposes one can consider it as

infinite – we can evaluate each entry of the transition matrix P separately but it is impractical

to store the matrix as a whole. Even storing a vector of size 2n
2

for moderate values of n is

impossible.

Hence we cannot use standard eigenvalue-locating algorithms (like Lanczos, for instance) to

compute λ∗ – indeed, if there were a way of performing these operations, then we would directly

take the inner product 〈f, π〉 to evaluate 〈f〉π = Eπ[f ] instead of going through the elaborate

procedure of building a Markov chain to estimate 〈f〉π!

We use the word “overlap” many times, so it is important to give a precise definition. The

overlap between an observable f and an eigenfuntion v is defined as:

overlap(f, v) =
〈f, v〉π
〈f, f〉π

. (3.0.1)

Suppose by physical intuition or otherwise, we have an observable f which has a substantial

overlap with the slowest mode. Test functions which are used to prove “good” upper bounds on

the spectral gap are examples of such observables. To motivate our method of estimating λ∗,

let us assume, for simplicity, that we know the expansion of f in the (orthonormal) eigenvector

9



basis of P , that is,

f = a1vk1 + a2vk2 + · · ·+ amvkm , (3.0.2)

where m � N and ai 6= 0, 1 ≤ ki ≤ N for each i ≤ m. The ai are normalized such that

〈f〉π = 1. The idea is that f has a nonzero component along only a handful of eigenvectors even

though the eigenvector basis is exponentially large. Let vki
be ordered such that |λk1 | ≥ |λk2 | ≥

· · · ≥ |λkm |. Let the slowest mode be denoted by v∗ – it is either v2 or vN depending on whether

the reduced spectral radius is λ2 or −λN respectively. Since f is assumed to have an overlap

with v∗, the reduced spectral radius λ∗ = |λk1 |. Without loss of generality, we can assume that

〈f〉π = Eπ[f ] = 0 (otherwise consider the observable f − 〈f〉π). The autocovariance function

for f can then be written as:

Cf (s) = 〈f, P sf〉π = a2
1λ

s
k1

+ a2
2λ

s
k2

+ · · ·+ a2
mλ

s
km
. (3.0.3)

Given a simulation run ft = f(Xt) for t = 0, . . . , T of the Markov chain using f as the

observable, the problem is to estimate |λk1 |. An estimate for Cf (s) is given by the following

expression (Anderson, 1971, Chapter 8, (8)):

Ĉf (s) =
1

T − |s|

T−|s|−1∑
t=0

(ft − f̂T )(ft+s − f̂T ). (3.0.4)

Analogous to (3.0.3), we can write the following set of equations for the estimates of λki
and ai

in terms of the estimates for Cf (s):

Ĉf (s) = â2
1λ̂

s
k1

+ â2
2λ̂

s
k2

+ · · ·+ â2
mλ̂

s
km
, (3.0.5)

where for 1 ≤ i ≤ m, âi, λ̂ki
denote estimates for ai, λki

respectively. If we have the estimates

Ĉf (s) for 1 ≤ s ≤ 2m, we have 2m equations in 2m unknowns. This problem is exactly

identical to the so-called shape-from-moments problem in which the vertices of a planar polygon

need to be recovered from its measured complex moments. The moments correspond to the

10



autocovariance estimates Ĉf (s) and the vertices of the planar polygon to the eigenvalues λki
.

The shape-from-moments problem has connections to applications in array processing, system

identification, and signal processing and has been well-studied – see Golub et al., 2000 and the

literature cited therein for analysis of the case when the moments are exactly known. Schuermans

et al., 2006 and Elad et al., 2004 consider the case when the given moments are noisy. Broadly,

the methods proposed for the solution of the shape-from-moments problem can be classified into

two categories: Prony-based and pencil-based.

3.1 Prony’s method

We first describe Prony’s method for the shape-from-moments problem, that is, to estimate λki

given the autocovariance estimates Ĉf (s) as in equation (3.0.5). Suppose for a moment that we

assume that we know the exact autocovariance values as in equation (3.0.3). Then consider the

mth degree polynomial

p(λ) = (λ− λk1)(λ− λk2) . . . (λ− λkm)

= bmλ
m + bm−1λ

m−1 + . . .+ b0,

where the coefficients bi depend on λki
for i = 1, 2, . . . ,m and bm = 1. Then clearly,

m∑
i=1

a2
i p(λki

) =
m∑
s=0

bs

(
m∑
i=1

a2
iλ

s
ki

)
=

m∑
s=0

bsCf (s) = 0.

The last equality follows because λki
are the roots of the polynomial p(λ), that is, p(λki

) = 0

for i = 1, 2, . . . ,m. If we have autocovariance estimates Cf (s) for s = 0, 1, . . . , T for T > m,

then by an argument similar to the one above, we can show that

m∑
s=0

bsCf (s+ l) = 0,
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for l = 0, 1, . . . , T − m. The equation above can be written in matrix form as (recall that

bm = 1): 
b0 . . . bm−1 1 0

. . . . . . . . .

0 b0 . . . bm−1 1





Cf (0)

Cf (1)
...

Cf (T )


= 0. (3.1.1)

Reordering the equations, we obtain

−



Cf (m)

Cf (m+ 1)
...

Cf (T )


=



Cf (0) Cf (1) . . . Cf (m− 1)

Cf (1) Cf (2) . . . Cf (m)
...

...
. . .

...

Cf (T −m) Cf (T −m+ 1) . . . Cf (T − 1)





b0

b1
...

bm−1


.

Since we have T − m + 1 equations in m unknowns, requiring T ≥ 2m − 1 leads to an

overdetermined but consistent system of equations. The system of equations can be written

as

−w = Wb. (3.1.2)

From the equation above, b can be computed as

b = −W+w,

where W+ is the Moore-Penrose pseudo-inverse of W . Once b is obtained, the eigenvalues λki

can be found by computing the roots of the polynomial

p(λ) =
m∏
i=1

(λ− λki
) = λm +

m−1∑
i=0

biλ
i.

The root-finding problem can be converted to an eigenvalue problem by using the companion

matrix method.

12



Since we do not have the exact autocovariance values, but only their estimates, an alternate

method called the total-least-squares (TLS) Prony has been suggested in Elad et al., 2004. The

basic idea is that in the presence of noise, equation (3.1.2) does not hold exactly but the matrix

[W w] (the matrix W padded by an additional column w) is expected to be nearly singular.

Hence the TLS problem is solved using the singular value decomposition (SVD) – basically the

estimate b̂ of the vector b is the right singular vector corresponding to the smallest singular value.

This is normalized so that the last entry b̂m = 1.

The main obstacle to the application of the TLS Prony method is that it requires a knowledge

of m, the number of exponentials, λki
, that represent the autocovariance numbers. It is usually

not known in practice, since the eigenvectors vki
in the representation of f are not known. Since

we are interested in only |λk1 |, the largest modulus eigenvalue, we can use the following heuris-

tic: we assume a particular value form, apply the TLS Prony method and return the estimate λ̂ki

with the largest modulus. But in practice, Prony-based methods are very ill-conditioned; pencil-

based methods, the most notable being the Generalized Pencil of Function (GPOF) method Hua

and Sarkar, 1990, are considered better numerical methods.

The GPOF method also requires a knowledge of m, but we now show that there is a con-

nection between the GPOF method and a Krylov subspace method, which indicates that this

heuristic can work well for reasonable assumed values of m with a judicious choice of f – in

essence, that the choice of m may not matter that much if we are interested in only estimating

|λk1 |, the largest modulus eigenvalue.

3.2 Krylov subspace algorithm for estimating spectral gap

Consider the Krylov subspace of dimension n generated by the matrix P and the vector f :

Kn[f ] = span{f, Pf, P 2f, . . . , Pn−1f}. (3.2.1)
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If f has a substantial overlap with the slowest mode v∗, then presumably v∗ can be well-approximated

by a vector in Kn[f ] for n� N even though m is unknown. For any u ∈ Kn[f ], we can write

u =
n∑
j=1

ξjP
j−1f,

for some ξ1, . . . , ξn ∈ R. Then the Rayleigh quotient for u is:

q(u) =
〈u, Pu〉π
〈u, u〉π

. (3.2.2)

The denominator of this expression is

〈u, u〉π =
n∑

i,j=1

ξiξj〈P i−1f, P j−1f〉π

=
n∑

i,j=1

ξiξj〈f, P i+j−2f〉π

=
n∑

i,j=1

ξiξjEπ[f(X0)f(Xi+j−2)]

=
n∑

i,j=1

ξiξjcovπ[f(X0), f(Xi+j−2)]

=
n∑

i,j=1

ξiξjCf (i+ j − 2), (3.2.3)

where Cf (i+ j− 2) is the autocovariance function for the observable f at lag i+ j− 2. Similar

to equation (3.2.3), we can write 〈u, Pu〉π as:

〈u, Pu〉π =
n∑

i,j=1

ξiξjCf (i+ j − 1). (3.2.4)

If we form n × n matrices A and B with entries A(i, j) = Cf (i + j − 1) and B(i, j) =

Cf (i+ j − 2), then substituting (3.2.4) and (3.2.3) into (3.2.2) yields

q(u) =
〈ξ, Aξ〉
〈ξ,Bξ〉

. (3.2.5)
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If a small perturbation of v∗ lies in the subspace Kn[f ], then

λ∗ ≈ max
ξ 6=0

∣∣∣∣ 〈ξ, Aξ〉〈ξ,Bξ〉

∣∣∣∣ . (3.2.6)

The right hand side of (3.2.6) is the largest generalized eigenvalue modulus for the generalized

eigenvalue problem Aξ = λBξ. In other words, the problem of estimating λ∗ has been reduced

to a generalized eigenvalue problem involving matrices of much smaller size with a judicious

choice of the observable f .

Now we are ready to describe the first version of the Krylov Subspace Pencil (KSP) algorithm

for estimating λ∗ for a reversible ergodic Markov chain:

1. Choose an observable f with a sizable overlap with the slowest mode of the Markov chain.

2. Start with a random initial state X0 and simulate the chain for a “long time” T with f as

the observable, that is, collect samples f(X0), f(X1), . . . , f(XT ).

3. Choose a small number n, say around 10, and estimate the autocovariance function for f

at lags s = 0, 1, . . . , 2n− 1 using the expression (3.0.4).
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4. Form the matrices

Â =



Ĉf (1) Ĉf (2) . . . Ĉf (n)

Ĉf (2) Ĉf (3) . . . Ĉf (n+ 1)

Ĉf (3) Ĉf (4) . . . Ĉf (n+ 2)
...

...
. . .

...

Ĉf (n) Ĉf (n+ 1) . . . Ĉf (2n− 1)


,

B̂ =



Ĉf (0) Ĉf (1) . . . Ĉf (n− 1)

Ĉf (1) Ĉf (2) . . . Ĉf (n)

Ĉf (2) Ĉf (3) . . . Ĉf (n+ 1)
...

...
. . .

...

Ĉf (n− 1) Ĉf (n) . . . Ĉf (2n− 2)


. (3.2.7)

5. Return the largest generalized eigenvalue modulus (LGEM) of the pencil Â − λB̂ as the

estimate for λ∗.

We have intentionally left the description of the algorithm vague – we have more to say about

how to choose the observable f , the run length T , and the dimension of the Krylov subspace n.
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Given an observable f : X → R, for matrices A,B given by

A =



Cf (1) Cf (2) . . . Cf (n)

Cf (2) Cf (3) . . . Cf (n+ 1)

Cf (3) Cf (4) . . . Cf (n+ 2)
...

...
. . .

...

Cf (n) Cf (n+ 1) . . . Cf (2n− 1)


,

B =



Cf (0) Cf (1) . . . Cf (n− 1)

Cf (1) Cf (2) . . . Cf (n)

Cf (2) Cf (3) . . . Cf (n+ 1)
...

...
. . .

...

Cf (n− 1) Cf (n) . . . Cf (2n− 2)


, (3.2.8)

equation (3.2.5) shows that any generalized eigenvalue of the pencil A − λB is the Rayleigh

quotient of a vector u ∈ Kn[f ]. Since the eigenvalues of the transition matrix P all lie in the

interval (−1, 1), this implies that all the generalized eigenvalues of the pencil A−λB should lie

in the interval (−1, 1).

The matrices A and B above have the so-called Hankel structure; it is a well-known fact that

real Hankel matrices in general can be severely ill-conditioned Tyrtyshnikov, 1994. In fact, if

we know the representation (3.0.2) of f in the eigenvector basis of P , we choose the pencil size

n = m and can write the following representations for the n×nmatricesA andB (Zamarashkin

and Tyrtyshnikov, 2001):

A = Vn Diag(a2
1λk1 , a

2
2λk2 , . . . , a

2
nλkn) V t

n,

B = Vn Diag(a2
1, a

2
2, . . . , a

2
n) V t

n, (3.2.9)
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where Vn is the Vandermonde matrix of λki
:

Vn =



1 1 . . . 1

λk1 λk2 . . . λkn

...
...

. . .
...

λn−1
k1

λn−1
k2

. . . λn−1
kn


. (3.2.10)

Equation (3.2.9) can be easily derived as follows:

Vn Diag(a2
1, a

2
2, . . . , a

2
n) V t

n =



a2
1 a2

2 . . . a2
n

a2
1λk1 a2

2λk2 . . . a2
nλkn

...
...

. . .
...

a2
1λ

n−1
k1

a2
2λ

n−1
k2

. . . a2
nλ

n−1
kn





1 λk1 . . . λn−1
k1

1 λk2 . . . λn−1
k2

...
...

. . .
...

1 λkn . . . λn−1
kn


= [Xi,j ]n×n,

where for i, j = 1, 2, . . . , n,

Xi,j =
[
a2

1λ
i−1
k1

a2
2λ

i−1
k2

. . . a2
nλ

i−1
kn

]


λj−1
k1

λj−1
k2

...

λj−1
kn


= a2

1λ
i+j−1
k1

+ a2
2λ

i+j−1
k2

+ . . .+ a2
nλ

i+j−1
kn

= Cf (i+ j − 1),

from equation (3.0.3). Thus the matrix X = B. We can similarly prove the equation for matrix

A in (3.2.9).

A lower bound on the condition number of B has been proved in Zamarashkin and Tyrtysh-

nikov, 2001 using (3.2.9). The idea is to consider the matrix Kn = Vn Diag(a1, a2, . . . , an);

the matrix B can then be written as B = KnK
t
n. The following relation has been proved in
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Zamarashkin and Tyrtyshnikov, 2001:

cond2(Kn) ≥ 2n−2

(
2

d− c

)n−1

,

where c = min(λk1 , λk2 , . . . , λkn) and d = max(λk1 , λk2 , . . . , λkn). The lower bound on the

condition number of B is then

cond2(B) ≥ 22n−4

(
2

d− c

)2n−2

. (3.2.11)

Since λki
, i = 1, . . . , n are all between −1 and 1, d− c ≤ 2, in which case cond2(B) ≥ 22n−4

for any distribution of λki
– the condition number ofB is much worse when they are all clustered.

Since B is most likely very ill-conditioned, how does this affect the generalized eigenvalues

of the pencilA−λB? In particular, are the generalized eigenvalues of Â−λB̂ “close enough” to

the generalized eigenvalues of the actual pencil A−λB? This question is important because the

actual matrices A and B are unknown – we only have their estimates Â, B̂ from the simulation

run. Also, in step 5 of the KSP algorithm that we outlined in the last section, we return the

LGEM of Â− λB̂ as the estimate for λ∗. We now show that indeed the generalized eigenvalues

of A − λB are in most cases very ill-conditioned and naively returning the LGEM of Â − λB̂

might well result in a value greater than 1, which is impossible as an estimate for λ∗. A more

sophisticated procedure should hence be designed to estimate λ∗.

To show that the generalized eigenvalues of A − λB may be ill-conditioned, we first make

the observation that the matrix B is always positive semidefinite, that is, B � 0. This is easy to

see from (3.2.3), since for any ξ ∈ Rn, we can write

〈ξ,Bξ〉 =
n∑
i,j

ξiξjCf (i+ j − 2) = 〈u, u〉π, (3.2.12)

where u =
∑n

i=1 ξiP
i−1f . Since 〈u, u〉π ≥ 0 for any u ∈ RN , it follows that B � 0.

Also, note that B is singular if m < n (recall that n denotes the size of square matrices

A,B and m denotes the minimal number of eigenvectors of P as a linear combination of which
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one can represent f ; see equation (3.0.2)). This is easy to see because then the dimension of the

Krylov subspaceKn[f ] ism < n, that is, each P i−1f can be represented as a linear combination

of m vectors; we can therefore find a non-zero ξ ∈ Rn such that
∑n

i=1 ξiP
i−1f = 0. Equation

(3.2.12) then asserts that B is singular. If m < n, A is singular as well and in fact has a

common n−m dimensional null space with B. The estimates Â and B̂ are noisy and hence not

exactly singular but have an n −m dimensional subspace with “tiny” eigenvalues (if Â and B̂

are accurate enough). If ξ is in this subspace, then the ratio 〈ξ, Âξ〉/〈ξ, B̂ξ〉 is pure noise. So we

have to extract out this subspace somehow before returning the LGEM of Â− λB̂.

If n ≥ m and all the λki
are distinct, then B and A are nonsingular. Let us now examine the

conditioning of the generalized eigenvalues of A and B. To simplify the analysis, let us assume

that n = m. Let ξ1, ξ2, . . . , ξn be the generalized eigenvectors of A and B corresponding to

generalized eigenvalues µ1, µ2, . . . , µn. If we perturb A and B slightly, we can write the first-

order perturbation equation for µj – first-order perturbation theory for eigenvalues is well-known

and we adopt the following notation from Beckermann et al., 2007:

(A+ εÃ)ξj(ε) = µj(ε)(B + εB̃)ξj(ε),

where Ã, B̃ are normalized such that ‖Ã‖ ≤ 1, ‖B̃‖ ≤ 1 and ε > 0 is small. In a small

neighborhood around a simple eigenvalue µj(0) = µj with eigenvector ξj(0) = ξj , the function

ε 7→ µj(ε) is differentiable and has the following derivative at ε = 0:

dµj
dε

(0) =
〈ξj , (Ã− µjB̃)ξj〉
〈ξj , Bξj〉

. (3.2.13)

From the representation of A and B given by (3.2.9), it is easy to see that µj = λkj
and ξj =

V −tn ej for 1 ≤ j ≤ n. Substituting these into the equation above yields

dµj
dε

(0) =
〈V −tn ej , (Ã− µjB̃)V −tn ej〉
〈V −tn ej , BV

−t
n ej〉

=
〈V −tn ej , (Ã− µjB̃)V −tn ej〉

aj
. (3.2.14)
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This equation is identical to Beckermann et al., 2007, Equation (8). The conditioning of the

eigenvalue µj hence depends on aj and the norm ‖V −tn ej‖. We are interested in only µ1 (the

one with the largest modulus among µj) and since the observable f is assumed to be chosen

with a substantial overlap with the slowest mode v∗, a1 can be assumed to be “large”. Let’s now

consider the term V −tn ej . If Vn is as shown in (3.2.10), the matrix V −tn has the form V −tn = UL,

where the matrices U and L are given by (Turner, 1966):

U =



1 −λk1 λk1λk2 −λk1λk2λk3 · · ·

0 1 −(λk1 + λk2) λk1λk2 + λk2λk3 + λk3λk1 · · ·

0 0 1 −(λk1 + λk2 + λk3) · · ·

0 0 0 1 · · ·
...

...
...

...
. . .


,

L =



1 0 0 · · ·
1

λk1
−λk2

1
λk2
−λk1

0 · · ·
1

(λk1
−λk2

)(λk1
−λk3

)
1

(λk2
−λk1

)(λk2
−λk3

)
1

(λk3
−λk1

)(λk3
−λk2

) · · ·
...

...
...

. . .


.(3.2.15)

It has been observed experimentally that when the λki
are clustered together, the estimation

of λk1 is a very ill-conditioned problem. The structure of V −tn from (3.2.15) gives an intuition of

why this happens. If indeed λki
are clustered together, the product terms (λk1−λk2)(λk1−λk3)

etc. are small, making ‖Le1‖ large – this could potentially lead to ‖V −tn e1‖ being large. From

(3.2.14), it then follows that the estimation of µ1 = λk1 is an ill-conditioned problem. We do not

claim that this is a rigorous proof – the question of giving the exact conditions on the distribution

of λki
under which we get an ill-conditioned problem of estimating λk1 is not easy to answer;

all we intend to give here is an intuitive explanation for an experimentally observed fact.

If the estimation of λk1 is indeed ill-posed, the alternative is to use a value of n smaller

than m and expect that the LGEM of the n × n pencil Ân − λB̂n is close to the LGEM of the
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actual m × m pencil. In fact, in the degenerate case, choosing n = 1 yields Â1 = Ĉf (1) =

â2
1λ̂k1 + â2

2λ̂k2 + · · ·+ â2
mλ̂km , B̂1 = Ĉf (0) = â2

1 + â2
2 + · · ·+ â2

m. If the eigenvalues λki
are

all clustered together, then the LGEM of the pencil Â− λB̂,

|µ̂1| =
|Ĉf (1)|
Ĉf (0)

=
|â2

1λ̂k1 + â2
2λ̂k2 + · · ·+ â2

mλ̂km |
â2

1 + â2
2 + · · ·+ â2

m

is a good approximation of |λk1 |. Except in this degenerate case, it is not immediately clear how

good an approximation |µ̂1| is of |λk1 | if n < m. A simple symbolic manipulation experiment

has been performed in Maple to see how the LGEM of the 2 × 2 pencil Â2 − λB̂2 compares

with |λk1 | when m = 3, that is, when

Â2 =

 â2
1λ̂k1 + â2

2λ̂k2 + â2
3λ̂k3 â2

1λ̂
2
k1

+ â2
2λ̂

2
k2

+ â2
3λ̂

2
k3

â2
1λ̂

2
k1

+ â2
2λ̂

2
k2

+ â2
3λ̂

2
k3

â2
1λ̂

3
k1

+ â2
2λ̂

3
k2

+ â2
3λ̂

3
k3


B̂2 =

 â2
1 + â2

2 + â2
3 â2

1λ̂k1 + â2
2λ̂k2 + â2

3λ̂k3

â2
1λ̂k1 + â2

2λ̂k2 + â2
3λ̂k3 â2

1λ̂
2
k1

+ â2
2λ̂

2
k2

+ â2
3λ̂

3
k3

 .
Even in this simple case, the symbolic expressions for the generalized eigenvalues of the pencil

Â2 − λB̂2 are very complicated – it is difficult to find conditions on âi and λ̂ki
under which

using n < m leads to a good approximation for |λk1 |. Moreover, the value of m is never known

in practice – all we have are the autocovariance estimates Ĉf (s) for s = 0, 1, . . .. Fortunately,

it turns out the choice of n is less important than the choice of another parameter called the lag

parameter. We now define what we mean by the lag parameter and give a justification of why it

is more important than the choice of n, which is henceforth termed the pencil size parameter.

3.2.1 Choice of the lag parameter

From equations (3.2.7) and (3.2.9), it is clear that the ill-conditioning of the Hankel matrices

prevents us from using a large value for the pencil size parameter n; the value n = 10 is one of

the largest we can manage. A look at (3.2.7) reveals that the largest lag autocovariance estimate
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that we then consider is Ĉf (2n − 1). If we use n = 10, then we use only the autocovariance

estimates for lags s = 0, 1, . . . , 19 to estimate the spectral gap, leaving the remaining estimates

unused. The other and more important drawback of this approach is this: if the spectral gap

of the chain is very small and the observable f has a substantial overlap with the slowest mode,

then it is highly likely that Pf is not very different from f ; the basis corresponding to the Krylov

subspace Kn[f ] for small n is close to being degenerate and the problem of estimating λk1 from

this basis is very ill-conditioned.

To get around this problem, what we can instead do is to consider an alternate Markov chain

with transition matrix P r for some r > 1 – this parameter r is the so-called lag parameter. The

reduced spectral radius for this chain is λr∗; if µ̂ is an estimate of it, then an estimate of λ∗, the

reduced spectral radius of the original chain, is (µ̂)1/r. In estimating λr∗, instead of using the

Krylov subspace Kn[f ] from (3.2.1), we use the subspace:

Kn,r[f ] = span{f, P rf, P 2rf, . . . , P (n−1)rf}. (3.2.16)

The matrices Â and B̂ then take the form:

Ân,r =



Ĉf (r) Ĉf (2r) . . . Ĉf (nr)

Ĉf (2r) Ĉf (3r) . . . Ĉf ((n+ 1)r)

Ĉf (3r) Ĉf (4r) . . . Ĉf ((n+ 2)r)
...

...
. . .

...

Ĉf (nr) Ĉf ((n+ 1)r) . . . Ĉf ((2n− 1)r)


,

B̂n,r =



Ĉf (0) Ĉf (r) . . . Ĉf ((n− 1)r)

Ĉf (r) Ĉf (2r) . . . Ĉf (nr)

Ĉf (2r) Ĉf (3r) . . . Ĉf ((n+ 1)r)
...

...
. . .

...

Ĉf ((n− 1)r) Ĉf (nr) . . . Ĉf ((2n− 2)r)


. (3.2.17)
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The basic idea is that in the representation of f as in (3.0.2), even if the eigenvalues λki
are

clustered, their powers λrki
, for an appropriate choice of r are well-separated, and hence the

generalized eigenvalue problem for the pencil Ân,r−λB̂n,r is likely to be better conditioned for

r > 1 than for r = 1.

What is an appropriate value for the lag parameter r? Too small a value does not make a

significant difference from r = 1, while if r is chosen to be large, the entries in Ân,r and B̂n,r

are likely to be very noisy. The lag parameter needs to be chosen with care depending on how

slow the observable f is. One measure of the slowness of f is its integrated autocorrelation time

τint,f as given by (2.0.3). From (2.0.3), it seems that the natural estimator for τint,f is:

τ̂int,f = 1 + 2
T∑
t=1

Ĉf (t)/Ĉf (0).

But as pointed out in Sokal, 1989, the variance of this estimator does not go to zero as the sample

time T →∞. This is because for large t, Ĉf (t) has much noise and little signal; if we add several

of these terms, Var[τ̂int,f ] does not go to zero as T → ∞ – it’s an inconsistent estimator in the

terminology of statistics Anderson, 1971. One way of dealing with this problem is to “cut off”

at some t so as to retain only the signal, while disregarding the noise. An automatic windowing

algorithm has been proposed in Sokal, 1989, which we describe here.

procedure TauEstimate(Ĉf (0..T ), c)

1: M ← 1

2: τ ← 1

3: repeat

4: τ ← τ + 2 bCf (M)bCf (0)

5: M ←M + 1

6: until M > cτ

7: return τ
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In this procedure, the cut-off window M is chosen in a self-consistent fashion; more pre-

cisely, M is chosen to be the smallest integer such that M ≥ cτ̂int,f . There is no rigorous

analysis of this self-consistent procedure, but it is known to work well in practice if we have lots

of data, like for instance, T & 1000τ̂int,f (Sokal, 1989). The value of the consistency parameter

c is typically chosen to be around 8; if ρ̂f (t) = Ĉf (t)/Ĉf (0) were roughly a pure exponential,

then c = 4 should suffice, since the relative error is then e−c = e−4 ≈ 2%. But since ρf (t)

is expected to have asymptotic or pre-asymptotic decay slower than pure exponential, a slightly

higher value of c is necessary Sokal, 1989.

To estimate τ̂int,f using the self-consistent procedure described above, we use the autoco-

variance estimates Ĉf (t) for lags t = 0, 1, . . . , cτ̂int,f . Given the pencil size parameter n and

the consistency parameter c, our heuristic for choosing the lag parameter r is this: choose r to

be the maximum integer such that no estimate of Ĉf (t) is used beyond lag t = cτ̂int,f . A look

at (3.2.17) reveals that the maximum autocovariance estimate we use to form the matrices Ân,r

and B̂n,r, in terms of n and r, is Ĉf ((2n − 1)r). If we equate (2n − 1)r to cτ̂int,f , we get the

following equation for the lag parameter:

r =
⌊
cτ̂int,f

2n− 1

⌋
. (3.2.18)

3.2.2 Estimating the LGEM of the pencil Ân,r − λB̂n,r

Once the pencil size parameter n and the lag parameter r are determined, the next step is to

determine the LGEM µ̂n,r of the pencil Ân,r − λB̂n,r. An estimate of the reduced spectral

radius of the original chain is then λ̂∗ = (µ̂n,r)
1/r. We mentioned previously that the choice of

the pencil size parameter n is less important than the choice of the lag parameter r. If n is chosen

to be a fixed number, say 10, what happens in the case m < n (recall that m is the number of

eigenvectors of the transition matrix P in terms of which the observable f can be represented)?
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In that case, as we noted in the last section, the actual matrices An,r and Bn,r have a null space

of dimension n−m. The noisy estimates Ân,r and B̂n,r may not have a common null space but

only eigenvalues which are highly ill-conditioned.

In practice, m is not known, so we need a way of rejecting the “bad” set of generalized

eigenvalues and look for the LGEM only among the “good” set. If An,r and Bn,r were known

exactly, then the singular structure of the pencil Ân,r − λB̂n,r can be figured out by computing

its Kronecker Canonical Form (KCF). For given matrices A and B, there exist matrices U and

V such that

U−1(A− λB)V = S − λT, (3.2.19)

where S = Diag(S1, S2, . . . , Sb) and T = Diag(T1, T2, . . . , Tb) are block diagonal. Each block

Si − λTi must be one of the following forms: Jj(α), Nj , Lj , or LTj , where

Jj(α) =



α− λ 1
. . . . . .

. . . 1

α− λ


, and Nj(α) =



1 −λ
. . . . . .

. . . −λ

1


,

that is, Jj(α) is a Jordan block of size j × j corresponding to the finite generalized eigenvalue

α, while Nj corresponds to an infinite generalized eigenvalue of multiplicity j. The Jj(α) and

Nj(α) constitute the regular structure of the pencil. The other two types of diagonal blocks are

Lj(α) =


−λ 1

. . . . . .

−λ 1

 , and LTj (α) =



−λ

1
. . .
. . . −λ

1


.

The block j × (j + 1) block Lj is called a singular block of right minimal index j. It has

a one-dimensional right null space, [1, λ, λ2, . . . , λj ]T for any λ. Similarly, the block LTj has
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a one-dimensional left null space and is called a singular block of left minimal index j. The

blocks Lj and LTj constitute the singular structure of the pencil A − λB. The regular and

singular structures constitute the Kronecker structure of the pencil. The Kronecker Canonical

Form given by (3.2.19) is the generalization to a matrix pencil of the Jordan Canonical Form

(JCF) of a square matrix. See Demmel and Kågström, 1993a for more details about the KCF of

a matrix pencil.

Computing the KCF of a pencil is a hard problem in general because the matrices U and

V reducing A − λB to S − λT may be arbitrarily ill-conditioned. We instead compute the

Generalized Upper Triangular (GUPTRI) form of the pencil, which is a generalization of the

Schur Canonical Form of a square matrix. The GUPTRI form of a pencil A− λB is given by

U∗(A− λB)V =


Ar − λBr ∗ ∗

0 Areg − λBreg ∗

0 0 Al − λBl

 ,
where the matrices U and V are unitary and ∗ denote arbitrary conforming matrices. The block

Ar − λBr contains only right singular blocks in its KCF; indeed, the same Lj blocks as in the

KCF of A−λB. Similarly, the KCF of Al−λBl contains only left singular blocks and the same

LTj blocks as in the KCF of A − λB. The pencil Areg − λBreg is upper-triangular and regular

and has the same regular structure in its KCF as that of A− λB.

The computation of the GUPTRI form of a pencil is stable because it involves only unitary

transformations. There exist efficient algorithms and software to compute the GUPTRI form

of a general pencil; most notable of them is Demmel and Kågström, 1993a and Demmel and

Kågström, 1993b. Since the pencil An,r − λBn,r is symmetric and has only finite generalized

eigenvalues, its KCF contains only Jj and Lj blocks.

Now, given the noisy estimates Ân,r and B̂n,r of An,r and Bn,r respectively, the LGEM of

the pencil Ân,r−λB̂n,r is the LGEM of the regular structure in its GUPTRI form. In general, any
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singular structure that is present in the pencil An,r − λBn,r might be absent from the GUPTRI

form of Ân,r−λB̂n,r because of the noise in the estimates. In other words, even if An,r−λBn,r

is singular, it might so happen that Ân,r −λB̂n,r is regular, but with some highly ill-conditioned

eigenvalues. So we need to ignore eigenvalues with large condition numbers (> 1012) and return

as the LGEM, the eigenvalue with the largest modulus among the remaining ones. For a general-

ized eigenvalue µ of the pencil Ân,r − λB̂n,r with the corresponding generalized eigenvector ξ,

from equation (3.2.13), it is clear that one measure of the conditioning of µ is given by 〈ξ,ξ〉
〈ξ, bBn,rξ〉

.

Our heuristic for computing the LGEM of a given pencil Ân,r − λB̂n,r can be summarized

as follows:

1. Compute the GUPTRI form of the pencil Ân,r − λB̂n,r.

2. Extract the regular structure of the pencil from its GUPTRI form. Let its size be n1 and

let the regular eigenvalues be µ1, µ2, . . . , µn1 with their generalized eigenvectors being

ξ1, ξ2, . . . , ξn1 .

3. The LGEM of the pencil is given by maxi |µi| over all i = 1, 2, . . . , n1 such that µi is real

and |〈ξi,ξi〉|
|〈ξi, bBn,rξi〉|

< C, where C is typically chosen to be a large number, such as 1012.

Before we describe other methods to estimate λ∗, let us backtrack a bit and summarize the

modified KSP algorithm to estimate λ∗ given a sample run f(X0), f(X1), . . . , f(XT ).

1. Estimate the autocovariance function for f at lags s = 0, 1, . . . , T−1 using the expression

(3.0.4).

2. Estimate the autocorrelation time τ̂int,f using the procedure TauEstimate described in sec-

tion 3.2.1. The estimate is self-consistent only if the run length T is sufficiently large

compared to the estimate τ̂int,f .
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3. Fix the pencil size parameter n to say, 10 and determine the lag parameter r from equation

(3.2.18).

4. Form the matrices Ân,r and B̂n,r from equation (3.2.17).

5. Find the LGEM, µ̂, of the pencil Ân,r − λB̂n,r; the estimate for λ∗ is then (µ̂)1/r.

This method of estimating λ∗ by considering a single value of n, r and taking the rth root of

the LGEM of Ân,r − λB̂n,r is henceforth termed the KSP singleton method. The drawback of

this method is that it uses very little of the data that is available; even though we have estimates

Ĉf (s) for s = 0, 1, . . . , T − 1, the singleton method estimates λ∗ using only Ĉf (rk) for k =

0, 1, . . . , 2n−1. In section 5, we devise more stable and accurate estimates for λ∗ by not limiting

the data used as in the singleton method.

Any statistical estimate is meaningless without some kind of error bars – we now give a

simple method of computing error bars for the estimate λ̂∗, called the method of batch means.

3.3 Error bars for λ̂∗ using batch means method

The method of batch means is a simple and effective procedure to compute error bars for an

estimated quantity in MCMC. Suppose we have samples {f1, f2, . . . , fT } from the simulation

of a Markov chain. If we are trying to estimate the quantity 〈f〉π, we know from the ergodic

theorem that the time average f̂ =
PT

i=1 fi

T converges to 〈f〉π as T → ∞. One method of

computing error bars for f̂ is to estimate the integrated autocorrelation time τ̂int,f from the

procedure TauEstimate given in section 3.2.1; one can then compute error bars for f̂ from (2.0.4).

An alternative method is to use the method of batch means, which we describe now.

The basic idea is to divide the simulation run into a number of contiguous batches and then

use the sample means from the batches (batch means) to estimate the overall mean and its vari-
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ance. To be more precise, let the run length T = BK – we can then divide the whole run into

B batches of size K each. The bth batch consists of the samples f(b−1)K+1, f(b−1)K+2, . . . , fbK

for b = 1, 2, . . . , B, with its sample mean given by

f̂ (b) =
1
K

K∑
i=1

f(b−1)K+i.

The overall mean f̂ can then be computed as the mean of these batch means:

f̂ =
B∑
b=1

1
B
f̂ (b).

Let us assume that the original process {fi} is weakly stationary, that is, E[fi] = 〈f〉π and

Var[fi] = Varπ[f ] for all i and Cov(fi, fj) depends only on |j − i|. Then the batch means

process f̂ (1), . . . , f̂ (B) is also weakly stationary and we can write the following expression for

the variance of f̂ (Alexopoulos et al., 1997):

Var[f̂ ] =
Var[f̂ (b)]

B
+

1
B2

∑
i 6=j

Cov[f̂ (i), f̂ (j)].

As the batch size K → ∞, the covariance between the batch means Cov[f̂ (i), f̂ (j)] → 0. If

K is very large, it is a reasonable approximation that the batch means are independent of each

other. In that case, Var[f̂ ] ≈ Var[f̂ (b)]
B . The quantity Var[f̂ (b)] can be estimated by the standard

estimator

σ̂2
b [f ] =

1
B − 1

B∑
b=1

(f̂ (b) − f̂)
2
.

If the batch size K is large enough that the distribution of f̂ (b) is approximately normal, then we

can write the (1− α) confidence interval for 〈f〉π:

f̂ ± tB−1,α/2
σ̂b[f ]√
B
,

where tB−1,α/2 is the upperα/2 critical value of Student’s t-distribution, although the t-distribution

is very close to normal even for moderate values of B, such as 100.
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We extend the method of batch means to compute the error bars for any function of the

samples and not just the sample means. To illustrate this for the estimate of λ∗, let us assume

as before that we have a large simulation run of length T split into B batches of size K each.

Let λ̂(b)
∗ be the estimate of reduced spectral radius computed from batch b using, say, the KSP

singleton method described in section 3.2.2. The overall estimate λ̂∗ is then computed as the

mean of these batch estimates. As we mentioned before, if the batch size K is large, then it is a

reasonable approximation that the batch estimates λ̂(b)
∗ are independent of each other. As shown

above, we can then write the (1− α) confidence interval for the estimate of λ∗:

λ̂∗ ± tB−1,α/2
σ̂b[λ∗]√
B

,

where σ̂b[λ∗] is given by the expression

σ̂2
b [λ∗] =

1
B − 1

B∑
b=1

(λ̂(b)
∗ − λ̂∗)

2
. (3.3.1)

How do we choose the batch size K and the number of batches B? It is observed in practice

that K should be chosen large relative to the autocorrelation time τ̂int,f – for instance, K ≈

1000τ̂int,f ; a value of B = 100 usually suffices.
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4
MODEL PROBLEMS

In this section, we describe some processes which serve as model problems for testing our meth-

ods of estimating spectral gap. Chief among these occurring in practice are the East model,

Fredrickson-Andersen (FA) model and Ising model with Glauber dynamics. The East model and

the FA model belong to the class of kinetically constrained spin models for glass transitions.

The reason these are chosen as model problems is that each has a spectral gap that is very small

and hence in general more difficult to estimate. For these Markov chains, we show how our

method is more accurate than the existing methods. Also for each of these two models, we have

an observable that has a good overlap with the slowest mode. Before we go on to describe these,

we consider simpler problems like the AR(1) process and the urn model for which the complete

spectral decomposition, that is, the eigenvalues and eigenvectors, are known.

4.1 AR(1) process

The main motivation for choosing a process for which the eigenvalues and eigenfunctions are

known is that we can better test the heuristics that we proposed in the last section for the choice

of the lag and pencil size parameters. The AR(1) process is given by the following:

Xt = aXt−1 + bZt, t = 1, 2, . . . , (4.1.1)

where Zt is a Gaussian noise term with mean 0 and variance 1 and a and b are the parameters of

the model. If |a| < 1, the process is weakly stationary andE[Xt] = 0 and Var[Xt] = b2/(1−a2).

In fact, if |a| < 1, we can also show that the distribution of Xt is Gaussian for large t. Writing

Xt−1 = aXt−2 + bZt−1 in the defining equation (4.1.1), we get Xt = a2Xt−2 + abZt−1 + bZt.
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Continuing this n times yields

Xt = anXt−n + b

n−1∑
k=0

akZt−k.

For large n, an → 0 and since Xt is the sum of n independent Gaussian random variables, its

distribution is Gaussian as well. Also, it is easy to check that the Gaussian distribution is the

invariant distribution for this process. To simplify things, we choose b =
√

1− a2, in which

case the invariant distribution is standard normal.

Though we described the KSP method of estimating the spectral gap only for discrete state

space chains in section 3.2, it also applies to a particular class of general state space reversible

chains called the Hilbert-Schmidt class (Dunford and Schwartz, 1988). Consider a Markov chain

on a general state space (X ,F ,Π) with stationary distribution Π whose density is π with respect

to a dominating measure ν on (X ,F). Let the Markov chain be given by a transition probability

density P (x, y) for x, y ∈ X with respect to ν. Let `2(π) be the space of functions f : X → R

for which

‖f‖2π =
∫
X
|f(x)|2Π(dx) =

∫
X
|f(x)|2π(x)ν(dx) <∞.

Then `2(π) is a Hilbert space with the inner product

〈f, g〉π =
∫
X
f(x)g(x)Π(dx), ∀f, g ∈ `2(π).

Assume that the function y 7→ P (x, y)/π(y) is in `2(π) for all x. This defines an operator P on

`2(π) given by

Pf(x) =
∫
X
P (x, y)f(y)ν(dy) =

∫
X

[P (x, y)/π(y)]f(y)π(dy).

Then P is self-adjoint if and only if the Markov chain is reversible. It belongs to the Hilbert-

Schmidt class if (Garren and Smith, 2000)∫
X

∫
X

(P (x, y)/π(y))2Π(dx)Π(dy) =
∫
X

∫
X
P (x, y)2[π(x)/π(y)]ν(dx)ν(dy) <∞.

(4.1.2)
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A self-adjoint Hilbert-Schmidt operator P on `2(π) has a discrete spectrum of eigenvalues

{λk, k = 1, 2, . . .} with the corresponding eigenfunctions {ek, k = 1, 2, . . .} forming an or-

thonormal basis of `2(π) Dunford and Schwartz, 1988, pp. 1009–1034. The reason our KSP

method applies to Hilbert-Schmidt class of Markov chains is precisely because they have a dis-

crete spectrum of eigenvalues.

For the AR(1) process in equation (4.1.1), X = R and the dominating measure ν is the

Lebesgue measure on R. The transition probability density with respect to the Lebesgue measure

is given by P (x, y) = 1√
2π(1−a2)

e
−(y−ax)2

2(1−a2) . The invariant distribution π(x) = 1√
2π
e
−x2

2 . We

can verify the condition (4.1.2) for AR(1) process as follows:∫ ∞
y=−∞

∫ ∞
x=−∞

P (x, y)2[π(x)/π(y)]dxdy =
∫ ∞
y=−∞

∫ ∞
x=−∞

1
2π(1− a2)

e
− (y−ax)2

(1−a2) e−
x2

2 e
y2

2 dxdy

=
∫ ∞
y=−∞

∫ ∞
x=−∞

1
2π(1− a2)

e
− (y−ax)2

1−a2 −
x2

2
− y2

2 dxdy

=
∫ ∞
y=−∞

∫ ∞
x=−∞

1
2π(1− a2)

e
−y2(1+a2)−x2(1+a2)+4axy

2(1−a2) dxdy

=
∫

R2

1
2π(1− a2)

e−
1
2
zTC−1zdz, (4.1.3)

where z = [x, y]T and C−1 = 1
1−a2

 1 + a2 2a

2a 1 + a2

. The determinant of C is 1. The

following is a Gaussian integral in two dimensions and hence equals 1.∫
R2

1
2π
e−

1
2
zTC−1zdz =

∫
R2

1
2π det(C)

e−
1
2
zTC−1zdz = 1.

Therefore, the integral in (4.1.3) equals 1/(1− a2), which is finite. The AR(1) process given by

(4.1.1) hence belongs to the Hilbert-Schmidt class.

We can show that the AR(1) process has eigenvalues {1, a, a2, . . .} with the eigenfunction

for the kth eigenvalue ak−1 being the Hermite polynomial of degree k which is given by:

Hk(x) = ex
2/2ck∂

k
xe
−x2/2, (4.1.4)
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where ck depends only on k. The Hermite polynomials form an orthonormal basis for `2(π),

that is, for j 6= k, ∫ ∞
x=−∞

Hk(x)Hj(x)e−x
2/2dx = 0,

and {Hk(x), k = 0, 1, 2, . . .} span the space `2(π). For k ≥ 1, the number ck is chosen so as to

make the norm of Hk one, that is, to ensure that

1√
2π

∫ ∞
x=−∞

H2
k(x)e−x

2/2dx = 1.

The reduced spectral radius of the AR(1) process is a with the corresponding slowest mode

being H1(x) = x. Let us start with an observable which has an overlap with H1(x) and then use

the KSP method to estimate the parameter a. By applying our method to a process like this, for

which we know the eigenvalues and eigenfunctions, we can

• evaluate the heuristics that we proposed for choosing the pencil size parameter n and the

lag parameter r, and

• analyze the error in the estimate.

4.1.1 Observable H1 +H2 +H3 +H4

In this section, we consider the problem of estimating the spectral gap of the AR(1) process

with the observable as the sum of the first four eigenfunctions, namely, the observable f =

H1+H2+H3+H4. As we mentioned before, the kth Hermite polynomialHk is an eigenfunction

of the AR(1) process with eigenvalue ak. The reason this particular observable is chosen for our

experiment is because of the following factors:

• Since we know the spectral decomposition of the process, we can compare the estimates

of spectral gap using different values of the pencil size and lag parameters with the exact

result. We can thus evaluate the heuristics for the choice of n and r.
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• A careful choice of n, r is essential for this problem because the overlap with the slowest

mode H1 is not any more substantial than with other modes. With the naive choice of

n = r = 1, the KSP method, which is then identical to returning the Rayleigh quotient of

f as the estimate of λ∗, gives the answer (a+ a2 + a3 + a4)/4.

The autocorrelation time for the observable f is τint,f = (τint,H1 +τint,H2 +τint,H3 +τint,H4)/4,

where τint,Hi is the autocorrelation time corresponding to Hi and is given by τint,Hi = (1 +

ai)/(1 − ai). The AR(1) process is simulated with f as the observable and the parameter a

chosen to be 0.99. The total run length of the chain is 109 divided into 100 batches.

To motivate the heuristics for the choice of the pencil size parameter n and the lag parameter

r, for each batch (of size 107) let us use the KSP singleton method described in section 3.2 to

estimate λ∗ for n = 1, 2, . . . , 10 and for each n, r = 1, 2, . . . , b cτ̂int,f

2n−1 c. Basically, we do not use

autocovariance estimates for lags beyond cτ̂int,f , where τ̂int,f is the estimate of τint,f obtained

from the TauEstimate procedure and c is the consistency parameter therein.

For the AR(1) process, we also compare the KSP singleton method with the TLS Prony

method for different values of n and r. Although in section 3.1, we described Prony’s method

for the case r = 1, it can be extended to r > 1 by simply replacing Cf (k) with Cf (kr) for

k = 0, 1, . . . , T in equation (3.1.1). The estimate obtained in that case is an estimate of λr∗.

Let λ̂(b)
n,r be the estimate of λ∗ for AR(1) process obtained using data from batch b (and

parameters n,r) either by using the KSP singleton method or the TLS Prony method and let

λ̂n,r be the mean of these batch estimates. Also, let σ̂b[λn,r] be the sample standard deviation

estimate of λ̂(b)
n,r which analogous to equation (3.3.1), is given by

σ̂2
b [λn,r] =

1
B − 1

B∑
b=1

(λ̂(b)
n,r − λ̂n,r)

2
. (4.1.5)

An estimate for the standard deviation of λ̂n,r is then given by σ̂[λn,r] = σ̂b[λn,r]√
B

.
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Figure 4.1: The reduced spectral radius estimate λ̂n,r ± σ̂[λn,r] for AR(1) process with observable

H1 +H2 +H3 +H4 using KSP singleton method and TLS Prony method for n = 3 and different values

of r. Error bars are computed using (4.1.5).

Figure 4.1 plots the estimate λ̂n,r obtained by applying the KSP singleton and the TLS Prony

methods and one standard deviation error bar, namely σ̂[λn,r], for n = 3 and different values

of r. Figures 4.2 and 4.3 give similar plots for n = 4 and n = 7 respectively. A couple of

distinctions between the two estimation methods are immediately obvious:

• The TLS Prony estimate has the larger error bars, especially for n = 3 and n = 7.

• The bias for the TLS Prony estimate becomes large and positive for larger values of r,
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Figure 4.2: The reduced spectral radius estimate λ̂n,r ± σ̂[λn,r] for AR(1) process with observable

H1 +H2 +H3 +H4 using KSP singleton method and TLS Prony method for n = 4 and different values

of r.

especially for n = 4 and n = 7. For the KSP estimate on the other hand, for increasing

values of r, the bias does not become noticeably larger, but the error bars get bigger.

• The KSP estimate has a negative bias for small r, but it stabilizes for increasing values of

r instead of fluctuating as in the TLS Prony case.

The figures above reinforce the claim we made at the beginning of section 3.2 that the choice of

the pencil size parameter n is not as important as that of the lag parameter r. Even though the

38



actual value of n is 4 (the observable being the sum of four eigenfunctions), the choice n = 3 or

n = 7 work equally well with an appropriate choice of r (basically ignoring very small values).

0 10 20 30 40 50 60 70
0.975

0.98

0.985

0.99

0.995

1

1.005

r

sp
ec

tr
al

 r
ad

iu
s 

(w
ith

 e
rr

or
 b

ar
s)

 fo
r 

A
R

(1
) 

pr
oc

es
s 

w
ith

 n
=

7

 

 

KSP Singleton
TLS Prony
Actual Reduced Spectral Radius = 0.99

Figure 4.3: The reduced spectral radius estimate λ̂n,r ± σ̂[λn,r] for AR(1) process with observable

H1 +H2 +H3 +H4 using KSP singleton method and TLS Prony method for n = 7 and different values

of r.

4.2 Ehrenfest Urn Model

The next model problem that we consider is the Ehrenfest urn process, which is another example

of a reversible Markov chain whose spectral decomposition is completely known. Our descrip-
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tion follows the one given in Karlin and McGregor, 1965. In this process, we consider two urns

and N balls distributed in the urns. The chain is said to be in state i if there are i balls in urn

I and N − i balls in urn II. At each instant, a ball is drawn at random from among all the balls

and placed in urn I with probability p and in urn II with probability q = 1 − p. The probability

transition matrix is given by the (N + 1)× (N + 1) matrix P = (Pij), where

Pij =



κi if j = i+ 1,

ζi if j = i− 1,

1− (κi + ζi) if j = i,

0 if |j − i| > 1

and κi = (N − i)p/N , ζi = iq/N for i, j = 0, 1, . . . , N − 1. This matrix is reversible with

respect to the positive weights

ρi =
κ0κ1 . . . κi−1

ζ1ζ2 . . . ζi
=
(
N

i

)(
p

q

)i
,

that is, ρiPij = ρjPji for i, j = 0, 1, . . . , N . The invariant distribution for state i, therefore,

is given by πi = ρi/
∑N

i=0 ρi. All the eigenvalues of P are real and there are N + 1 linearly

independent eigenvectors. Let v be an eigenvector of P corresponding to eigenvalue λ. Writing

the equation Pv = λv in expanded form, we obtain

λv0 = −κ0v0 + κ0v1

λvi = ζivi−1 + (1− (ζi + κi))vi + κivi+1, 1 ≤ i ≤ N − 1,

λvN = −ζNvN−1 + ζNvN .

If v0 is known we can solve these equations recursively for v1, v2, . . . , vN . The solution is of the

form vi = Ki(λ)v0 where Ki(λ) is a real polynomial of degree i. We can assume without loss
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of generality that v0 = 1. The eigenvalue λ is then the root of the (N + 1) degree polynomial

R(λ) = λKN (λ) + ζNKN−1(λ)− ζNKN (λ).
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Figure 4.4: The reduced spectral radius estimate λ̂n,r ± σ̂[λn,r] for Ehrenfest urn process (with N =

30, p = 0.4) with identity observable using KSP singleton method and TLS Prony method for n = 5 and

different values of r.

It is known that the eigenvalues of the transition matrix P are 0, 1/N, 2/N, . . . , 1 − 1/N, 1

(irrespective of the values of p, q) with the corresponding eigenvectors being the so-called Krawtchouk

polynomials (Karlin and McGregor, 1965).

Consider the binomial distribution with weights
(
N
j

)
pjqN−j on theN+1 points j = 0, 1, . . . , N .
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The polynomials orthogonal with respect to this distribution are the Krawtchouk polynomials

given explicitly by the following expression (Karlin and McGregor, 1965):

Kn(j) =
n∑
i=0

(−1)i
(
n
i

)(
j
i

)(
N
i

) 1
pi
, n, j = 0, 1, . . . , N. (4.2.1)

We can visualize the Krawtchouk polynomials as an (N + 1) × (N + 1) matrix K = (Kn,j)

for n, j = 0, 1, . . . , N . Note that Kn(j) is symmetric with respect to n and j, that is, Kn(j) =

Kj(n), which implies that K is a symmetric matrix. The nth column/row of K, that is, Kn is

the eigenvector corresponding to the eigenvalue 1− n/N .

4.2.1 Identity observable

In this section, we consider the problem of estimating the reduced spectral radius of the urn pro-

cess with the simple identity observable, namely, f(j) = j, where j is the state of the Markov

chain, that is, the number of balls in urn I. As we mentioned before, the eigenvector K1 corre-

sponds to the second largest eigenvalue 1− 1/N . From equation (4.2.1), it is clear that the first

Krawtchouk polynomial is given by K1(j) = 1 − j
Np . It turns out that among all Krawtchouk

polynomial vectors Kn, f has an overlap only with K1 (apart from K0, which is irrelevant for

the estimation of spectral gap because we consider only the autocovariance numbers).

So in effect, we are trying to estimate the reduced spectral radius of the urn process with the

observable as the eigenfunction corresponding to the reduced spectral radius itself! This might

sound like an easy proposition because in that case, the Rayleigh quotient of f is an adequate

estimate of reduced spectral radius. But we would like to observe how our KSP method behaves

for an observable which is the exact eigenfunction itself. Especially, if we use pencil size param-

eter n > 1, the actual matrices An,r, Bn,r corresponding to the estimates in equation (3.2.17)

have an n− 1 dimensional common null space and only one regular generalized eigenvalue. To

extract that particular generalized eigenvalue from the estimates Ân,r and B̂n,r might be a bit of
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Figure 4.5: The reduced spectral radius estimate λ̂n,r ± σ̂[λn,r] for Ehrenfest urn process (with N =

30, p = 0.4) with identity observable using KSP singleton method and TLS Prony method for n = 10 and

different values of r.

a challenge. But it turns out that the procedure that we outlined in section (3.2.2) for estimating

the LGEM of Ân,r − λB̂n,r by using the GUPTRI form is adequate for filtering out the singular

generalized eigenvalues of Ân,r − λB̂n,r.

We performed the simulation of the urn process with the values N = 30, p = 0.4 – the run

length is 108 split into 100 batches. The reduced spectral radius is then λ∗ = 1−1/30 = 0.9667.

We then applied the KSP singleton method and TLS Prony method with different values of pencil

size parameter n and lag parameter r. Figures 4.4, 4.5 and 4.6 plot the estimates λ̂n,r with their
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error bars for n = 5, 10, 1 respectively. The figures indicate that TLS Prony misses the exact λ∗

completely, especially for large values of n and r.

As for the KSP method, it is clear that large n do not pose much of a problem and definitely

not as much of a problem as for TLS Prony. Even when n is as large as 10, as clear from

Figure 4.5, the heuristic that we outlined in section 3.2.2 accurately picks out the only regular

generalized eigenvalue (which is 0.9667), while ignoring the other singular ones.
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Figure 4.6: The reduced spectral radius estimate λ̂n,r ± σ̂[λn,r] for Ehrenfest urn process (with N =

30, p = 0.4) with identity observable using KSP singleton method and TLS Prony method for n = 1 and

different values of r.

Even if large values of n do not pose a problem, large values of r may. Especially from
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Figure 4.6, it is clear that for n = 1 and for approximately r > 40, there is a large positive

bias in the estimates λ̂n,r. This can be attributed to the fact that for large r, Cf (nr) is all noise

and little “signal”. This in turn means that λ̂n,r is noisy and (λ̂n,r)
(1/r) → 1 as r → ∞. This

tendency gets magnified for small n especially, as is obvious from Figure 4.6, and shows up

even for moderately large values of r. This is precisely the reason we restrict the autocovariance

estimates we use to lag t < cτ̂int,f , which automatically restricts the lag parameter r. Even with

that restriction, we may be using too many r values for some cases such as, for instance, the urn

process with n = 1 (Figure 4.6).

That brings us to an important issue with KSP singleton method: if we are to use a single

value of n and r, what values should we use? It is clear that no values of n and r, fixed heuris-

tically a priori, work well for all processes. Can we devise estimates which use the estimates

λ̂n,r for a range of values of n and r? The answer is yes, and it is precisely the topic of next

section.
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5
MORE ACCURATE AND STABLE ESTIMATES FOR

λ∗

We have seen from the results for the AR(1) process and the Ehrenfest urn process that the

estimates returned by the KSP singleton method vary widely depending on the choice of n and

r. We instead intend to use a set of pencil size parameter values N = {n1, n2, . . . , nk} and for

each i = 1, . . . , k, a set of lag parameter values R[ni] = {r(i)
1 , r

(i)
2 , . . . , r

(i)
li
}. We then wish to

return a single estimate λ̂∗ that “fits” all the estimates λ̂n,r from this range of values. The idea is

that using a single value of n, r results in a noisy estimate of λ∗, but the use of a range of values

diminishes the impact of noise by “averaging” it out.

We have seen that 10 is one of the largest values we can consider for the pencil size parame-

ter, so we fix the pencil size parameter set to be

N = {1, 2, . . . , 10}. (5.0.1)

For each n, the lag parameter set R[ni] is chosen to include all values not exceeding the one

given by (3.2.18), that is,

R[ni] =
{

1, 2, . . . ,
⌊
c τ̂int,f

2ni − 1

⌋}
for ni = 1, . . . , 10. (5.0.2)

If the estimated τ̂int,f is large, theR[ni] above is a large set, thus pushing up the computation

time to estimate λ̂n,r for each value of n, r. Even though this time is small compared to that

required for obtaining the simulation data, in practice it suffices to pick around 100 values at

equal intervals from
{

1, 2, . . . ,
⌊
c τ̂int,f

2ni−1

⌋}
as the setR[ni].
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5.1 Series sum estimate

For each ni ∈ N and r(i)
j ∈ R[ni] (i = 1, 2, . . . , k and j = 1, 2, . . . , li), let µ̂i,j be the LGEM

of Â
ni,r

(i)
j

− λB̂
ni,r

(i)
j

, that is, µ̂i,j is an estimate of λ
r
(i)
j
∗ . Consider the quantity

µ̂i =
li∑
j=1

µ̂i,j .

Then for the particular pencil size parameter value n = ni, an estimate for the reduced spectral

radius is a solution of the following polynomial equation:

li∑
j=1

λr
(i)
j = µ̂i. (5.1.1)

The roots of the polynomial can be obtained by using the companion matrix method and the

estimate for λ∗ is the one that lies between 0 and 1. But if li is very large (that is, if the estimated

autocorrelation time τ̂int,f is large), then the companion matrix could be huge. Instead, let us

assume that the set of valuesR[ni] is chosen to be an arithmetic series, that is, r(i)
j = r

(i)
1 + (j−

1)∆r(i) for 1 ≤ j ≤ li where ∆r(i) = r
(i)
2 − r

(i)
1 . Then for each 1 ≤ i ≤ k, we can write

li∑
j=1

µ̂i,j ≈
li∑
j=1

λ
r
(i)
j
∗ =

li∑
j=1

λ
r
(i)
1 +(j−1)∆r(i)

∗ =
λ
r
(i)
1
∗ (1− λli∆r

(i)

∗ )

1− λ∆r(i)

∗
.

If li is large enough that we can make the approximation λli∆r
(i)

∗ ≈ 0, then the equation above

can be written as

µ̂i =
li∑
j=1

µ̂i,j ≈
λ
r
(i)
1
∗

1− λ∆r(i)

∗
.

The series sum estimate for λ∗ corresponding to the pencil size parameter n = ni, λ̂SS∗ [ni], is

obtained by solving the following polynomial equation for λ:

λ∆r(i)
µ̂i + λr

(i)
1 − µ̂i = 0. (5.1.2)
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The quantities ∆r(i) and r(i)
1 are much smaller than r(i)

li
and hence the polynomial equation can

be solved quite easily using the companion matrix method. If li is not so large that λli∆r
(i)

∗ can

be ignored, then we still need to solve equation (5.1.1) to obtain an estimate for λ∗.
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Figure 5.1: The series sum estimate for the reduced spectral radius λ̂SS
∗ [n]±σ̂[λSS

∗ [n]] for AR(1) process

with observable H1 +H2 +H3 +H4 using KSP and TLS Prony methods for n = 1, 2, . . . , 10.

In Figure 5.1, we plot λ̂SS∗ [n] with one standard deviation error bar σ̂[λSS∗ [n]] for AR(1) pro-

cess of section 4.1 for n = 1, 2, . . . , 10 using both KSP and TLS Prony methods. As expected,

the series sum estimates for TLS Prony method are all over the place for almost all values of n.

In contrast, for the KSP method, the series sum estimate is pretty close to the actual answer 0.99

except for the case n = 1.
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We can explain the anomaly for n = 1 by noting that for AR(1) process, the estimates λ̂1,r

have a negative bias for all r < cτ̂int,f . The observable f is the sum of four eigenfunctions, so

using Rayleigh quotient (in effect, using pencil size parameter n = 1) yields a value less than

the actual λ∗. The estimates λ̂1,r do increase with increasing r but cτ̂int,f is not sufficient for

the bias to turn positive from negative. Contrast that with the urn process from Figure 4.6 where

the limit of cτ̂int,f for r may have been “too large”. The essence basically is that for n = 1,

the behavior of the estimates depends heavily on what r values we choose. But for n > 1, the

estimates λ̂n,r are more robust with respect to the choice of r values.
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Figure 5.2: The series sum estimate for the reduced spectral radius λ̂SS
∗ [n] ± σ̂[λSS

∗ [n]] for Ehrenfest

urn process with identity observable using KSP and TLS Prony methods for n = 1, 2, . . . , 10.
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Figure 5.2 plots the series sum estimate for the urn process of section 4.2 with identity

observable again for n = 1, 2, . . . , 10. It is clear that the series sum estimate using KSP is very

close to the exact answer 0.9667 for all values of n.

5.2 Least squares estimate

A more natural method than the series sum estimate and which works better in practice is the

one obtained by using the least squares technique which we describe now. The least squares

method is a modification of the maximum likelihood estimation method applied under suitable

assumptions.

As before for each ni ∈ N and r(i)
j ∈ R[ni], let µ̂i,j be the LGEM of Â

ni,r
(i)
j

− λB̂
ni,r

(i)
j

,

that is, µ̂i,j is an estimate of λ
r
(i)
j
∗ . We can write

µ̂i,j = λ
r
(i)
j
∗ + ηi,j , (5.2.1)

where ηi,j is the noise term. What is the distribution of µ̂i,j? From the central limit theorem

for Markov chains, we can conclude that for a sufficiently large run length of the Markov chain,

the autocovariance estimates Ĉf (s) are normally distributed. In addition, the following is a

well-known fact:

Proposition 5.1. Suppose X is approximately a multivariate normal with mean x0. If h is a

differentiable function at x0, then Y = h(X) is approximately normal with mean and variance

given by the linearization of h about x0.

Let us takeX to be the autocovariance estimate vector with components Ĉf (s), s = 1, 2, . . . , (2ni−

1)r(i)
j , and the function h to be the LGEM of Â

ni,r
(i)
j

− λB̂
ni,r

(i)
j

; clearly h is a differentiable

function if B̂
ni,r

(i)
j

is positive definite (even if B̂
ni,r

(i)
j

is singular, the largest regular generalized

eigenvalue modulus is a differentiable function).
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From Proposition 5.1, we can conclude that µ̂i,j is normally distributed if the run length of

the Markov chain is sufficiently large. This then implies from (5.2.1) that ηi,j has a Gaussian

distribution, that is, ηi,j ∼ N(bi,j , σi,j). We now describe the least squares method of estimating

λ∗ for a fixed i, that is, for a fixed pencil size parameter value ni.

Henceforth, the notation vi denotes the column vector with components vi,j for j = 1, 2, . . . , li,

where li is the cardinality ofR[ni]. Is it a reasonable assumption that the ηi,j are independent for

different j? Clearly not: since µ̂i,j are estimated from the same set of autocovariance estimates

Ĉf (s), they are indeed correlated. It is therefore logical to model ηi as a correlated Gaussian

random variable vector, that is,

ηi ∼ N(bi,Σi), (5.2.2)

where bi represents the bias and Σi the covariance matrix of the estimates µ̂i,j .

The covariance matrix Σi can be estimated from the µ̂i,j data (estimated using the KSP

singleton method). The bias bi cannot be estimated without first estimating λ∗. To get around this

problem, we make the approximation that the noise ηi has mean zero, that is, that the estimates

µ̂i,j are unbiased. We know that this is not true from the results for AR(1) and urn processes in

sections 4.1 and 4.2 respectively (see Figures 4.1-4.6).

We can treat the µ̂i,j data from different batches as independent samples; then we can esti-

mate the covariance matrix of singleton estimates Σi from equation (5.2.2) for a particular ni.

There are standard methods to estimate the covariance matrix of a random variable vector from

a set of independent samples. Once we have the estimate of covariance matrix Σ̂i, we can write

the maximum likelihood (ML) estimator of λ∗ for pencil size parameter ni as:

λ̂ML
∗ [ni] = arg min

λ
(µ̂i − λr

(i)
)
T

Σ̂−1
i (µ̂i − λr

(i)
), (5.2.3)

where λr
(i)

is the column vector [λr
(i)
j ] for j = 1, . . . , li.

The main drawback of this approach is that the covariance matrix Σ̂i may not be estimated
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accurately. The number of batches we consider is a relatively small number (such as B = 100),

so if li = |R[ni]| > B, the estimated covariance matrix is not even positive definite. In such a

situation, we can use one of the so-called shrinkage covariance estimators. An extensive review

of the Bayes shrinkage estimators can be found in Daniels and Kass, 2001; Schäfer and Strimmer,

2005 proposes a set of improved shrinkage estimators with applications to functional genomics.

Even if li < B, the estimated Σ̂i may be noisy and since equation (5.2.3) involves its inverse

Σ̂−1
i , the effect of noise is accentuated.

We wish to compare the ML estimate with the least squares (LS) estimate, which corre-

sponding to n = ni is given by

λ̂LS∗ [ni] = arg min
λ

li∑
j=1

(
µ̂i,j − λr

(i)
j

)2

. (5.2.4)

Basically, the least squares loss function is the same as the ML loss function with the co-

variance matrix replaced by the identity matrix. Figure 5.3 plots the ML, LS and series sum

estimates (with error bars) for the AR(1) process of section 4.1. As an aside, we note that since

we have demonstrated in previous sections that KSP is a more accurate method than TLS Prony,

we do not consider the estimates from TLS Prony any further and concentrate only on KSP.

A couple of conclusions from Figure 5.3 are immediately obvious: the least squares estimate

is the best of the three, slightly better than the series sum estimate. The ML estimate is by far

the worst of the three, with a large negative bias. Let us try and understand why this is so.

First of all, note that the LS loss function puts equal weight on each of the loss terms,

measured by µ̂i,j − λr
(i)
j

2

, for each j, which is not the case with ML loss function. If Σ̂i is

diagonal, then the ML loss function takes the form
li∑
j=1

1
Σ̂i[j, j]

(
µ̂i,j − λr

(i)
j

)2

. (5.2.5)

It is clear from Figures 4.1-4.3 that for small j, the bias is large (and negative) but the variance

is smaller – with increasing j, the bias decreases, but the variance gets bigger. The jth diagonal
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Figure 5.3: The LS, ML and series sum estimates with error bars, for the reduced spectral radius for

AR(1) process with observable the sum of first four eigenfunctions for n = 1, 2, . . . , 10.

entry Σ̂i[j, j] represents the variance of µ̂i,j and it increases with increasing j. As a result, it is

clear from (5.2.5) that in the ML loss function, the loss terms for small values of j have more

weight attached to them compared to the ones for large values of j. But we have seen that

for AR(1) process, the estimates µ̂i,j have large bias for small values of j and because of the

additional weight placed on these by the ML loss function as compared to the LS loss function,

the whole ML estimate (the solution of the optimization problem (5.2.3)) gets pulled down vis-

a-vis the LS estimate. This explains why the ML estimate always is smaller than the simple LS

estimate in the case of the AR(1) process.
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Although we have explained the phenomenon of why the ML estimate is always worse than

the LS estimate using the simplifying assumption that the covariance matrix Σ̂i is diagonal, we

can nevertheless draw the following conclusion: that ignoring the bias of µ̂i,j worsens the ML

estimate as compared to the LS estimate. In other words, we cannot assume that the noise term ηi

in Equation (5.2.1) has mean zero, proceed to minimize the associated loss function and expect

better results than with the simple LS loss function.
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Figure 5.4: The LS, ML and series sum estimates with error bars, for the reduced spectral radius for

Ehrenfest urn process with identity observable for n = 1, 2, . . . , 10. Even though the estimates may look

all over the place, note the vertical scale which runs from 0.965 to 0.9683.

This point brings us to the next question: if for a particular example, the µ̂i,j estimates do

not have large bias for small j, can the ML estimates perform better than the LS estimates? In

other words, we pose the question: if it is valid to assume that ηi from (5.2.1) have mean zero,
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then how does the ML estimate perform in comparison to the LS estimate?

The Ehrenfest urn process with the identity observable is a classic example where µ̂i,j do

not have a large bias for small j (see Figures 4.4-4.6). Figure 5.4 plots the LS, ML and series

sum estimates with error bars for the urn process with identity observable. From Figure 5.4, it

is clear that the ML estimate is superior to the LS estimate and the series sum estimates for this

particular example.

The basic point is that if the observable is sufficiently close to the slowest mode that its

Rayleigh quotient is a good approximation to the reduced spectral radius (which is the case

with the identity observable for the urn process), then the estimates µ̂i,j do not have large bias

for small values of j. For an example like this, the ML estimate is superior to the simple LS

estimate. Also from Figures 5.3 and 5.4, it is clear for both AR(1) and Ehrenfest urn processes

that the LS and ML estimates are respectively more accurate (less biased) than the series sum

estimate. For AR(1) process, the explanation of the anomaly for the ML and LS estimates for

n = 1 is similar to that for the series sum estimate (which is basically that the estimates λ̂1,r

have a negative bias for all values of r < cτ̂int,f ).

5.2.1 Obtaining a single estimate

We now have the estimates of λ∗, λ̂∗[n], for pencil size parameter values n = 1, 2, . . . , 10. Out

of these estimates, how should we pick the one “best” estimate, in some sense? The obvious

idea is to pick the estimate with the least squared error. The squared error of an estimate, as is

well-known, is the sum of the variance and the square of the bias. The variance of the estimates

λ̂∗[n] is estimated using the batch means method, but what about the bias? Clearly, we are faced

with the same problem as when we considered the maximum likelihood estimate, namely, how

can we estimate the bias without knowing the true value of λ∗?

It turns out that we can approximate the bias for λ̂LS∗ [n] by the expression λ̂LS∗ [n] − λ̄LS∗
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where λ̄LS∗ is simply the sample mean of λ̂LS∗ [n] for n = 1, 2, . . . , 10. The estimate with the

least square error is simply λ̂LS∗ [nlse], where nlse is defined as

nlse = arg min
n

(λ̂LS∗ [n]− λ̄LS∗ )
2

+ σ̂[λLS∗ ]2, and λ̄LS∗ =
1
10

10∑
n=1

λ̂LS∗ [n].

We have seen that the estimate λ̂LS∗ [1] for pencil size parameter n = 1 depends heavily on the

lag parameter set R[1] that is chosen. Since there is no way of knowing whether R[1] is chosen

properly beforehand, we can instead look at the LS and ML estimate plots. From Figure 5.3, it

is clear that for AR(1) process, the estimate for n = 1 seems like an outlier compared to other

values of n. So for cases like this, we can exclude the n = 1 estimate when computing λ̄LS∗ , that

is, λ̄LS∗ is instead computed as λ̄LS∗ = 1
9

∑10
n=2 λ̂

LS
∗ .

Tables 5.1 and 5.2 list the least squared error estimates of reduced spectral radius for AR(1)

and Ehrenfest urn processes using the various estimation methods. They just emphasize the point

that we made before: that the LS estimate is the most accurate for the AR(1) process, while the

ML one works the best for the urn process.

Estimation method Estimate Standard deviation nlse Squared error

Maximum likelihood 0.9860 5.5605× 10−5 2 1.5747× 10−5

Least squares 0.9891 2.1779× 10−4 5 9.3169× 10−7

Series sum 0.9888 1.9368× 10−4 5 1.3019× 10−6

Table 5.1: ML, LS and series sum least squared error estimates for AR(1) process with λ∗ = 0.99

and observable as sum of first four eigenfunctions.
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Estimation method Estimate Standard deviation nlse Squared error

Maximum likelihood 0.9667 2.9182× 10−5 5 8.5425× 10−10

Least squares 0.9670 9.522× 10−5 4 1.4674× 10−7

Series sum 0.9662 1.8355× 10−4 4 2.6585× 10−7

Table 5.2: ML, LS and series sum least squared error estimates for Ehrenfest urn process with

λ∗ = 29/30 and identity observable.
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6
RESULTS

In this section, we describe how the KSP method that we described in the previous section esti-

mates spectral gap for Markov chains that occur in practice. In particular, we consider the East

model and Fredrickson-Andersen (FA) models as our model problems. These models belong to

the class of kinetically constrained spin models for glass transitions. These models have been

proposed to explain the dynamics of glass transitions, which, even after all these years, remains

poorly understood. The slowest modes for these models are physically significant because they

help explain the slow relaxation times near glass transition temperatures – see the next section

for more details.

The other reason the East model and Fredrickson-Andersen models are chosen as model

problems is that each has an observable that has a good overlap with the slowest mode. Aldous

and Diaconis, 2002 and Cancrini et al., 2007 report observables for the east model and the FA

models respectively, and prove them to be the slowest in an asymptotic sense. Using these

observables, we obtain estimates of specral gap for these two processes that are more accurate

than those obtained by existing methods.

6.1 East model

Before we describe the East model, let us give a synopsis of glass transitions in general. Glasses

are typically prepared by rapid cooling of a molten liquid, that is, if the cooling rate is large

enough, crystallization is avoided and the system becomes metastable (supercooled liquid). Good

glass formers are those substances that, for some reason, either possess no crystalline configu-

rations or have great difficulty in accessing these configurations (Fredrickson, 1988). If this

supercooled liquid is further cooled, at some temperature Tg (which depends on the material),
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its viscosity and various structural relaxation times increase dramatically, exceeding the obser-

vation time. The temperature Tg is said to be a glass transition temperature and depends on the

rate of cooling.

The phenomenon of glass transition has been widely studied and it is now an accepted fact

that it is a dynamical phenomenon and not a thermodynamic phase transition as was thought

previously (Fredrickson and Andersen, 1985). Long relaxation times for a thermodynamic phase

transition correspond to diverging correlation lengths which have not been observed near a glass

transition. If indeed glass transition is a dynamical phenomenon, how do we model it? Once

we design a model process, an inkling of the slowest mode for this process helps us understand,

qualitatively, the nature of glass transitions. In order to quantify this understanding, we need to

estimate the relaxation time (the autocorrelation time, in other words) of this slowest mode.

The long relaxation times in glasses typically show a pronounced divergence as temperature

is lowered and are fitted experimentally by the Vogel-Fulcher law

τ = τ0e
−A/(T−T0).

The exponential inverse temperature squared (EITS) form

τ = τ0e
B/T 2

(6.1.1)

has been proposed as an alternative (Sollich and Evans, 2003). Various approaches have been

developed to understand the phenomena of glass transitions, most notable of them being mode

coupling theories (Götze, 1989), the random first order scenario (Kirkpatrick et al., 1989) and

kinetically constrained spin models (Fredrickson and Andersen, 1984).

Before we describe kinetically constrained spin models, we take a small detour and give

a brief synopsis of the Ising model. It is a widely known mathematical model in statistical

mechanics and was first proposed to explain the phenomenon of ferromagnetism. The Ising
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model is defined on a discrete collection of spins (typically a two-dimensional grid) si which

take values −1 and 1. The spins si interact in pairs with the total energy (Hamiltonian) given by

the following expression:

E = −J
∑
i,j

sisj ,

where J is the energy of interaction and the sum is over neighboring spins. The model is a

statistical model, so the energy is the logarithm of the probability, that is, the probability of each

configuration of spins is the Boltzmann distribution with inverse temperature β:

P (S) ∝ e−βE .

To generate configurations from this probability distribution, various reversible Markovian dy-

namics have been proposed, the most notable of them being the Metropolis algorithm and the

Glauber dynamics.

Kinetically constrained spin models were first proposed in Fredrickson and Andersen, 1984

where the system is an Ising spin system with the usual Hamiltonian and the same equilibrium

distribution and properties; the only difference being the transition probabilities by which the

system evolves. Since the detailed balance condition does not uniquely determine the transi-

tion probabilities, there are multiple ways of defining transition probabilities satisfying detailed

balance condition with respect to a particular equilibrium distribution.

In the facilitated spin models defined in Fredrickson and Andersen, 1984, a spin flips only if

at least a certain fraction of its neighboring spins are up; for the one-spin facilitated model (FA1f)

for instance, a spin flips only if at least one of its neighboring spins is up. A possible physical

interpretation of the facilitated spin models in terms of real fluids is to identify down spins

with lower than average compressibility and up spins with higher than average compressibility

(Fredrickson and Andersen, 1984). With this interpretation, a highly compressible region can

force a neighboring region to relax while a low compressibility region leads to “jamming” of the
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dynamics of the system.

East model belongs to the class of kinetically constrained spin models, where the spin system

is a one-dimensional spin system and a spin flips only if the spin to its left is up. Kinetically

constrained spin models in general have been fairly successful in modeling the dynamics of

glass transition. For the East model for instance, at low temperatures, an EITS form for the

relaxation time has been reported in Sollich and Evans, 2003. We adopt the following definition

of East model process in continuous time from Aldous and Diaconis, 2002.

Consider a one-dimensional chain of η + 1 spins σi for i = 0, . . . , η, which can take values

0 and 1, that is, σi ∈ {0, 1} ∀ i with the leftmost spin σ0 always 1 (we consider only finite

systems, while in Aldous and Diaconis, 2002, the chain is infinite). The transition rate matrix

Pcont in continuous time is given by (for i > 0):

Pcont(σ → σ(i)) =


p if σi−1 = 1 and σi = 0

1− p if σi−1 = 1 and σi = 1

0 otherwise,

where σ(i) is the spin state obtained from σ by flipping σi. We can change the continuous time

Markov process above to a discrete time one by the following: at each time, a spin i > 0 is

selected at random and if the spin to its left is up, then σi, if previously 0, is set to 1 with

probability p and if previously 1, is set to 0 with probability 1 − p. Clearly, the discrete time

probability matrix Pdisc is related to the continuous time rate matrix Pcont as:

Pdisc = I − 1
η
Pcont, (6.1.2)

where I is the 2η × 2η identity matrix. This matrix Pdisc is also called the embedded discrete

time Markov chain. The implication of equation (6.1.2) is that Pdisc and Pcont have the same set

of eigenvectors and the eigenvalues are related by the simple relation λdisc,i = 1 − 1
ηλcont,i for
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i = 1, . . . , 2η. The reason we look at the relation between Pdisc and Pcont is that we wish to

consider the observable, henceforth termed the Aldous-Diaconis function, described in Aldous

and Diaconis, 2002 as the starting observable f for the KSP method to estimate the spectral

gap of Pdisc. Even though the Aldous-Diaconis function has been used to prove lower bounds

on relaxation time for Pcont in (Aldous and Diaconis, 2002), we can use that as the observable

for our KSP method since the relation (6.1.2) implies that Pdisc and Pcont have the same set of

eigenvectors.

We chose the East model as a test case to demonstrate our method of estimating the spectral

gap because of the following reasons:

• Kinetically constrained models are notoriously slow processes, that is, their spectral gaps

are usually very small. For the east model in particular, the relaxation time, τ(p) defined as

1/(spectral gap) satisfies log τ(p) ∼ log2(1/p)
log 2 as p ↓ 0. The task of estimating the spectral

gap for these processes is very difficult from a numerical point of view.

• There is a known “good” starting observable for the East model. It has been proved in

Aldous and Diaconis, 2002 that the Aldous-Diaconis observable has a relaxation time

within a factor 2 of the upper bound and hence could have substantial overlap with the

slowest mode, especially in the regime p ↓ 0.

To start with, let us describe the Aldous-Diaconis function from Aldous and Diaconis, 2002

– note that the observable is defined in terms of a continuous time coalescing random jumps

(CRJ) process which we describe now. For a particular configuration of spins σ, let S0(σ) ⊆

{0, 1, 2, . . . , η} be the set of up spin sites in σ at time 0,

S0(σ) = {0 ≤ i ≤ η : σi = 1}.

The CRJ process shrinks the set of up spins by the following rule: at time t, the up spin at site

i goes down at rate pD(St(σ),i), where D(St(σ), i) is the distance to the next up spin to the left
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and is given by D(St(σ), i) = min{|j− i| : j < i, j ∈ St(σ)}. Once the process is started with

a spin configuration σ such that S0(σ) 6= {0}, eventually there is a time when there is only one

site (apart from site 0) that contains an up spin – let that random site be L(σ). The value of the

Aldous-Diaconis function is then

fAD(σ) = fAD(S0(σ)) =


Prob(L(σ) > η/2), if S0(σ) 6= {0},

0 if S0(σ) = {0}.

Note that we use the notation fAD(σ) and fAD(S0(σ)) interchangeably since there is a one-

to-one mapping between a spin configuration σ and its set of up spin sites S0(σ). Though the

observable looks complicated, it turns out that fAD(S0) can be written in terms of fAD(S0 \

{i}) for i ∈ S0. The key idea is that given m independent exponential random variables with

rates λi, i = 1, . . . ,m, the probability that the ith random variable is the minimum of these is

λi/
∑m

i=1 λi. Given the set of up spin sites S0, the time at which the spin i flips is an exponential

random variable with rate pD(S0,i) and hence the probability that it flips before all others is

pD(S0,i)/
∑

i∈S0
pD(S0,i). Hence we can write the following recurrence relation for fAD(S0).

fAD(S0) =
1∑

i∈S0
pD(S0,i)

∑
i∈S0

pD(S0,i)fAD(S0 \ {i}). (6.1.3)

Equation (6.1.3) coupled with the relation fAD({0}) = 0 helps us evaluate fAD(S0). A naive

application of this procedure yields anO(m!) procedure for evaluating fAD, wherem = |S0|. A

more efficient version of this procedure can be easily designed by storing the values of fAD(S)

once they have been computed, for intermediate values of S. The complexity of this memoized

procedure is then O(2m).

Now we consider using East model as a test case for the KSP method using the Aldous-

Diaconis function as the observable. For our first experiment, the number of spins is chosen to

be η = 10 and the probability of an up spin p = 0.1. For η = 10, the transition matrix of the
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East model process is of size 210× 210, for which we can compute the eigenvalues and compare

the spectral gap estimate we obtain with its exact value.

As we described for AR(1) process, we obtain least squares estimate λ̂LS∗ [n] for different

pencil size parameter values n. For the East model with Aldous-Diaconis observable, like the

AR(1) process we have seen earlier, the least squares estimate works better than the ML estimate.

This is again because the bias for singleton estimates of λ
r
(i)
j
∗ , µ̂i,j , is large for small r(i)

j .
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Figure 6.1: Plot depicting the overlap of the Aldous-Diaconis function with the eigenvectors of transition

matrix corresponding to the East model with η = 10, p = 0.1. Only the 10 largest eigenvalues (apart

from 1) have been plotted.

Before we investigate further how our estimate compares with the actual spectral gap, let

us determine how good the Aldous-Diaconis function is as an observable for the KSP method.
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In particular, does it have a good overlap with the slowest mode? Let the eigenvalues of the

transition matrix P be λi with corresponding eigenvector vi for i = 1, 2, . . . , 2η. The overlap of

the Aldous-Diaconis function along the eigenvector vi is given by the inner product cAD(i) =

|〈fAD, vi〉π|/|〈fAD, fAD〉π|. Figure 6.1 gives the log plots of the smallest values of gap(i); the

circles depict log10(gap(i)) in decreasing order of cAD(i), while the diamonds depict log10(gap(i))

in decreasing order of λi.

It is clear from Figure 6.1 that the plots for log10(gap(i)) with cAD(i) decreasing and for

log10(gap(i)) with λi decreasing coincide up to i = 8 – implying that the Aldous-Diaconis func-

tion has the maximum overlap with the eigenvectors corresponding to the largest eight eigenval-

ues. This means that the Aldous-Diaconis function is a good observable for the KSP method at

least in the present case η = 10, p = 0.1.

Figure 6.2 plots the gaps of least squares estimates, 1 − λ̂LS∗ [n], of the East model for dif-

ferent values of n for the particular choice η = 10, p = 0.1. It also plots the actual spectral

gap (computed using linear algebra routines in MATLAB) and the gap of the Rayleigh quotient

estimate, namely, 1 − Ĉf (1)/Ĉf (0)). Note that as far as LS estimates are concerned, only the

one for n = 1 is an outlier compared to other values of n. The estimate of spectral gap 1 − λ∗

with the least squared error is the one with nlse = 3 and is 1.6839× 10−5± 3.1338× 10−7. The

actual spectral gap computed using MATLAB is 1.5448 × 10−5. Note that the KSP estimate of

the spectral gap is 3 times smaller than the naive Rayleigh quotient estimate and is much closer

to the actual answer.

The real power of this new method is apparent when we apply it to problems for which we do

not know the actual answer – for which it is impossible to compute the spectral gap using linear

algebra routines. As an example, we apply it to the East model for the configuration η = 25, p =

1/25. The transition matrix in this case is of size 225×225. Figure 6.3 plots the estimated spectral

gap using the KSP least squares method and the Rayleigh quotient method. It is apparent that
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Figure 6.2: Plot of the KSP LS estimate, the Rayleigh quotient estimate of the spectral gap and actual

spectral gap for East model (η = 10, p = 0.1) with Aldous-Diaconis function.

the Rayleigh quotient method gets progressively worse compared to the KSP method for smaller

and smaller spectral gaps – in this case, the Rayleigh quotient estimate (6.858× 10−7) is almost

an order of magnitude larger than the KSP estimate (2.1828× 10−8).

6.2 Fredrickson-Andersen model

As we mentioned in the last section, like the East model, Fredrickson-Andersen models belong

to the class of kinetically constrained spin models; in the k-spin facilitated model (FA-kf) model
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Figure 6.3: Plot of the KSP LS estimate and the Rayleigh quotient estimate of the spectral gap for the

East model (η = 25, p = 1/25) with Aldous-Diaconis function.

for instance, a spin flips only if k of its neighbors are up. In this section, we apply the KSP

method to estimate the spectral gap of the simplest model of this class, the FA-1f model in two

dimensions.

Consider a set of ηd spins in d dimensions, σx for x ∈ {1, . . . , η}d, which can take values 0

and 1, that is, σx ∈ {0, 1}. A general kinetically constrained spin model can be described by a
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transition matrix as follows:

Pcont(σ → σ(x)) =


p if cx(σ) and σx = 0

1− p if cx(σ) and σx = 1

0 otherwise,

where cx(σ) is the constraint that needs to be satisfied for the spin at x to flip and σ(x) is the spin

state obtained by flipping the spin at site x, σx. The constraint cx(σ) for FA-kf model is satisfied

(true) if the number of up spin neighbors of x is at least k.

In Cancrini et al., 2007, asymptotically tight bounds on the spectral gap have been proved

for the FA-1f model in two dimensions by substituting a carefully chosen test function into the

variational characterization of the spectral gap. We describe the function now and use it as the

starting observable for the KSP method and estimate the spectral gap. The description of this

function has been adopted from Cancrini et al., 2007, Theorem 6.4. Although we state it for any

dimension d ≥ 1, our experiments are specifically for the case d = 2.

The boundary condition that we consider for the FA1f model in two dimensions is the zero

boundary condition with the exception that the spin on the boundary adjacent to σ(1,1) is up. This

ensures that the spin at location (1,1) is always “mobile”, meaning ready to flip. This adjustment

is similar to the East model, where we fix the spin to the left of σ1 to always be up. If we had

completely zero boundary conditions, then the spin configuration consisting of all down spins

is an absorbing state, thus ensuring that the Markov chain is not ergodic on the set of all spin

configurations.

Coming back to the observable for FA1f model, let p0 be a large value of up-spin probability

(chosen sufficiently close to 1). For the exact technical definition of p0, please see Cancrini et al.,

2007, Theorem 4.2. Let also

`q =
(

log(1− p0)
log(1− p)

)1/d

. (6.2.1)
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Let g be a smooth function on [0, 1] with support in [1/4, 3/4] and such that

∫ 1

0
αd−1e−α

d
g(α)dα = 0 and

∫ 1

0
αd−1e−α

d
g2(α)dα = 1. (6.2.2)

The function g has been so chosen for the purposes of the proof of Cancrini et al., 2007, Theorem
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Figure 6.4: Plots of functions g1, g2 defined in (6.2.3).

4.2.

How to choose g to satisfy conditions in (6.2.2) has not been explained in Cancrini et al.,

2007, which we do here. Two C∞-continuous functions and with support in [a, b] where 0 ≤
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a, b ≤ 1 are given by

g1(x) =


0 if x ≤ a or x ≥ b,

e−
1

x−a
− 1

b−x if a < x < b.

g2(x) =


0 if x ≤ a or x ≥ b,

e−
1

x−a
− 1

b−x

(
1

(x−a)2 − 1
(b−x)2

)
if a < x < b.

(6.2.3)

The functions g1 and g2 are plotted for a = 1/4, b = 3/4 in Figure 6.4. A function g satisfying

the conditions in equation (6.2.2) can be defined as the linear combination of g1 and g2, namely,

g = (g1 + λg2)/µ, (6.2.4)

where the parameters λ, µ are chosen to satisfy (6.2.2). They are evaluated numerically using a

quadrature method.

Set

ξ(σ) = sup{` : σ(x) = 0 for all x such that ‖x‖∞ < `}.

Note the difference in the definition of ξ from that given in Cancrini et al., 2007 – it is because

the notation we use is slightly different. Whereas in Cancrini et al., 2007, a down spin induces

mobility in a neighboring spin and p is the probability of a down spin, we use the more standard

notation that an up spin induces mobility and p is the probability of an up spin.

Having defined ξ and g, the observable f is then simply

fFA-1f(σ) = g(ξ(σ)/`q), (6.2.5)

where `q is as defined in (6.2.1).

For the FA-1f model with η = 3, p = 0.1, Figure 6.5 plots the overlap of the function fFA-1f

with the eigenvectors of the transition matrix. To compute this overlap, the value η = 3 is one

of the largest we can consider because the size of the matrix in the 2D model is 2η
2 × 2η

2
. It
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Figure 6.5: Plot depicting the overlap of the function fFA-1f with the eigenvectors of transition matrix

corresponding to the FA-1f model with η = 3, p = 0.1. Only the 10 largest eigenvalues (apart from 1)

have been plotted.

is clear from Figure 6.5 that the plot for log10(1 − λi) with cAD(i) decreasing and the plot for

log10(1− λi) with λi decreasing coincide only at i = 1 (in the range i = 1, 2, . . . , 10).

This example is a good one to distinguish the KSP method a naive method, such as the

Rayleigh quotient method, for estimating spectral gap. The Rayleigh quotient estimate, just

being the weighted average of eigenvalues with the weights equal to the components of their

eigenvectors along the observable, works fine if the eigenvalues with the maximum components

are “close” to the largest eigenvalue (excluding 1). Intuitively speaking, the KSP method, on

the other hand, requires that the observable has a significant overlap with the eigenvector cor-
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responding to the largest eigenvalue, but does not depend on the “nearby” eigenvalues. Since it

uses a Krylov subspace algorithm to find the maximum eigenvalue, it does a much better job of

separating the largest eigenvalue from others.
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Figure 6.6: Plot of the KSP LS estimate, the Rayleigh quotient estimate of the spectral gap and actual

spectral gap for FA-1f model (η = 3, p = 0.1) with the function fFA-1f in (6.2.5).

This is clearly demonstrated in Figure 6.6, where the KSP LS estimate of spectral gap has

been plotted alongside the Rayleigh quotient estimate and the actual spectral gap (computed

using MATLAB) for the FA-1f model with η = 3, p = 0.1. The KSP LS estimate is 1.4436 ×

10−3±3.8234×10−5, with the actual spectral gap being 1.4685×10−3. The Rayleigh quotient,

on the other hand, is 1.8188× 10−2 ± 4.9456× 10−5, which is almost ten times larger than the

LS estimate.
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We now fix the size of the two dimensional spin grid and vary the up-spin probability p; we

wish to see how the spectral gap estimates vary with decreasing p. We then compare this varia-

tion with the asymptotic relation given in Cancrini et al., 2007, Theorem 6.4. The size of the grid

is fixed as 20×20 and the up-spin probability takes values p = 1
20 ,

1
50 ,

1
100 ,

1
150 ,

1
200 ,

1
250 ,

1
300 ,

1
350 ,

1
400 .

Figure 6.7 plots the log values of spectral gap vs. the log values of p for a 20× 20 grid. We then

fit a straight line to the resulting plot.

According to Cancrini et al., 2007, Theorem 6.4, the straight line fitting the log plot should

have a slope of roughly 2. The observed slope is 2.255. The reason for this divergence from

the true value is possibly because the KSP estimate of spectral gap for small values of p is not

very accurate. Note that the gap estimate for p = 1/400 is higher than that for p = 1/350,

which does not make physical sense. This is because for grid size fixed, decreasing p results in

a slowing of the Markov chain, that is, a decreasing spectral gap.

One way to make the spectral gap estimate more accurate is to make the autocovariance

estimates more accurate, in effect making the generalized eigenvalue estimation problem more

accurate. One way to make the autocovariance estimates more accurate is to increase the batch

size – using larger batch sizes can lead to more accurate estimates of spectral gap in theory, but

manipulating such large data sets require enormous computing power and we do not undertake

such an endeavor in this work.
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Figure 6.7: Plot depicting the variation of the KSP estimate of spectral gap for FA1f process in two
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7
MULTIPLE OBSERVABLES

In the previous sections, we considered the problem of estimating the reduced spectral radius

of a reversible Markov chain using a single function as the observable. But suppose we have

more than one observable with good overlap with the slowest mode – can we use all of these

to improve the estimate obtained by using only one of these? It turns out that we can and we

discuss that approach in this section.

Suppose we have k observables f1, f2, . . . , fk each of which has overlap with the slowest

mode. As before, consider the Krylov subspace

Kn[f ] = {P j−1fl : j = 1, . . . , n and l = 1, . . . , k}, (7.0.1)

where f = {f1, . . . , fk} is the set of observables. Any u ∈ Kn[f ] can be written as:

u =
k∑
l=1

n∑
j=1

ξ
(l)
j P

j−1fl,

for some ξ(l)
j ∈ R. The Rayleigh quotient of u is given by:

q(u) =
〈u, Pu〉π
〈u, u〉π

.

The denominator of this expression is

〈u, u〉π =
k∑

l,m=1

n∑
i,j=1

ξ
(l)
i ξ

(m)
j 〈P i−1fl, P

j−1fm〉π

=
k∑

l,m=1

n∑
i,j=1

ξ
(l)
i ξ

(m)
j 〈fl, P i+j−2fm〉π

=
k∑

l,m=1

n∑
i,j=1

ξ
(l)
i ξ

(m)
j Cfl,fm(i+ j − 2), (7.0.2)
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where Cfl,fm is the equilibrium generalized autocovariance function and is given by

Cfl,fm(s) = covπ[fl(X0), fm(Xs)]. (7.0.3)

Equivalently, the expression 〈u, Pu〉π is given by

〈u, Pu〉π =
k∑

l,m=1

n∑
i,j=1

ξ
(l)
i ξ

(m)
j Cfl,fm(i+ j − 1). (7.0.4)

The Rayleigh quotient q(u) for u ∈ Kn[f ] can be written as the generalized Rayleigh quotient of

nk×nk matricesA andB whereA(ik+l, jk+m) = Cfl,fm(i+j−1) andB(ik+l, jk+m) =

Cfl,fm(i+ j − 2), that is, A and B have the form:

A =



Cf (1) Cf (2) . . . Cf (n)

Cf (2) Cf (3) . . . Cf (n+ 1)

Cf (3) Cf (4) . . . Cf (n+ 2)
...

...
. . .

...

Cf (n) Cf (n+ 1) . . . Cf (2n− 1)


,

B =



Cf (0) Cf (1) . . . Cf (n− 1)

Cf (1) Cf (2) . . . Cf (n)

Cf (2) Cf (3) . . . Cf (n+ 1)
...

...
. . .

...

Cf (n− 1) Cf (n) . . . Cf (2n− 2)


. (7.0.5)

Equation (7.0.5) is analogous to equation (3.2.8) except that here, Cf (i) is a block matrix of size

k × k.

All the estimators that we described for the case of a single observable (sections 3.2.2 and 5)

extend directly to the multiple observable scenario. The only issue to be resolved is what values

to use for the pencil size parameter set and the lag parameter set in the least squares estimator.
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If the pencil size parameter is fixed to be n and the number of observables is k, then the size

of matrices in the generalized eigenvalue problem is nk. If we stipulate that we do not use

matrices larger than 10 × 10 in the generalized eigenvalue problem because of ill-conditioning,

then (5.0.1) generalizes for the multiple observable case to:

N =
{

1, 2, . . . ,
⌊

10
k

⌋}
. (7.0.6)

As for the lag parameter set, the choice for the single observable case in (5.0.2) has the esti-

mated autocorrelation time for that particular observable f . We extend (5.0.2) to the multiple

observable scenario with τ̂int,f replaced by the minimum estimated autocorrelation time among

all observables:

R[ni] =

1, 2, . . . ,

c (min
j
τ̂int,fj

)

2ni − 1

 for ni = 1, 2, . . . ,
⌊

10
k

⌋
. (7.0.7)

Using multiple observables improves the estimator in situations where none of the observ-

ables by itself gives an accurate estimate. A simple model problem that illustrates this is again the

AR(1) process from section 4.1 with the following observables: f1 = 1
2H1+H2+H3+H4, f2 =

H2 +H3, f3 = H4. Clearly, the only observable with an overlap with H1, the slowest mode, is

f1, but which is less significant than the overlap that f1 has with the other three observables. It

is clear that none of f1, f2, f3 is a good observable by itself for the KSP method, but using all

three observables will definitely yield a better estimate because a simple linear combination of

f1, f2, f3 gives the slowest mode H1: 2(f1 − f2 − f3) = H1.

Figure 7.1 plots the least squares estimate for two scenarios: one, using multiple observables

f1, f2, f3 and the other using the single observable f1. It is clear that the multiple observable

estimate is more accurate, especially for n = 1, as expected.
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Figure 7.1: Comparison between the LS estimates corresponding to the multiple observable case

{f1, f2, f3} and the single observable f1 for the AR(1) process, where f1 = 1
2H1 +H2 +H3 +H4, f2 =

H2 +H3, f3 = H4 (Hi is the ith Hermite polynomial).

7.1 Results for Ising model with Glauber dynamics

The AR(1) model problem above has been designed specifically to show that using multiple

observables is advantageous in some situations. But in real applications, we haven’t found an

example where this happens. We tried the specific example of Ising model with Glauber dynam-

ics. Like the Metropolis algorithm, Glauber dynamics is a reversible Markov chain to generate

samples from the Boltzmann distribution (see refer to section 6.1 for a brief introduction to the
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Ising model). In Glauber dynamics, a spin is generated at random from the collection of all spins

and is flipped with probability 1
1+e∆H , where ∆H is the energy difference due to the spin flip.

It is a known fact that for Glauber dynamics, total magnetization is a good “slow” mode –

using it as the starting observable for the KSP method gives accurate estimate for the spectral

gap, at least for the cases where the spectral gap is known exactly. Now that we have the frame-

work for the multiple observable scenario, an interesting question to ask is whether using higher

powers of magnetization as observables improve the estimator?

We investigate this point for Glauber dynamics on two-dimensional grids with periodic bound-

ary conditions. Figures 7.2 and 7.3 report the results for 3× 3 and 10× 10 grids at temperature

T = Tc/4, where Tc is the critical temperature for 2D Ising model. Figure 7.2 supports our

earlier assertion that M is indeed a good observable for the KSP method (since we know the

exact spectral gap for a 3×3 grid). It is clear from both of these figures that using higher powers

of M does not improve the estimator of the spectral gap.

Even though we haven’t found any real example where using multiple observables is better

than using a single observable, the framework that we have developed is indeed very useful.

Suppose that for a specific Markov chain, we know a set of observables with good overlap

with the slowest mode – using the multiple observable framework, we can quantify this overlap

precisely.

In this thesis, we describe a novel estimation method for the second largest eigenvalue of a

reversible Markov chain using the simulation data from the chain. The method is empirically

shown to be far superior to existing methods, both for model problems and some real problems

which occur in statistical mechanics and glass transitions. In fact for a particular Markov chain

with a tiny spectral gap, our estimate is more than 10 times smaller and more accurate than a

naive Rayleigh quotient estimate (Figure 6.3).

Despite the overwhelming evidence that we present that testifies to the promise of this new
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Figure 7.2: Comparison between the LS estimates corresponding to the multiple observable case

{M,M3,M5} and the single observable M for the Glauber dynamics process, where M is the total

magnetization. The spin collection is a 2D grid of size 3 × 3 with periodic boundary conditions at tem-

perature T = Tc/4, where Tc is the critical temperature for 2D Ising model.

method, we have to accept that the evidence is ultimately only empirical. We mostly give only

intuitive explanations for why a particular heuristic works well in practice. Any thorough anal-

ysis gets extremely complicated. To give a perspective, to determine the distributional proper-

ties of the autocovariance estimates for a general Markov chain is a highly non-trivial problem

(Anderson, 1971) – one has to make many simplifying assumptions (such as focusing only on

specific simple processes like the AR(1) process) just to analyze the autocovariance estimates.
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Figure 7.3: Comparison between the LS estimates corresponding to the multiple observable case

{M,M3,M5} and the single observable M for the Glauber dynamics process, where M is the total

magnetization. The spin collection is a 2D grid of size 10 × 10 with periodic boundary conditions at

temperature T = Tc/4, where Tc is the critical temperature for 2D Ising model.

On the other hand, what we have here is a highly ill-conditioned generalized eigenvalue prob-

lem (in most cases) with the autocovariance estimates as the entries in the matrices, so it is not

surprising that the analysis gets very tricky.

Apart from the need for a more rigorous analysis, there are also many ways in which the

method itself can be improved – such as, for instance, more informed choices for the lag param-

eter and the pencil size parameter. Although one particular choice may not work for all chains,
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we need a more streamlined approach to tailor the choice of these parameters to the particular

chain under consideration.

Although there is a huge literature regarding the second largest eigenvalue for Markov chains,

it is mostly theoretical. The problem of numerically estimating it from the simulation data of

the Markov chain has received scant attention. Our hope is that the apparent success of this new

method will inspire more work in this direction.
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CONCLUSION

In this thesis, we describe a novel estimation method for the second largest eigenvalue of a

reversible Markov chain using the simulation data from the chain. The method is empirically

shown to be far superior to existing methods, both for model problems and some real problems

which occur in statistical mechanics and glass transitions. In fact for a particular Markov chain

with a tiny spectral gap, our estimate is more than 10 times smaller and more accurate than a

naive Rayleigh quotient estimate (Figure 6.3).

Despite the overwhelming evidence that we present that testifies to the promise of this new

method, we have to accept that the evidence is ultimately only empirical. We mostly give only

intuitive explanations for why a particular heuristic works well in practice. Any thorough anal-

ysis gets extremely complicated. To give a perspective, to determine the distributional proper-

ties of the autocovariance estimates for a general Markov chain is a highly non-trivial problem

(Anderson, 1971) – one has to make many simplifying assumptions (such as focusing only on

specific simple processes like the AR(1) process) just to analyze the autocovariance estimates.

On the other hand, what we have here is a highly ill-conditioned generalized eigenvalue prob-

lem (in most cases) with the autocovariance estimates as the entries in the matrices, so it is not

surprising that the analysis gets very tricky.

Apart from the need for a more rigorous analysis, there are also many ways in which the

method itself can be improved – such as, for instance, more informed choices for the lag param-

eter and the pencil size parameter. Although one particular choice may not work for all chains,

we need a more streamlined approach to tailor the choice of these parameters to the particular

chain under consideration.

Although there is a huge literature regarding the second largest eigenvalue for Markov chains,
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it is mostly theoretical. The problem of numerically estimating it from the simulation data of

the Markov chain has received scant attention. Our hope is that the apparent success of this new

method will inspire more work in this direction.
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Demmel, J. and Kågström, B. (1993b). The generalized Schur decomposition of an arbitrary

pencil A − λB: robust software with error bounds and applications. Part II: software and

applications. ACM Transactions on Mathematical Software, 19:175–201.

85



Diaconis, P. and Saloff-Coste, L. (1995). What do we know about the Metropolis algorithm?

In STOC ’95: Proceedings of the twenty-seventh annual ACM symposium on Theory of

Computing, pages 112–129, New York, NY, USA. ACM Press.

Diaconis, P. and Stroock, D. (1991). Geometric bounds for eigenvalues of Markov chains. Ann.

Appl. Probab., 1:36–61.

Dunford, N. and Schwartz, J. T. (1988). Linear Operators Part II. Wiley-Interscience, New

York, NY.

Elad, M., Milanfar, P., and Golub, G. H. (2004). Shape from moments – an estimation theory

perspective. IEEE Transactions on Signal Processing, 52(7):1814–1829.

Fredrickson, G. H. (1988). Recent developments in dynamical theories of the liquid-glass tran-

sition. Annual Review of Physical Chemistry, 39:149–180.

Fredrickson, G. H. and Andersen, H. C. (1984). Kinetic Ising model of the glass transition.

Physical Review Letters, 53:1244–1247.

Fredrickson, G. H. and Andersen, H. C. (1985). Facilitated kinetic Ising models and the glass

transition. The Journal of Chemical Physics, 83(11):5822–5831.

Gade, K. K. and Overton, M. L. (2007). Optimizing the asymptotic convergence rate of the

Diaconis-Holmes-Neal sampler. Advances in Applied Mathematics, 38:382–403.

Garren, S. T. and Smith, R. L. (2000). Estimating the second largest eigenvalue of a Markov

transition matrix. Bernoulli, 6(2):215–242.

Golub, G. H., Milanfar, P., and Varah, J. (2000). A stable numerical method for inverting shape

from moments. SIAM Journal on Scientific Computing, 21(4):1222–1243.

86



Götze, W. (1989). Liquids, freezing and glass transition. In Hansen, J. P., Levesque, D., and

Zinn-Justin, J., editors, Proceedings of 51st Summer School in Theoretical Physics, Les

Houches, page 287.

Hua, Y. and Sarkar, T. K. (1990). Matrix pencil method for estimating parameters of exponen-

tially damped/undamped sinusoids in noise. IEEE Transactions on Acoustics, Speech, and

Signal Processing, 38(5):814–824.

Karlin, S. and McGregor, J. (1965). Ehrenfest urn models. Journal of Applied Probability,

2(2):352–376.

Kirkpatrick, T. R., Thirumalai, D., and Wolynes, P. G. (1989). Scaling and droplet notions for the

dynamics of viscous liquids near an ideal glassy state. Physical Review A, 40:1045–1054.

Lawler, G. F. and Sokal, A. D. (1988). Bounds on the L2 spectrum for Markov chains and

Markov processes: A generalization of Cheeger’s inequality. Transactions of the American

Mathematical Monthly, 309(2):557–580.

Maxwell, M. and Woodroofe, M. (2000). Central limit theorems for additive functionals of

Markov chains. Annals of Probability, 28(2):713–724.

Pritchard, G. and Scott, D. J. (2001). Empirical convergence rates for continuous-time Markov

chains. J. Appl. Probab., 38(1):262–269.
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