
Techniques to Improve the Performance
of Software-based Distributed Shared

Memory Systems

by

Churngwei Chu

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

August 1998

Approved:

Professor Zvi Kedem

Research Advisor

c© Copyright by Churngwei Chu, 1998

ALL RIGHTS RESERVED

To my grandfather, Cheng-yuan

iii

Acknowledgments

This research was sponsored by the Defense Advanced Research Projects

Agency and Rome Laboratory, Air Force Materiel Command, USAF, under

agreement number F30602-96-1-0320; and by the National Science Foundation

under grant number CCR-94-11590. The U.S. Government is authorized to

reproduce and distribute reprints for Governmental purposes notwithstand-

ing any copyright annotation thereon. The views and conclusions contained

herein are those of the author and should not be interpreted as necessarily

representing the official policies or endorsements, either expressed or implied,

of the Defense Advanced Research Projects Agency, Rome Laboratory, or the

U.S. Government.

I am very grateful for the guidance of my advisor, Professor Zvi Kedem. I

always bring my biggest problems to him. I am especially indebted to Peter

Piatko who brought to my attention the heat flow parallel application and who

always had time for discussions with me. I also owe many thanks to Arash

Baratloo and Karp Jeong who helped me solve several technical problems. I

would like to thank my friends, Renu Boonoeb and Shau-Di Du who shared

complaints, frustration, and joy with me. Lastly, I would like to thank my

parents and my brother. Without their support, this thesis would not have

been possible.

iv

Abstract

Software distributed shared memory systems are able to provide program-

mers with the illusion of global shared memory on networked workstations

without special hardware support. This thesis identifies two problems in con-

temporary software distributed shared memory systems: (1) poor applica-

tion programming interfaces for programmers who need to solve complicated

synchronization problems and (2) inefficiencies in traditional multiple writer

protocols. We propose a solution to both of these problems. One is the intro-

duction of user-definable high level synchronization primitives to provide a

better application programming interface. The other is the single-owner pro-

tocol to provide efficiency. In order to accommodate user-definable high level

synchronization primitives, a variant of release consistency is also proposed.

User-definable high level synchronization primitives provide a paradigm

for users to define their own synchronization primitives instead of relying on

traditional low level synchronization primitives, such as barriers and locks.

The single-owner protocol reduces the number of messages from O(n2) mes-

sages (the number of messages needed in the multiple-owner protocol) to

Θ(n) messages when there are first n writers writing to a page and then

n readers reading the page. Unlike some multiple-owner protocols, in the

single-owner protocol garbage collection is performed asynchronously, and

the size of a message for doing memory update is smaller in most cases.

We also evaluate the tradeoffs between the single-owner protocol

and multiple-owner protocols. We have found that in most cases the

single-owner protocol uses fewer messages than multiple-owner protocols,

but there are some computations which may perform better with some

multiple-owner protocols. In order to combine the advantages of both

v

protocols, we propose a hybrid owner protocol which can be used to

increase the efficiency in an adaptive way, with some pages managed by the

single-owner protocol and some by a multiple-owner protocol.

Finally, five applications are evaluated using the single-owner protocol and

a particular multiple-owner protocol called the lazy invalidate protocol. The

performance of these two protocols is compared. We also demonstrate the use

of user-definable high level synchronization primitives on one of the applica-

tions, and compare its performance against the same application constructed

using only low-level synchronization primitives.

vi

vii

Contents

1 Introduction 1

1.1 Background . 1

1.2 Memory Consistency Models 3

1.2.1 Strict Consistency . 3

1.2.2 Sequential Consistency 4

1.2.3 Processor Consistency 5

1.2.4 Weak Consistency . 5

1.2.5 Release Consistency 6

1.2.6 Lazy Release Consistency 7

1.2.7 Message-driven Relaxed Consistency 8

1.3 Related Techniques for Implementing DSM Systems 8

1.3.1 Single Writer Protocol 9

1.3.2 Multiple Writer Protocol 9

1.3.3 Diff Creation . 12

1.3.4 Synchronization Primitives 13

1.4 Problems . 14

1.4.1 Synchronization Primitives in Software Distributed

Shared Memory Systems 14

1.4.2 Weaknesses of Multiple Writer Protocols 16

1.5 Contributions . 17

1.6 Outline of this Thesis . 19

2 Release Consistency with User-definable High Level Synchro-

nization Primitives 20

2.1 Programming Model . 21

2.2 Synchronization Objects and Synchronization Classes 24

2.3 Execution of a Program . 25

2.3.1 Phases and Events . 25

2.3.2 The Execution in Parallel Computation 26

2.4 Release Consistency with User-definable Hight Level Synchro-

nization Primitives . 30

2.4.1 View . 30

2.4.2 Merging Views . 31

2.4.3 When Attributes Become Effective 32

2.4.4 Conventional Notation 32

2.5 Implementation . 33

2.5.1 System Architecture 33

2.5.2 Synchronization Objects 35

2.5.3 Memory Protocol . 36

3 Multiple Writer Protocol 38

3.1 False Sharing in Distributed Shared Memory Systems 38

3.2 Excess Messages Caused by Multiple-owner Protocol 39

3.3 Single-owner Protocol . 41

3.4 Multiple-owner Protocol . 42

3.5 Tradeoffs Between Single-owner Protocol and Multiple-owner

Protocol . 43

3.6 Hybrid Owner Protocol . 51

viii

4 Implementation of the Single-owner Protocol 52

4.1 Diff Creation . 53

4.2 Managing Write Notices . 53

4.2.1 Write Notice Table . 54

4.2.2 Executing a Synchronization Operation 54

4.2.3 Synchronization Object 55

4.3 Making a Page Up to Date . 56

4.3.1 Page Table . 56

4.3.2 Page Owner . 56

4.3.3 Invalidating a Page . 58

4.3.4 Updating the Copy of a Page in the Page Owner 59

4.3.5 Reading an Invalid Page 61

4.3.6 Writing to a Page . 63

4.3.7 Correctness of Pseudo Pages 64

4.4 Garbage Collection . 66

5 Performance Evaluation 67

5.1 Experimental Environment . 67

5.2 Applications . 69

5.2.1 An Embarrassingly Parallel Benchmark (EP) 69

5.2.2 Heat-flow Transferring Problem (HFP) 71

5.2.3 Barnes-Hut . 76

5.2.4 Integer Sort . 79

5.2.5 Mandelbrot . 83

6 Related Work 90

6.1 PVM . 90

6.2 Munin . 90

6.3 TreadMarks . 92

ix

6.4 Calypso . 92

6.4.1 Orca . 93

7 Conclusions and Future Work 94

7.1 Conclusions . 94

7.2 Future Work . 96

A Sample of Code 98

x

xi

List of Figures

1.1 Message passing model . 1

1.2 Distributed shared memory 2

2.1 Programming model . 21

2.2 Synchronization Class . 23

2.3 A directed acyclic graph of a computation. 26

2.4 A directed acyclic graph of a computation. 27

2.5 Architecture . 34

3.1 Heat flow problem . 39

3.2 Messages needed to get three readers updated with three writ-

ers in the system . 44

3.3 Messages needed to get two readers updated with one writer

in the system . 45

3.4 Messages needed to get two readers updated with one writer

in the system . 46

3.5 Messages needed to get two readers updated with one writer

in the system . 47

3.6 Messages needed to get two readers updated with one writer

in the system . 48

3.7 Messages needed to get two readers updated with one writer

in the system . 49

4.1 Page table . 57

4.2 Invalidating a page . 58

4.3 Updating the page owner . 60

4.4 The procedure page owners use to handle a read request . . . 61

4.5 The procedure system servers use to handle a read request . . 61

4.6 Diffs and pseudo pages . 62

4.7 The procedure threads use to handle an invalid access to a page 63

5.1 Speedup of EP . 70

5.2 Speedup of heat flow problem 74

5.3 Speedup of Barnes-Hut problem 78

5.4 Speedup of integer sort . 81

5.5 Speedup for computing Mandelbrot set 87

xii

xiii

List of Tables

5.1 Application Profiles . 68

5.2 Message counts and message size for EP 71

5.3 Message counts and message size for HFPD 75

5.4 Message counts and message size for HFP 76

5.5 Message count and message size of Barnes-Hut problem 79

5.6 Message counts and message size for IS1024 82

5.7 Message counts and message size for IS128 83

5.8 Message counts and message size for Mandelbrot set 86

1

Chapter 1

Introduction

1.1 Background

High performance computing will increasingly utilize distributed platforms

consisting of standard workstations connected by high-speed networks, called

a network of workstations (NOW). In order to make such platforms practical

for utilization by a wide community of users, an extensive research effort

by computer scientists has been undertaken. The approaches taken include

message passing, software distributed shared memory, shared tuple space,

and remote procedure calls.

.......processor

messages

local network

Figure 1.1: Message passing model

.......processor

read or write operation

shared memory

Figure 1.2: Distributed shared memory

Two of these approaches are currently most viable for providing the soft-

ware environment to enable the utilization of networked workstations for par-

allel computation. One is based on the message passing model, Fig. 1.1, em-

bodied in, e.g. PVM and MPI [BDG+91, GLS94]. Although this approach

is the most popular now, it is rather low level and makes programming very

difficult. The other approach, that of providing the programmer with the il-

lusion of global shared memory, by means of physically distributed memory

(see Fig. 1.2), is currently a very promising approach for the next generation

of software environments.

When programs execute on a distributed shared memory (DSM) system,

the low level details of data movement are handled dynamically by the system

itself without the intervention of the application programmer.

Of course, the underlying system still implements the shared memory by

means of message passing. However, the programmer is not aware of this and

does not need to control it. The key issue of efficiency depends heavily on

the synchronization required by the computation and the amount of messages

2

required.

The interest in the potential of software DSM-based systems is evidenced

by the vigorous program of research and by several prototypes that have

been developed in recent years, including Midway, Munin, TreadMarks, and

Quarks [BZS93, CBZ95, KCDZ94, CKK95].

DSM systems, however, have not yet reached the maturity of the mes-

sage passing systems. In fact, researchers have identified bottlenecks in the

performance of software DSM systems and have proposed techniques for re-

moving them [CBZ91, CK96, KCDZ94, LDCZ97]. In this chapter we will

give a brief introduction to the different models of distributed shared mem-

ory, discuss implementation issues, and then talk about the key problems of

existing implementations.

1.2 Memory Consistency Models

A memory consistency model is a contract between programmers and shared

memory which specifies how the memory operations of a program will be

executed. Computer scientists have proposed different memory models to

enhance distributed shared memory systems. In this section, we will give

an introduction to those memory models and some terminology used in this

thesis.

1.2.1 Strict Consistency

Strict consistency is the most stringent memory model. It requires any read

operation to a memory location to return the latest write. This definition

uses a global time to define what a read operation can get from the memory.

This model mimics the memory behavior in a single processor.

3

1.2.2 Sequential Consistency

A global clock is hard to capture in a distributed system. Each processor

in the distributed system may have its own local clock with a different view

of time. The idea of recent time can be inconsistent in the system. [Lam79]

proposed another model, called sequential consistency, to extend the idea of

the strict consistency model.

Definition 1 A system is sequentially consistent [Lam79] iff the result of

any execution is the same as if the operations of all processors were executed

in some total order, and the operations of each individual processor appear

in this sequence in the order specified by its program.

Sequential consistency provides a view of a single global shared memory

which receives read and write operations from processors in its program or-

der [AG95]. The global shared memory serializes memory operations. Each

processor can not proceed to the next memory operation until all previous

ones are performed. A read operation does not return the value of a write

until the value is visible to all other processors.

Even though sequential consistency is the canonical memory consistency

model, [DSB86, DSB88, DS90, SD88, Sch89] have described the difficulties of

implementing sequential consistency in many systems. In order to describe

non-atomic memory operations in distributed systems, they also define the

notion of an operation being performed with respect to a processor , performed ,

and globally performed.

A write operation is performed with respect to a processor when it has

been observed by the processor, i.e., no future read of the processor to the

same location can return the value of a previous write. A read operation is

performed with respect to a processor when no future write of the processor

4

can affect the value returned by the read. A write or a read operation is

performed when it is performed with respect to all processors. A write is

globally performed when it is performed. A read is globally performed when

it is performed and when the write whose value it reads is performed. Thus,

a write or a read is globally performed when the value written or read is

observed by all processors [Adv93].

1.2.3 Processor Consistency

Processor consistency [Goo89, GLL+90] was proposed to relax the program

order constraints in the case of a write followed by a read operation to a

different location. It allows the read operation to bypass the write before the

write is serialized or made visible to other processors [AG95].

Definition 2 A system is processor consistent [GLL+90] iff

1. Before a load is allowed to perform with respect to any other processor,

all preceding load accesses must be performed.

2. Before a store is allowed to perform with respect to any other processor,

all preceding accesses (loads and stores) must be performed.

1.2.4 Weak Consistency

One family of relaxed memory models requires programmers to distinguish

between data and synchronization operations. Accesses to synchronization

variables are strongly ordered (for example, totally ordered), but data ac-

cesses follow a weaker order. Weak consistency was the first hybrid memory

model proposed by [DSB86, DS90, Sch89].

Definition 3 A system is weakly consistent [DS90] iff

1. Accesses to synchronization variables are strongly ordered.

5

2. No access to a synchronization variable is issued by a processor before

all its previous data accesses are performed.

3. No access is issued by a processor before previous accesses to a synchro-

nization variable are performed.

“Previous” access in the definition means previous operations in the pro-

gram order. A synchronization access works like a fence. All data accesses

have to be performed before their subsequent synchronization operation is

performed. Weak consistency may provide better performance than sequen-

tial consistency by allowing operations between two synchronization opera-

tions to be reordered, executed in parallel, and non-atomically [Adv93].

1.2.5 Release Consistency

Release consistency [GLL+90] is an extension of weak consistency. Release

consistency classifies operations on shared memory into two categories, spe-

cial and ordinary. Special operations also are classified into sync and nsync.

Sync operations are either release operations or acquire operations. Ordinary

operations refer to data accesses without conflicting with other operations.

Sync accesses are used to order data accesses such that data operations may

not conflict with each other. Nsync accesses are asynchronous data accesses.

Release is a write synchronization operation. Acquire is a read synchroniza-

tion operation.

Definition 4 A system is release consistent iff

1. Before an ordinary load or store access is allowed to perform with re-

spect to any other processor, all preceding acquire accesses must be per-

formed.

6

2. Before a release access is allowed to be performed with respect to any

other processor, all preceding ordinary load and store accesses must be

performed.

3. Special accesses are sequentially consistent with respect to each other.

Variants of release consistency models differ as to which consistency model

special accesses follow. In some memory consistency models, special accesses

follow sequential consistency; in other memory models they follow processor

consistency [Goo89]. Those memory models are denoted as RCSC and RCPC

respectively [Adv93].

1.2.6 Lazy Release Consistency

Even though the conventional release consistency allows ordinary accesses to

be postponed until a release operation is executed, it still requires all ordinary

accesses to be performed with respect to all processes. [KCZ92] and [Kel95]

proposed the lazy release consistency which allows ordinary accesses to be

performed with respect to some processes. (Because the lazy release consis-

tency was implemented as a software distributed shared memory system, the

term of process is used instead of processor.)

Definition 5 A system is lazy release consistent [Kel95] iff

1. Before an ordinary read or write access is allowed to perform with re-

spect to another process, all previous acquire accesses must be performed

with respect to that other process.

2. Before a release access is allowed to perform with respect to any other

process, all previous ordinary read and write accesses must be performed

with respect to that other process.

3. Sync accesses are sequentially consistent with respect to one another.

7

Lazy release consistency requires only that ordinary accesses to be per-

formed with respect to other processes as subsequent releases become visible

to them [Kel95]. It potentially provides better performance than the tradi-

tional release consistency by reducing the number of processes that must see

the changes to shared memory. Only those processes that acquire the value

which the writer process releases need to see the changes.

1.2.7 Message-driven Relaxed Consistency

In order to exploit both the message passing model and the shared mem-

ory model, [KFJ94] proposed message-driven relaxed consistency that com-

bines those two mechanisms into a single system. Messages carrying explicit

causality annotations are exchanged to trigger memory coherence actions. In

addition to shared memory, message passing is another mechanism provided

by the system to exchange information among processes.

Specifically, if a process sends a synchronization message to another pro-

cess, the modifications in shared memory the sending process made are visible

to the receiving process after the receiving process gets the message. If all

messages are synchronization messages, the ordering of memory events is

consist with the “happened before” relation, as defined by [Lam79].

1.3 Related Techniques for Implementing DSM
Systems

In this section, we are going to give an brief introduction to the implemen-

tation techniques of software distributed shared memory systems related to

this thesis.

8

1.3.1 Single Writer Protocol

[Li88, LH89] uses the page-based mechanism to implement a software dis-

tributed shared memory system called IVY. The pages of the shared memory

are cached in all processes. Each cache in a process is protected by the op-

erating system. Any access to an invalid cache by the application generates

a segment fault. The fault handler then obtains a valid copy of the page for

the process.

IVY implements sequential consistency. Each process may cache a copy of

a page of shared memory. All copies of a page cached in the various processes

have to be identical. Only one process is allowed to write to the page at any

point in the execution.

When a process attempts to read a page, it gets a valid copy of the page

from another process. Then the mode of the cache of the page is set to read-

only. If there is another process that is writing to that page, then the writer’s

cache is also set to read-only.

Before a process writes to the local cache of the page, it invalidates all the

existing copies of the page in all other processes and gets a copy of the page

from another process if it does not have a current version of the page. The

access mode of the local cache is then changed to read-write.

1.3.2 Multiple Writer Protocol

In order to ensure the total order and atomicity of sequential consistency,

the value of a write operation to a variable in shared memory needs to be

visible to the read operations on the variable following the write operation.

The single writer protocol satisfies this requirement by invalidating all the

existing copies of a page in other processes before a process writes to the page.

The subsequent readers read the copy of the page which the writer process

9

writes. For a write operation, several messages are needed to invalidate all

other copies of the page. The size of each response to a read request is the

size of a physical page in memory.

Since release consistency does not require the written value of a write

operation to be visible to other processes until the writer executes a release

operation, it simulates another type of mechanism, called multiple writer

protocol, which allows multiple writers write to the same page simultaneously.

Write-shared Data Protocol

Munin [Car93, CBZ95, CBZ91, Car95] proposed a write-shared data protocol

to implement the conventional release consistency. The write-shared data

protocol uses the page-based mechanism. However, it allows more than one

process to write to the same page simultaneously. Inconsistent copies of a

page may exist in the system. An ordinary write operation is performed by

sending the final value of the variable to all the processes caching the variable

before the release operation is performed.

For example, process p and process q write to the same page but different

addresses. Then they wait for each other to finish on a barrier. Before they

begin to wait for each other, they execute release operations. When process

p executes a release operation, it gives the changes of the page to process

q. When process q executes a release operation, it gives the changes of the

page to process p. After process p and q both execute the release operations,

their caches of the page are identical. The changes to a page before a release

operation are called a diff of the page. A diff consists of the addresses and

values of the changes in a page.

In contrast with the single writer protocol, the write-shared data protocol

does not generate any invalidation messages when a process writes to a page.

Only the diff of the page is sent in the write-shared data protocol instead of

10

sending the whole page to the reader as is done in the single writer protocol.

Lazy Invalidate Protocol

As we mentioned in Section 1.2.6, the conventional release consistency re-

quires all ordinary accesses to be performed with respect to all processes

even though some processes do not even access those variables. TreadMarks

[KCZ92, Kel95, ACD+96] proposed lazy release consistency and its imple-

mentation, called lazy invalidate protocol.

The execution of an application in the lazy release consistency is parti-

tioned into intervals. The intervals of different processes are partially ordered:

1. Intervals in a single process are totally ordered by its program order.

2. An interval of process p precedes an interval of process q if the inter-

val of q begins with the acquire operation corresponding to the release

operation that concluded the interval of p.

The lazy invalidation protocol is also a multiple writer protocol. It inval-

idates the caches of the shared memory according to write notices. A write

notice is created for a written page by the writer when the process executes

a release operation. Each write notice lists the information about the page

number and the specific interval when the page was modified. There is a diff

associated with each write notice. The diff keeps the changes of the page

which the process writes since the local copy of the page in the process is

made valid [KCDZ94].

A process performs an acquire operation on a variable by sending an

acquire request to the last process which performed a release operation on the

variable. The releasing process responds to the acquiring process with a set

11

of write notices. These write notices were created in the intervals preceding

the acquiring process’s new interval.

The acquiring process invalidates its local copy of a page if there is a

write notice for that page and the write notice was not used to invalidate

the page before. When the process attempts to access an invalid cache, it

first checks whether it has kept all the diffs corresponding to the write notices

which invalidated the cache. If not, the process sends messages to some of the

processes which created the write notices. The reason why it need not send

messages to all of the processes can be shown from the following example.

The interval when a write notice is created by process p may precede the

interval of another write notice created by process q. Process q must keep

process p’s diff because process q needs p’s diff to make the local cache valid

before process q can write to it. The process subsequently accessing the page

needs only to send a requesting message to the last writer process, process q.

After the accessing process receives all the responses, the accessing process

applies the diffs to the cache in the partial order. Then the computation

resumes. All the processes keep these write notices and diffs locally until

garbage collection is performed.

1.3.3 Di� Creation

Multiple writer protocols allow inconsistent copies of a page to exist in the

system. Instead of sending a whole page around, multiple writer protocols

send the changes of a page (diffs) to other processes. In this section, we are

going to discuss methods to obtain diffs.

Twin Page Method

The twin page method [CBZ95] is used to obtain the changes of a written

page. Each valid cache is initially protected from write operations. Before a

12

process writes to the page, the process duplicates a copy of the page in its

local memory. When the process executes a release operation, it compares

the differences between the after value of the page and the original value of

the page to obtain the diff of the page.

Software Write Detection Mechanism

The software write detection mechanism [ZSB94] is another method to collect

the changes to a written page. In a process, each shared address in shared

memory has a dirty bit to indicate whether the variable has been written by

the process. After each write to the shared address, the program sets the

dirty bit associated with the modified address. A precompiler is used to emit

the call to set the dirty bit after each write to the shared memory.

1.3.4 Synchronization Primitives

The synchronization primitives provided by most of software distributed

shared memory systems are limited to locks and barriers. Synchronization

operations are separate from operations on shared memory and implemented

differently.

Barriers

A barrier is usually implemented by a centralized manager. A waiting process

sends a message to the barrier manager and awaits the response when it

reaches the barrier. After the barrier manager receives all the messages from

the waiting processes, it responds to each waiting process. All the processes

then resume their computation.

13

Locks

Munin uses the probable owner mechanism to implement locks. Each process

maintains its observations about which process might own the lock. If the lock

is not available locally, a requesting message is sent to the probable owner. If

the probable owner does not have the lock, the probable owner forwards the

requesting message to its probable owner. The message is passed along the

probable owner chain to the last lock holder. If the lock is free, the last lock

holder gives the lock to the requesting process and sets its observation of the

probable owner to the requesting process.

TreadMarks uses a distributed queue to implement a lock. Each lock has

a specific manager which knows the most recent process, p, requesting the

lock. A global waiting queue is maintained. When the manager receives a

lock request from a process, q, it forwards this request to p. The manager

also sets the most recent process to q. p passes the lock and invalidation

information to q when p releases the lock.

1.4 Problems

1.4.1 Synchronization Primitives in Software
Distributed Shared Memory Systems

Poor Application Programming Interfaces for Solving Synchroniza-

tion Problems

The synchronization operations of release consistency are restricted to release

and acquire, which are write and read operations on shared memory. The

overhead of the strong memory consistency is not only high at run time in

NOW but it is hard to program using just release and acquire.

Instead of implementing a strong memory consistency model, most of

contemporary software distributed shared memory systems offer higher level

14

synchronization primitives, such as locks and barriers, and implement them

by synchronization managers, see Section 1.3.4.

In order to conform with the definition of release consistency, the develop-

ers of distributed shared memory systems usually need to spend some effort

in associating locks and barriers with release and acquire operations. For

example, getting a lock is an acquire operation and returning a lock is a re-

lease operation [Kel95]. However, interpreting a barrier is not as intuitive

as a lock. Therefore, using the notions of release and acquire to describe

synchronization accesses is problematic.

Moreover, the complexity of using these basic synchronization operations

of locks and barriers to solve some synchronization problems is known to

be quite complicated for programmers and prone to errors. This is a clas-

sic discussion appearing in many operating system text books, for example

[Tan92].

Performance Issue

[Car93] and [CBZ95] identify a class of applications that do not perform well

on some distributed shared memory systems. For example, a parallel version

of the traveling salesperson problem uses a branch-and-bound algorithm to

find the shortest path. The algorithm uses a priority queue to store incomplete

paths. The priority queue is protected by a lock. As stated in [Car93]:

“The major source of overhead for these DSM versions was the

amount of times spent waiting on the lock protecting the work

queues . . . These lock waiting times are large because the DSM

versions must ship the work queue, a sizable data structure, to the

acquiring process before that process can perform any operation

on the work queue.”

15

A function shipping mechanism was proposed by [Car93] such that the

priority queue remains attached to a specific process. Accesses to the priority

queue by other processes are performed by remote procedure calls. However,

there was no systematic way to incorporate such features into their system.

Message-driven relaxed consistency (see Section 1.2.7) can implement the

RPC-server for the priority queue without too much overhead by creating a

process which receives requests from other processes in the form of messages.

However, this approach inherits the disadvantages of the message passing

models, which are difficult for users to program.

1.4.2 Weaknesses of Multiple Writer Protocols

The write-shared data protocol of Munin and the lazy invalidate protocol of

TreadMarks are called multiple-owner protocols because in the implementa-

tions of both systems the reader needs to contact some writers which own a

piece of the current data.

Following is a list of problems in multiple-owner protocols.

1. The need for large number messages to maintain consistency of a page

which is written by some processes and read by the processes.

When a page is written by n processes and all the processes want to

read the same page later (in the case of the write-shared data protocol n

processes are caching the same page), it takes O(n2) messages for all the

reader processes to get current version of the page [CK96]. Even though

those writers just write a small piece of the page, O(n2) messages are

needed.

2. Diff accumulation for pages accessed exclusively.

In the lazy invalidate protocol processes cannot tell whether two diffs

for the same page overlap. If two processes modify a whole array ex-

16

clusively, the third process needs to obtain diffs generated from both

processes to make the page up to date. This scenario is called diff

accumulation [LDCZ95]. The size of the response to a read request

increases when the number of processes increases.

For example, assume processes p, q, r, . . .need to read an array and

then write to the whole array exclusively. The array is protected by a

lock. Process p first reads the initial value of the array and then writes

its result into the array. Process q obtains the lock and then gets the

diffs of the array, which process p made, from process p. After process

r obtains the lock, it needs to get diffs of the array, which process p and

q made, from process q. The more the processes there are, the larger

the diffs needed to be sent. If there are n processes in the system, the

last process need to get n−2 versions of the diffs of the array to update

the page. Since the diffs created by a process overlap with those diffs

created by others, the process only reads the values of the diffs created

by the previous lock holder.

3. Garbage collection.

In the lazy invalidate protocol, a process needs to keep its diffs and

write notices until garbage collection. Garbage collection is performed

by stopping execution of all processes and making active pages current

in each process. Both stopping processes from execution and storing

diffs locally can also slow down the system (if the diffs consume too

much space).

1.5 Contributions

This thesis identifies two weaknesses of contemporary software distributed

shared memory systems: poor application programming interfaces for pro-

17

grammers who need to solve complicated synchronization problems and ineffi-

ciencies in the traditional multiple writer protocols. We propose two methods,

user-definable high level synchronization primitives and single-owner proto-

col. We also define a variant of release consistency, release consistency with

user-definable high level synchronization primitives (RCHS) to accommodate

with high level synchronization primitives.

In order to allow users to define high level synchronization primitives,

we provide a paradigm, synchronization class (C++ like class), for users to

define their own synchronization primitives and to associate synchronization

operations with our memory model. Instead of relying on traditional low level

synchronization primitives, such as barriers and locks, user-definable high

level synchronization primitives provide a better application programming

interface.

The single-owner protocol is a new multiple writer protocol. It reduces

the number of messages from O(n2) messages (the number of messages

needed in multiple-owner protocols) to Θ(n) messages when there are n

writers writing to a page and then n readers reading the page. Unlike

multiple-owner protocols, in the single-owner protocol garbage collection is

performed asynchronously, and there is no diff accumulation.

We also evaluate the tradeoffs between the single-owner protocol

and multiple-owner protocols. We have found that in most cases the

single-owner protocol uses fewer messages than multiple-owner protocols.

But there are some computations which may perform better with

multiple-owner protocols. In order to combine the advantages of both

protocols, we propose a hybrid owner protocol which can be used to

increase the efficiency in an adaptive way, with some pages managed by the

single-owner protocol and some by a multiple-owner protocol.

Finally, five applications are evaluated using the single-owner protocol

18

and the lazy invalidate protocol. The performance of these two protocols is

compared. We also demonstrate the use of user-definable high level synchro-

nization primitives on one of the applications, and compare its performance

against the same application constructed using only low-level synchronization

primitives. The result matches our analysis.

1.6 Outline of this Thesis

This chapter has briefly introduced the background and problems of modern

distributed shared memory systems.

Chapter 2 presents the paradigm of user-definable high level synchroniza-

tion primitives and defines RCHS. We also outline the implementation at the

end of this chapter.

Chapter 3 discusses the various problems of multiple writer protocols.

We also present the new memory protocol, single-owner protocol in this

chapter. In addition, the tradeoffs between the single-owner protocol and

multiple-owner protocols are discussed. In conclusion a hybrid owner proto-

col is proposed.

Chapter 4 details the implementation of the single-owner protocol.

Chapter 5 contains the performance evaluation of five different applica-

tions.

Chapter 6 discusses related work.

Chapter 7 concludes this thesis and proposes future work.

19

20

Chapter 2

Release Consistency with

User-de�nable High Level

Synchronization Primitives

Release consistency with user-definable high level synchronization primitives

(RCHS) provides a paradigm in which users can define their own synchroniza-

tion primitives, called synchronization classes. RCHS also constrains the ex-

ecution of synchronization primitives but any synchronization primitive that

follows the paradigm can be used in this memory model. The paradigm not

only provides a better interface for the programmer to implement synchro-

nization algorithms but also improves the performance of some applications.

These high level synchronization primitives are designed for a software dis-

tributed shared memory system in a high latency network, where the cost

of traditional atomic operations, for example fetch&add and busy waiting for

the purpose of synchronization is considerable, and has an adverse effect on

the performance of the computation.

2.1 Programming Model

synchronization
objects

T1 T2

local memory

processes

shared memory

Figure 2.1: Programming model

There are two types of shared objects that processes use to communicate

with each other in RCHS: shared memory and synchronization objects (see

Fig. 2.1). The shared memory consists of a contiguous memory array in vir-

tual memory. Two types of operations are allowed in shared memory, read

and write. Anything a process writes in shared memory may be visible to

other processes. In addition to shared memory, processes can also commu-

nicate with each other via synchronization objects. Each process accesses

synchronization objects only by calling operations defined in synchronization

classes. Synchronization objects can not access other shared objects.

Each synchronization operation may be annotated with one of following at-

tributes, release, acquire, acquire release, or release acquire. These attributes

are used to define the visibility of the values in shared memory. Informally,

21

the annotation release may be thought of as meaning that the process “puts”

its visible shared memory writes onto the synchronization object, and acquire

may be thought of as meaning that the process “gets” the visible writes from

the synchronization object. For example, suppose that process p writes to

shared variable X and then executes an operation provided by synchroniza-

tion object S with attribute release. S can see the newly written value of X

(even though S is not allowed to access other shared objects). If process q

subsequently executes an operation of S with attribute acquire, q obtains what

S can see. So q can read the new value of X which p has written. Similarly,

acquire release and release acquire may be thought of as a combination of the

two. In the context of following discussion, release operations are operations

with attribute release, acquire release or release acquire. Acquire operations

are operations with attribute acquire, release acquire, or acquire release.

We consider an example of a simplified version of the producer and con-

sumer problem [Tan92]. Products produced by producers are stored in shared

memory. Consumers read products from the shared memory. We assume

there is infinite memory to store products. We use a synchronization object

called buffer to coordinate producers and consumers. The definition of the

synchronization object is shown in Fig. 2.2.

The synchronization object, buffer, works as a server which keeps point-

ers of available products for consumers. After a producer writes its product to

shared memory, it calls the method PutItemPtr(. . .) and passes the pointer

of the product in shared memory to buffer. Since the product in shared

memory needs to be visible to other consumers, PutItemPtr(. . .) is anno-

tated with attribute release. A consumer acquires the pointer of a ready

product by calling GetItemPtr(. . .). In order to read the part of the shared

memory written by producers, GetItemPtr(. . .) is annotated with attribute

acquire.

22

SyncClass Buffer{
public:
Buffer();
~Buffer();
release void PutItemPtr(ItemPtr item_ptr);
acquire ItemPtr GetItemPtr();

private:
Queue_class<int> *empty; /* keep process ids when the buffer is empty */
Queue_class<ItemPtr> *buffer; /* keep products’ pointers*/
......

};

Buffer_class *buffer;

process_Consumer(){
ItemPtr p;

while ((p = buffer->GetItemPtr()) != NULL) consume(p);
}
process_Producer(){
ItemPtr p;

while ((p = produce()) != NULL) buffer->PutItemPtr(p);

}
initGlobalEvironment(){
buffer = new Buffer;

}

Figure 2.2: Synchronization Class

23

Our system provides two basic synchronization classes, semaphores and

barriers. Semaphores have two operations, P(k) and V(k), where k is the

number to increase or decrease the counter of the semaphore. P(k) and V(k)

are annotated with acquire and release attributes respectively. The P and V

operations of binary semaphores usually correspond to operations on locks,

which are used to protect a critical section. When a process gets a lock using

the P operation, the acquire annotation specifies that the previous lock holder’s

writes become visible to the process. Similarly, when the process leaves the

critical section using the V operation, the release annotation specifies that

subsequent processes will see its writes.

A barrier has one operation, WaitForBarrier(proc), where proc is the

number of waiting processes. The attribute of WaitForBarrier(proc) is

release acquire. Intuitively, the release acquire attribute can be thought of

specifying a release annotation and then an acquire annotation. In this case,

the calling process will be putting its writes (i.e. making them visible) to

the synchronization object when it calls WaitForBarrier(. . .) and will be

getting other writes (i.e. collecting currently visible writes) from the syn-

chronization object when the call returns. The synchronization object of

the barrier does not respond to the calling processes until k processes exe-

cute WaitForBarrier(k). Therefore, the waiting processes can see all the

writes other waiting processes made in shared memory before they executed

WaitForBarrier(. . .).

2.2 Synchronization Objects and Synchroniza-
tion Classes

Defining synchronization classes is very similar to defining regular classes in

the C++ programming language. Instead of class in C++, synchronization

classes start with SyncClass.

24

Synchronization classes do not have the inheritance properties of regular

object oriented languages. The operations declared in the public section

of the synchronization class are the only operations which can be called by

processes. Each operation can have at most one parameter. In addition, each

of the public operations may be tagged with a synchronization attribute of

either release, acquire, release acquire, or acquire release. These attributes

are used to define the visibility of processes’ writes to shared memory. The

private section of the synchronization class is used to define procedures and

data structures in synchronization objects.

Synchronization objects can be accessed only by calling operations pro-

vided by them. The computation of a synchronization object is like that of a

server servicing a remote procedure call called by processes. The execution

of a synchronization object is sequential. The synchronization object may

decide not to reply immediately to the caller and receive other requests. The

caller is stalled until the synchronization object sends a response back.

2.3 Execution of a Program

In order to simplify the discussion, we are going to use a directed acyclic

graph (DAG) to specify the execution of a program.

2.3.1 Phases and Events

The execution of a process or a synchronization object is sequential and

consists of phases. Performing a synchronization operation is an event of a

process. Receiving a request from a process and replying to a process are

events of a synchronization object. The computation between two events,

including the ending event, is a phase. The execution of a process or a

synchronization object is a sequence of phases in program order.

25

Each phase of a process is identified by a unique time stamp. The time

stamp of the initial phase is 1. The phase with time stamp i is followed by the

phase with time stamp i + 1. The phase of a synchronization object starting

with a requesting event from a process is called a receiving phase, even though

the requesting event is not in the phase. The phase of a synchronization object

ending with a replying event to a process is called a replying phase.

2.3.2 The Execution in Parallel Computation

v’

v

v’

v

(1) program Order

v’
v

(3) release

v
v’

(2) acquire

a phase of sync. object

program order sync. order

a phase of process

Figure 2.3: A directed acyclic graph of a computation.

The execution of a parallel program can be represented by a directed

acyclic graph, G = {V, E}, where V is the set of phases. The visibility of a

written value in shared memory is defined by G. There is an edge evv′ from

26

v’1

v’2

v’

v

2

1

(4) release_acquire

v’1

1

2

v’2

v

v

(5) acquire_release

a phase of sync. object

program order sync. order

a phase of process

Figure 2.4: A directed acyclic graph of a computation.

vertex v to v′ if and only if one of following conditions holds.

1. v′ and v are phases from the execution of the same process or synchro-

nization object and v′ immediately follows v in program order. See

Fig. 2.3(1).

2. A process invokes a synchronization operation with the acquire at-

tribute. v is the replying phase of the synchronization object, and v′ is

the phase after the process invokes the synchronization operation. See

Fig. 2.3(2).

3. A process invokes a synchronization operation with the release attribute.

27

v is the phase ending with the synchronization operation, and v′ is the

receiving phase of the synchronization object. See Fig 2.3(3).

4. A process invokes a synchronization operation with the release acquire

attribute. This case involves two edges.

(a) v is the phase of the process ending with the synchronization op-

eration, and v′ is the receiving phase of the synchronization object

(see edge ev1v′
1

in Fig 2.4(4)).

(b) v is the replying phase of the synchronization object and v′ is the

phase after the process invokes the synchronization operation (see

edge ev2v′
2

in Fig 2.4(4)).

5. A process invokes a synchronization operation with the acquire release

attribute. In this case there are two edges:

(a) v is the phase of the process ending with the synchronization op-

eration, and v′ is the phase immediately after the replying phase

of the synchronization object (see edge ev1v′
1

in Fig 2.4(5)).

(b) v is the replying phase of the synchronization operation, and v′ is

the phase after the process invokes the synchronization operation

(see edge ev2v′
2

in Fig 2.4(5)).

A phase p′ is reachable from p, denoted by p ≺ p′, if there is a path

from p to p′. (We can also say phase p reaches phase p′.) Two phases are

concurrent if there is no path between them. Competing accesses are two

operations accessing the same shared variable in concurrent phases and one

of the operations is write.

28

Assume two operations o and o′ are executed in two phases, p and p′

respectively. o′ is reachable from o (noted as o
DAG−→ o′) iff any of following

conditions is satisfied : (1) p = p′ and o is executed before o′, or (2) p ≺ p′.

Visibility of a Written Value on a Shared Variable

A written value of a write operation, w, on shared variable x in phase p is

visible to a read operation on x in phase p′ if and only if one of following

situations holds

1. if p = p′, the write operation is the last write operation on x before the

read operation.

2. if p 6= p′ and p′ is reachable from p, w is the last write on x in phase

p and there is no other phase on the path from p to p′ which has write

operation on x.

3. p and p′ are concurrent.

The set of written values visible to the read operation op on X is called

the visible set of X.

From the programmer’s point of view, an acquire action takes place when

a synchronization object replies to a requesting process. All the updates

in shared memory that are visible to the synchronization object before the

synchronization object replies are also visible to the process after the process

receives the response from the synchronization object.

The time instance when release acts depends on how conservatively the

updates in shared memory are expected to be propagated. If the attribute

release acquire or release is used, the updates of the requesting process are

visible to the synchronization object when the object receives the request. If

the operation is annotated with acquire release, the updates are made visible

29

to the synchronization object after the object replies to the process. The at-

tribute acquire release can be used for atomic updates to the synchronization

object. For example, in the consumer producer problem (see Sec. 2.1), if the

queue buffer in the synchronization object buffer is full, the producer needs

to be suspended until some products are taken by consumers. The updates

in shared memory by the producer do not have to be seen by others until the

products are stored in the queue buffer. The function PutItemPtr(. . .) may

be annotated with the attribute acquire release. A synchronization operation

can have no attribute. The updates of the process are not visible to such a

synchronization object when it executes the synchronization operation.

2.4 Release Consistency with User-de�nable
Hight Level Synchronization Primitives

In traditional release consistency, synchronization accesses read and write

shared memory to enforce memory consistency. Release Consistency with

user-definable hight level synchronization primitives (RCHS) does not have

synchronization accesses to shared memory but instead synchronization op-

erations provided by synchronization objects. Synchronization operations are

annotated with attributes which denote how visible writes are passed explic-

itly. We will first describe the memory consistency using our notation. Later

in the section we will compare RCHS to other release consistency models.

2.4.1 View

Shared memory consists of a set of shared variables. In order to simplify

the discussion, we assume without loss of generality that each variable an

integer. Let X be a variable. A visible set of X to a process is a set of values

the process may get when it reads X. VX will denote the visible set of X.

Initially VX = {0} for all processes. The collection of VX for all X in shared

30

memory forms a view of the process. The initial view of a synchronization

object is a collection of VX = {0} for all X in shared memory.

2.4.2 Merging Views

A process’ visible set of shared variable X changes dynamically during the

execution between synchronization operations, issued by the process itself.

VX may change during this period in two cases. The first case occurs when

another process writes b to X, causing VX to become VX
⋃{b}. In the second

case, when the process itself writes a to X, VX is set to {a}. However, after

the process writes to X, VX may change if another process writes to X. If

the process attempts to read X, any value in VX is a legal returned value.

Executions with race conditions are allowed in RCHS.

The visible set of variable X to a synchronization object changes only

when the object merges its view with a process’s view. Let V ′
X be the visible

set of variable X to the synchronization object and VX is the visible set from

a process. V ′
X gets updated if VX is not equal to V ′

X . For each value a in

VX
⋃

V ′
X , a is associated with a set of write accesses, OPa, where each opa

in OPa writes a to X. The merging process for the synchronization object

picks value a as an element of the newly merged visible set if there is no other

value b in VX
⋃

V ′
X such that opa

DAG−→ opb for any opa and any opb.

For example, assume V ′
X = {1, 2} and VX = {3, 4}, and op1

DAG−→ op3 for

all op1 in OP1 and all op3 in OP3. The newly merged visible set becomes

{3, 2, 4}. Processes follow the same merging procedure as synchronization

objects.

When a process executes a release operation of synchronization object S,

it also passes its current view to S. S then updates its view by merging its

own view with the process’s view. When the object responds to a request for

an acquire operation, S passes its view to the requesting process. Then the

31

process updates its view by merging its current view with S’s view.

2.4.3 When Attributes Become E�ective

The release attribute of a synchronization operation becomes effective when

the synchronization object merges its view with the requesting process’s view.

The acquire attribute of a synchronization operation becomes effective when

the synchronization object responds to the requesting process and the process

merges its view with the object’s view.

The time instance when the synchronization object updates its view and

gives its view to the requesting process depends on the semantics and the

attribute of the synchronization operation.

If the synchronization object receives a request with a release or re-

lease acquire attribute, the object updates its current view immediately. If

the object receives a request with an acquire release attribute, the object

merges its view with the requesting process’s view after it responds to the

process. If the process executes an acquire operation, it merges its view with

the view of the synchronization object when it receives the reply. When a

synchronization object responds to an acquire operation it always sends its

current view to the requesting process.

2.4.4 Conventional Notation

Even though this new memory consistency model does not have synchroniza-

tion accesses on shared memory, we can still use the terminology of con-

ventional release consistency to describe it. Each synchronization object is

considered as a special shared variable. When the release attribute of a

synchronization operation becomes effective, a release access to the synchro-

nization object is performed by the requesting process. Similarly, when the

acquire attribute of a synchronization operation becomes effective, an acquire

32

access to the synchronization object is performed by the requesting process.

Release and acquire accesses to the same synchronization object are executed

in total order. We may use the traditional notation for release consistency

to define RCHS. This notation is only suitable for programs without race

conditions.

Definition 6 A system is RCHS iff

1. Before an ordinary load or store access is allowed to perform with re-

spect to any other process, all preceding acquire accesses must be per-

formed.

2. Before a release access is allowed to perform with respect to another

process, all ordinary load and store accesses must be performed with

respect to that process.

3. Synchronization accesses follow sequential consistency. The order of

synchronization accesses depends on the semantics of synchronization

objects.

We may mimic release and acquire operations of the release consistency

on shared memory by creating a synchronization class, whose operations

are release void put(Parameter parameter) and acquire Parameter

get(). The synchronization object also keeps a local variable with type

Parameter. When the synchronization object receives a request for the

function put(. . .), it stores the parameter in its local memory. When the

synchronization object receives a request for function get, it responds to

the requesting process with the value in its local memory.

2.5 Implementation

2.5.1 System Architecture

33

thread system
pipe

distributed shared memory

messages

server

shared memory
(IPC) (IPC)

local memory

system
server pipe

thread

shared memory

local memory

Figure 2.5: Architecture

The system consists of several machines. Each has its own processor and

local memory. The machines are connected by a local network. We will

use the term “processor” for the machine from now on. Distributed shared

memory is located in the same contiguous space in each processor’s virtual

memory. Any access to that piece of memory is monitored and controlled by

the system.

In the current implementation, each processor has two processes in charge

of the computation (see Fig. 2.5). One process, the thread, is used for the

computation of applications. The other process, the system server, serves the

requests for synchronization and memory consistency. These two processes

communicate with each other via pipe and shared memory provided by IPC

[Ste90]. System servers communicate with each other via messages.

34

2.5.2 Synchronization Objects

Synchronization objects are embedded in system servers. Each synchroniza-

tion object has a unique id number and each method in the public section of

the synchronization class is assigned an id number. When a thread accesses

a method of a synchronization object, the thread itself sends a message to

its local system server notifying it of the object id and the operation it is

accessing. The local system server processes the request if the synchroniza-

tion object resides locally. Otherwise, it forwards the request to the remote

system server where the object resides.

In our current implementation, creating code for synchronization servers

is done manually. However, it is not difficult for a preprocessor to do this.

SyncClass’es are written by programmers. Two classes are generated, one for

processes and the other for system servers. The class for threads contains only

the methods declared in the public section of the synchronization classes. The

body of each method composes a message and sends it to the system server.

The method waits for the response from the server if necessary.

The class for system servers is almost the same as the class defined by

programmers. We insert three new methods into the class, GetCliId(),

SyncReply(process id, result), Master(caller’s id, operation

id, parameter). After the system server receives a synchronization

request, it passes the parameter to the synchronization object’s Master(. . .)

function, which calls the public method mapped to the operation id.

When the object decides to reply to a requesting thread, it calls

SyncReply(process id, returned value). SyncReply(. . .) composes

the replying message and sends it to the calling system server.

35

2.5.3 Memory Protocol

We employ a multiple writer protocol to implement our shared memory sys-

tem. Each processor may cache a page in shared memory. The various caches

of a page are allowed to be inconsistent. A cache is invalid if the value of

a variable in the cache is not in the variable’s visible set. A modified lazy

invalidate protocol [KCZ92] is used to propagate invalidation information.

A page invalid to the local thread is protected by the operating system.

When the local thread attempts to read the page, a segment fault is raised.

The signal handler then sends a read request to the system server. After the

system server obtains a valid copy of the page, the local thread resumes its

execution.

Write Notices and Invalid Pages

Following the lazy invalidate protocol, when a thread issues a release oper-

ation immediately after a phase, it generates a set of write notices. Every

write notice in the set indicates a page that has been written since the last

phase when the thread executed a release operation. A write notice consists

of the writer’s identification number, the written page number and the time

stamp of the phase.

Propagating Write Notices

Systems servers follow the edges of the DAG described in Sec. 2.3.2 to prop-

agate write notice sets. When a thread performs a release operation, the

system server sends sufficient write notice sets to the system server where

the synchronization object is. When a synchronization object responds to a

thread on behalf of an acquire operation, the object requests its local system

server to send sufficient write notice sets to the system server where the re-

36

questing thread is. In contrast, the original lazy invalidate protocol does not

have the concept of synchronization objects. Write notices are propagated

from threads to threads.

Invalidating a Stale Page

A thread invalidates pages after it executes an acquire operation. After its sys-

tem server receives the response from the synchronization object, the server

finds all the pages which were valid at the last phase but will be invalid at

the next phase because of newly arriving write notices. The server informs

the thread about the invalid pages. Then the thread sets protection on those

pages. There are several ways for the run time system to obtain a valid copy

of the page. We will postpone until Chapter 4 the description of how a valid

copy is obtained.

37

38

Chapter 3

Multiple Writer Protocol

In the beginning of this chapter, we will discuss the weaknesses of conventional

multiple writer protocols. We then propose a new multiple writer protocol,

called single-owner protocol, which can outperform conventional multiple

write protocols in some cases. We will also show in some cases conventional

multiple writer protocols can outperform the single-owner protocol. In order

to exploit two different protocols, a hybrid owner protocol is proposed.

3.1 False Sharing in Distributed Shared Mem-
ory Systems

It has been recognized that false sharing is one of the key impediments to

high performance in DSM systems. Programmers, address their data on the

logical variable basis. The underlying operating system handles the data in

the physical page basis. Consider a simple example of two variables x and y

residing on a single page. If one processor works on x and another on y, as

far as the operating system is concerned they both work on the same physical

variable, the page in which x and y are both stored. In the worst case, the

page is shuttling between the two processors, severely delaying the progress

of the computation. A protocol behaving as described above, is generally

referred to as a single writer protocol.

One of the ways to reduce such shuttling is to employ a multiple writer

protocol in conjunction with a specific memory consistency model [CBZ95,

KCDZ94]. This protocol allows more than one processor to write to the

same page at the same time. However the page does not shuttle among the

processors. Instead of passing a copy of the page nondeterministicly among

processors, each processor collects its diffs [Car93, ZSB94] from a written

page and then propagates them to other processors. This is an effective way

of improving performance in many cases.

We will show that this approach has certain weaknesses and therefore has

to be used with caution.

3.2 Excess Messages Caused by Multiple-
owner Protocol

Figure 3.1: Heat flow problem

We describe the problem by using the example of a simple canonical ap-

plication, that of the heat flow problem. Our example is grossly simplified in

order to highlight the underlying problem and our approach to solving it.

39

We are given a uniform square plate with time-invariant values of the

temperature on the boundary and initial zero temperature in the interior.

Using a standard iterative technique, we are to calculate the steady state

temperature. The plate is partitioned into squares, each represented by a

location in an array T . The computation proceeds in time steps. In each step

the next value of T [i, j] is computed based on the current values of T [i−1, j],

T [i, j + 1], T [i + 1, j], T [i, j − 1], and T [i, j]. When the stopping condition of

the form |new T [i, j] − old T [i, j]| < ε for all i and j holds, the steady state

temperature is assumed to have been reached.

The parallel DSM version employs some number of concurrently executing

threads, say n. Each thread executes in a separate processor. It is responsible

for computing the temperature of a horizontal “slice,” as shown in Fig. 3.1.

When a global stopping condition is reached, the execution is completed.

For our discussion assume that there is a stopping vector S of n elements.

At each time step, after thread k computed the new values of its slice, it

checks whether the stopping condition is satisfied for its slice. If yes, it writes

1 in S[k], otherwise it writes 0 in S[k]. At the beginning of a step, it finds

out whether all threads “agree” to stop. This is indicated by all locations of

S being 1. Thus all threads complete after the same number of steps.

Let us examine now the performance of the algorithm in a multipe-writer

protocol. For simplicity, we can assume that a row of the matrix T in general

fits in a single page. The vector S in general will fit in a single page.

First, at the end of each step (other than the final one), each thread needs

to obtain from each of its neighbors the values of one row. (In our example,

Fig. 5.2, thread k, in order to compute T [i, j], needs to obtain the value of

T [i, j−1] as computed by thread k−1). Thus each thread needs to send about

2 messages (although this could be higher, though still a small constant—we

will continue with the value of 2 in our example). So the total number of

40

messages required to accomplish this is (say) 2n.

Furthermore, each thread needs to notify all the other threads whether

steady state has been reached in its slice (adaptive notification is not practical

due to the lack of global knowledge). As is currently generally done, this

will require 2n(n − 1) messages. In the underlying implementation of lazy

invalidate protocol [KCDZ94], each thread k will in effect contact each of the

threads 0, 1, . . . , k − 1, k + 1, . . . , and n− 1. Each will respond by sending

the single entry of array S it wrote. For write-shared data protocol [CBZ95],

each writer aggressively propagates updates to threads currently holding S.

So each thread needs to send the single entry of S that it wrote, to all other

n − 1 threads. We thus see that the communication costs in each step are

swamped by what seems like a minor part of the overall computation.

Since in these protocols a page can be owned by many threads and a page

owner needs to contact other page owners to get current updates, we call

them multiple-owner protocols.

3.3 Single-owner Protocol

We propose a single-owner protocol to solve this problem. Each page will have

a “home processor”, which will be referred as the owner of the page. All the

modifications to the page will be sent to the owner of the page, and each thread

will request the new values from the page’s owner. To apply this protocol to

our example, the pages of the matrix T are owned by the processors computing

them, thus minimizing communication. (If a page contains elements spanning

two slices, then one “non-owner” processor will be updating the elements in

the page.) Using this protocol the number of messages is greatly reduced.

Boundary information is exchanged between processors resulting in cn

(for a small constant c) messages. Vector S is owned by one (or maybe two

41

processors if S spans more than one page). Thus updating it takes n messages

and the threads require n messages to read the new value of S. The total

number of messages is linear in n with a small multiplicative constant, and

does not grow quadratically with the number of processors, as in the previous

description.

Let us return to the synchronization employed in this algorithm. There

is one synchronization per step. Machines wait until they finish a step, read

the updates they need and proceed to the next step.

One could try to reduce the number of messages from quadratic to linear

while still employing the standard protocols. For instance, one could have a

centralized stopping detector by employing a single thread to obtain all the

values of S, determine if all of them are 1, and then notify the slices-computing

threads whether the global steady state has been reached. In Munin this will

still require a quadratic number of messages, but in TreadMarks, this can

be done using a linear number of messages. However, this centralized stop-

ping detection suffers from the following drawback: it requires an additional

synchronization point per step.

We note that the above was a simplified example showing how some as-

pects of the current protocol for the management of shared pages need to be

further developed to improve performance.

3.4 Multiple-owner Protocol

However, in some cases multiple-owner protocols can still outperforms the

single-owner protocol. Quicksort can be used for illustration.

The standard parallel version of quick sort uses an array in shared memory

to keep keys and a queue to keep the indexes of the boundaries of the subarrays

that have not been partitioned. The queue is protected by a lock so that only

42

one thread can access it at any time. Each thread gets from the queue a

pair of indexes that define the subarray for it to “quicksort.” If the size of

subarray is below some threshold, it sorts the subarray locally. Otherwise, it

finds the pivot in the subarray and partitions the array into two subarrays.

The thread puts the indexes defining the boundaries of one of the subarrays

into the queue. Then the thread starts working on the other subarray (in a

recursive manner).

Note, that in each step (other than the first) a thread reads data it has

previously written—it has generated the subarray which is its input for the

current step. In fact, the thread is the only writer and reader of the sub-

array in any given step. For the single-owner protocol, employing release

consistency, each thread has to send out the updates to the subarray to page

owners, even though the major part of the subarray is only read by itself. For

the multiple-owner protocol [KCDZ94], modifications are kept locally until

acquiring threads send requesting messages. Thus, no messages are passed

until any thread gets the indexes of a subarray from the queue.

3.5 Tradeo�s Between Single-owner Protocol
and Multiple-owner Protocol

In this section, we are going to explore different scenarios when

multiple-owner protocols use fewer messages than the single-owner protocol.

This happens in very limited cases. Message counts can be a fair estimation

for the performance of software distributed shared memory systems because

sending/receiving a message imposes large overhead in a high latency

network.

Assume there are w writer threads writing to a page and r reader threads

reading that page later. If writers are also readers, the total number of mes-

sages required for all the readers to get updates produced by the writers is

43

R W

R W

RW
RW

R W

R W

current updates read request

(A) multiple-owner

1

2

3

4

5
6

7
8

91

2

3

4

6

7

8

9

10

11
12

5

R W writerreader

page owner

(B) single-owner

Figure 3.2: Messages needed to get three readers updated with three writers
in the system

2r(w − 1) for a multiple-owner protocol in the best case. (These formulas

assume the lazy invalidate protocol. For write-shared data protocol, more

messages are required. In such case, the set of readers the protocol considers

is a superset of actual readers.) In the single-owner protocol, at most 2r + w

messages are required.

Therefore we examine the values of r and w when 2r(w − 1) ≥ 2r + w.

The equation is always true when r = 1 and w ≥ 4 or when r > 1 and w ≥ 3.

As long as r and w satisfy one of above conditions, the single-owner protocol

uses fewer messages than the multiple-owner protocol. Fig. 3.2 illustrates

the case when three writers and three readers are in the system. In the

multiple-owner protocol it takes 12 messages to make all the readers updated.

44

R

W W W

current updates read request

R W writerreader

page owner

W

R W

W

(A) multiple-owner

1
2

3

4
5 6

1
2

3

4

5

(B) single-owner

Figure 3.3: Messages needed to get two readers updated with one writer in
the system

Since the page owner collects all the updates, the single-owner protocol just

takes 8 messages. So, when r ≥ 1 and w ≤ 2 or when r = 1 and w = 3, the

multiple-owner protocol may use fewer messages.

We are going to discuss these cases in detail:

1. No reader (r = 0).

If there is no reader, in the multiple-owner protocol the diff stays in writ-

ers’ processors. No messages are sent. In the single-owner protocol, the

behavior depends on where the writers reside. If there is only one writer

and the writer is at the page owner, no messages are sent. However, if

there is more than one writer and one of the writers resides at the page

owner, w − 1 messages are sent. w messages are sent if none of the

writers resides at the page owner. The multiple-owner protocol always

uses fewer messages in this case.

45

W W

RW W W W

W

RW

1
2

current updates read request

R W writerreader

page owner

(A) multiple-owner

1 2
3

4
RW

1
4

5
2 3

(B) single-owner (C) single-owner

Figure 3.4: Messages needed to get two readers updated with one writer in
the system

2. There are three writers and only one reader (w = 3 and r = 1).

(a) Assume none of the writers are in the reader’s processor

(i.e the reader is not a writer. See Fig. 3.3.). In the

multiple-owner protocol, the reader needs to contact all the

writers to get all the updates. This takes 6 messages (see

Fig. 3.3(A)). In the single-owner protocol, all the writers send all

the diffs to the page owner and then the reader gets all the diffs

from the page owner (see Fig. 3.3(B)). This takes 5 messages.

The single-owner protocol uses one message fewer than the

multiple-owner protocol.

(b) Assume the reader resides in the same processor as one of

the writers (i.e the reader is also a writer. See Fig. 3.4.).

The multiple-owner protocol requires the reader to send read

46

R

W
1

2

W

current updates

read request

page owner

R reader

W writer
R

W

1

2

R

W

R

1

3

2

(A) multiple-owner (B) single-owner

(C) single-owner (D) single-owner

Figure 3.5: Messages needed to get two readers updated with one writer in
the system

requests to the other two writers and gets diffs from them (see

Fig. 3.4(A)). This takes 4 messages. In the single-owner protocol,

if none of the writers are at the page owner, all the writers send

their diffs to the page owner and then the reader retrieves all

the diffs from the page owner (see Fig. 3.4(B)). This takes 5

messages. However, when the reader is at the page owner, it

takes only 2 messages for all the writers to send the updates to

the page owner (see Fig 3.4(C)). The reader does not send any

read request since it is at the page owner.

3. There is at least one reader and exactly one writer (r ≥ 1 and w = 1).

Assume the writer is not a reader. In the multiple-owner protocol,

47

current updates read request

R W writerreader

page owner

W
W

1

2

RW

(A) multiple-owner

RW

W

1
1

RW
2

3

4

(B) single-owner (C) single-owner

Figure 3.6: Messages needed to get two readers updated with one writer in
the system

all the readers send read requests to the writer and get the current

updates from it. This takes 2r messages (see Fig. 3.5(A)). In the

single-owner protocol, if neither the writer nor the readers are at the

page owner, the writer sends an extra message to the page owner and

then all the readers get the current updates from the page owner (see

Fig. 3.5(B)). This takes 2r + 1 messages. If the writer is at the page

owner (see Fig. 3.5(C)), it saves one message to update the page owner.

In this case, the single-owner protocol takes 2r messages. If one of the

readers is at the page owner (see Fig. 3.5(D)), that reader does not need

to send a read request to the page owner but obtains the current data

locally. This takes 2r − 1 messages in total.

4. There are at least one reader and two writers (r ≥ 1 and w = 2).

(a) Assume neither the readers nor the writers reside in the same pro-

48

RW

RW1

2

3

4

current updates read request page owner

RW

R W writerreader

(A) multiple-owner

RW
1

2

4

5

6

3

RW

RW

1

2

3

(B) single-owner (C) single-owner

Figure 3.7: Messages needed to get two readers updated with one writer in
the system

cessor. In the multiple-owner protocol, all the readers contact both

writers to obtain current updates. This takes 4r messages. In the

single-owner protocol, in the worst case if the readers and the writ-

ers are not at the page owner, it takes 2r + 2 messages. In such

case, the single-owner protocol always uses fewer messages when

r > 1.

(b) Assume one of the readers is also a writer (i.e. a reader and a writer

reside in the same processor.) In the multiple-owner protocol, that

reader saves 2 messages to get the current updates because it it-

self is a writer (see Fig. 3.6(A)). This takes 4r − 2 messages. In

the single-owner protocol, in the worst case if neither the readers

nor the writers are at the page owner, the reader (who is also a

writer) still needs to contact the page owner to obtain the other

writer’s updates. This takes 2r + 2 messages (see Fig. 3.6(B)).

The multiple-owner protocol uses fewer messages only when there

49

is just one reader. The multiple-owner protocol takes 2 messages.

The single-owner protocol takes 4 messages. However, if the page

owner resides in the processor where the reader/writer resides, that

reader just takes one message to get updates because the other

writer sends the diff to the reader automatically (see Fig. 3.6(C)).

(c) Assume there are at least two readers and two of the readers are

also the writers. In the multiple-owner protocol, all the other read-

ers, which are not writers, contact both writers to get all updates.

The readers which are also the writers just send one read request

to each other. This takes 4r − 4 messages (see Fig. 3.7(A)). If

neither the readers nor the writers are at the page owner in the

single-owner protocol, it takes 2r + 2 messages to update all the

readers (see Fig. 3.7(B)). So when there are only two readers, the

single-owner protocol uses more messages (6 messages) than the

multiple-owner protocol (4 messages). But when one of the readers

(also a writer) is at the page owner, the reader saves 3 messages

for updating the page owner and getting updates (see Fig. 3.7(C)).

So the single-owner protocol takes only 3 messages. In such case,

the single-owner protocol uses fewer messages.

From the above discussion, there are only a few cases where the

multiple-owner protocol uses fewer messages. However, in these cases the

single-owner protocol may reduce the number of messages by assigning the

page owner to a processor where one of the readers resides. The application

mentioned in Sec. 3.4 shows that sometimes it is impossible to know which

threads are the readers and writers of a page in advance. Whether a thread

becomes the reader or the writer of a page depends on the state of the

execution during run time. In such a case the single-owner protocol cannot

50

take advantage of the knowledge about the location of the page owner. Thus

the multiple-owner protocol is favored.

3.6 Hybrid Owner Protocol

When a page has more than two readers and three writers, the

single-owner protocol uses fewer messages to get current updates no

matter where the page owner is. When there are fewer than three readers

and writers, the multiple-owner protocol uses fewer messages than the

single-owner protocol if the programmer cannot assign the page owner to a

processor where one of the readers resides.

To combine the advantages of both protocols, we propose a hybrid owner

protocol which can be used to increase the efficiency in an adaptive way,

with some pages managed by the single-owner protocol and some by the lazy

invalidate protocol, which may capture the dynamic behavior of the program.

When programs allocate memory from the shared memory heap by a

system provided function call, g malloc, in addition to the size of memory,

they also need to specify which protocol those pages should use. For a page

managed by the single-owner protocol the first thread that touches the page

becomes the owner of the page. After performing a release operation, updates

of the page in the single-owner are sent to the owner. When a thread wants

to read the page, it sends a request to its owner, who then returns current

data. For a page managed by the lazy invalidate protocol, the reader requests

updates from the writers according to write notices it has collected.

51

52

Chapter 4

Implementation of the

Single-owner Protocol

Multiple writer protocols allow inconsistent copies of a page to exist in dis-

tributed shared memory systems until a synchronization point. The write-

shared data protocol updates all existing copies in the system at the syn-

chronization point. The lazy invalidate protocol keeps all updates of a page

locally but a reader of an invalid page needs to collect current updates from

some writers to make the page current. As we mentioned in Chapter 3, these

conventional multiple writer protocols need O(n2) messages for n readers to

make an invalid page current if the n readers also are writers to the invalid

page.

In order to reduce number of messages to make a page valid, the

single-owner protocol was proposed. The single-owner protocol is also a

multiple writer protocol. In contrast with conventional multiple writer

protocols, each page in the shared memory has a designated page owner.

When a writer executes a release operation, the writer creates diffs and

sends them to their page owners. Instead of contacting some writers to get

the current data, a reader sends a request to the page owner in order to

obtain the current data. The single-owner protocol takes Θ(n) messages to

make all the copies of a written page valid if n threads write to the page

and they all attempt to read the page. In this chapter, we present an

implementation of the single-owner protocol. We also demonstrate how

the single-owner protocol solves the problems of diff accumulation and

synchronous garbage collection.

4.1 Di� Creation

Due to limited RAM in our test environment, we use a slightly modified

software write detection method [ZSB94] to create the diffs. See Sec. 1.3.3.

A diff consists of addresses and final values of a sequence of writes to a

page on the shared memory. A piece of code is manually inserted before

write operations to shared memory. This piece of code marks a bit which

indicates the corresponding address written by the application. The smallest

granularity of operations to the shared memory is a word, which is four bytes

in our system.

We also partition a physical page, 4 K, equally into 32 pieces of 128 bytes,

called pseudo pages. Our code also sets a bit of the pseudo page bit map if

the pseudo page is written.

This definition is different from [CBZ95] in which a diff describes the

difference between twin pages. In [CBZ95], there is no diff at all if a thread

does not change the value on the twin page even if it writes to the page.

4.2 Managing Write Notices

The system architecture is the same as in Fig. 2.5. Assume there are n

threads. As mentioned in Chapter 2, a modified lazy invalidate protocol

is used to propagate invalidation information of written pages. Instead of

53

passing write notice sets from a thread to another thread in the lazy invalidate

protocol, this modified protocol passes write notice sets from a thread to a

synchronization object or from a synchronization object to a thread. In

addition to the written page number and the time stamp when a write notice

is created (see Sec. 2.5.3), a write notice includes a pseudo page bit map

in the implementation of the single-owner protocol. A write notice indicates

which pseudo pages have been modified in the page.

4.2.1 Write Notice Table

Each system server has n + 1 time stamp vectors [KCDZ94, BM93] of length

n, SiteTV[0..n-1] and TableTV, where n is the number of threads in the

system. Each system server also has a write notice table with n entries.

Each entry points to a list of write notice sets from the same thread in their

time stamp order. The list always stores write notice sets from contiguous

phases. (We may consider the execution of a thread as a sequence of phases.

Two phases are contiguous if one phase immediately follows the other in the

sequence with no intervening phases in between.) TableTV[j] indicates the

latest write notice set on the jth entry in the write notice table.

SiteTV[j] is thread i’s conservative estimate of what write notice sets

thread j has. From thread i’s view point, thread j keeps write notices

which were generated by thread k with time stamps smaller than or equal to

SiteTV[j][k]. SiteTV is used to propagate a sufficient set of write notices

to other system servers. SiteTV is also used to perform garbage collection

asynchronously.

4.2.2 Executing a Synchronization Operation

When thread i executes a release operation, it informs its system server of

the attribute and the parameter of the operation. The system server finds the

54

location of the synchronization server, say on system server j. System server

i collects write notice sets created at the phases which reach the current phase

of thread i and which system server j does not have (based on SiteTV[j]).

System server i sends system server j the write notice sets and the parameters

of the synchronization operation, the synchronization object id, the operation

id and the operation’s attribute, etc. After system server i sends the write

notices to system server j, system server i updates SiteTV[j] with the latest

time stamps in the sent write notice sets. If thread i executes an operation

with the acquire attribute, the system server does not include write notice

sets in the requesting message.

4.2.3 Synchronization Object

When system server j receives the synchronization request with write notice

sets from system server i, it puts the write notice sets into its write notice table

if the time stamp of the write notice set is greater than the corresponding entry

of TableTV; otherwise the system server may discard the write notice set.

System server j also updates its SiteTV[i] based on write notices it receives

from system server i. Afterwards, system server j calls the corresponding

synchronization object to perform the operation.

Each synchronization object has a time stamp vector, SyncTV. SyncTV[i]

stores the latest phase of thread i which reaches the object. When the syn-

chronization object executes SyncReply(. . .), the object informs the local

system server about its SyncTV, the result of the execution and the attribute

of the operation. If the request is for an acquire operation, the system server

collects all write notice sets (created by thread k) whose time stamps are

greater than SiteTV[i][k] and less than or equal to SyncTV[k] for all k.

(The phases creating these write notices reach the current phase of the syn-

chronization object but they are not in system server i.) Then, system server

55

j updates SiteTV[i] with the time stamps in the sending write notice sets.

4.3 Making a Page Up to Date

4.3.1 Page Table

System servers are responsible for invalidating the local copies of pages in

shared memory. System servers also serve read requests from local threads

and other system servers. Each system server also has a page table to monitor

the status of the local caches of pages in shared memory. For each page α,

the page table maintains two time vectors and a bit map, wPhaseα, wnPhaseα

and wBitMapα. See Fig. 4.1.

wnPhaseα[j] stores the last reachable phase of thread j in which thread

j writes to page α. wPhaseα[j] stores a time stamp, the time when the

last update from thread j has been applied to the local copy of α. Active

write notices of a page are those created after wPhaseα[k] but not later than

wnPhaseα[k] for 0 ≤ k < n. If the set of active write notices is not empty, the

local copy of the page is invalid. The system server informs the local thread

to protect the page from illegal accesses. wBitMapα is the bitwise-OR of α’s

pseudo page bit maps from those active write notices. wBitMapα indicates

which pseudo pages were written by other threads since the page became

invalid.

4.3.2 Page Owner

Initially, each page in shared memory is owned by some system server. The

system server is the initial page owner of the page. This information is known

to all system servers. Later the system server of the first thread reading or

writing the page is designated to be the page owner of the page by the initial

page owner.

56

class PageEntry{
public:
invalidPage(int writer, int _time_stamp, int _bit_map);
readRequest(int reader, vector &_wnPhase, int _bitmap);
localReadRequest(int page);
updatePage(int writer, vector &_wnPhase, int _time_stamp, Diff &_diff);

private:

/* wnPhase[i] indicates the last reachable phase of thread i to the
current phase of the local thread when thread i writes to the page.
*/

vector wnPhase;

/* wPhase[i] indicates the time stamp when the last update from
thread i has been applied to the local copy of the page */

vector wPhase;

/* wBitMap indicates which pseudo pages have been written after
wPhase and before wnPhase */

int wBitMap;

/* valid indicates whether the page is valid or not */
boolean valid;

/* These two queues are used to store read and write requests if
they arrive too early */

Queue readRequestQueue;
Queue writeRequestQueue;

};

Figure 4.1: Page table

57

PageEntry::invalidPage(int _writer, int _time_stamp, int _bit_map){

if (wPhase[_writer] < _time_stamp) // never obtain the diff before
wBitMap = wBitMap XOR _bit_map;

if (wnPhase[_writer] < _time_stamp) { // new write notice.
wnPhase[_writer] = _time_stamp;
if (valid) {

valid = FALSE;
return 1;// inform system server a newly invalided page.

}else return 0; // the page is invalid already.

}
}

Figure 4.2: Invalidating a page

Initially each system server sends a read request to the initial page owner

when its local thread attempts to read the page. The initial page owner either

grants the ownership to the requesting system server—The system server then

becomes the new owner—or informs the requesting system server of the new

owner and then forwards the read request to the new owner. The ownership

of a page can be transfered only once in our current implementation.

The ownerships of pages are also propagated with write notices to other

system servers in order to reduce the resending of messages for read and write

requests. Programs may intentionally touch shared pages at the beginning of

execution to find out who owns them, to reduce unnecessary messages passing

around afterwards.

4.3.3 Invalidating a Page

When system server i receives the response from a synchronization object

for an operation with an acquire attribute, it gets several write notices. After

it puts them into its write notice table, it collects an invalidation set for the

58

local thread. An invalidation set consists of all write notices created in the

phases which reach thread i’s new phase.

The system server sets wnPhaseα[j] to s if a write notice for page α in the

invalidation set is generated by thread j with time stamp s and s is greater

than the old wnPhaseα[j]. The system server bitwise-ORs its wBitMapα

with the pseudo page bit map in the write notice if s is greater than local

wPhaseα[j] and i 6= j. See Fig. 4.2.

A page is invalid if an active write notice for the page exists. The system

server collects the pages, whose status become invalid, and sends their page

numbers to the local thread. The local thread sets read protection on those

pages. Any illegal accesses to those pages generates a segment fault. A

memory handler takes an appropriate action to make the page valid.

4.3.4 Updating the Copy of a Page in the Page Owner

When a thread executes a release operation, the thread generates diffs of

modified pages. The system server bundles all diffs whose page owners are

in the same processor with their wnPhase time stamp vectors and sends them

to the processor.

After the system server receives α’s diff and wnPhase′
α from the sender, it

checks whether α’s diff arrives early by comparing its local wPhaseα against

wnPhase′. If entry i in its local wPhaseα is greater than entry i in wnPhase′

for all 0 ≤ i < n, where n is number of threads, the system server applies the

diffs to the local cache of page α. Otherwise, the system server suspends the

work by putting the writer’s request into a list, writeRequestQueue, until

the above condition is satisfied. See Fig. 4.3. Thus, all the diffs for α in the

page owner are applied in the order of the DAG defined at Sec. 2.3.2.

59

PageEntry::updatePage(int _writer, vector& _wnPhase, int _time_stamp,
Diff &_diff){

if (_wnPhase <= wPhase) {// all reachable writes have arrived.
apply _diff to the page;
wPhase[i] = _time_stamp;

// remove a pending writer, whose wnPhase is smaller than or equal to
// current wPhase from writeRequestQueue.

while ((head = writeRequestQueue.getPendingMember(wPhase)) != NULL) {
apply head.diff to the page;
wPhase[i] = head.time_stamp;

}

// remove a pending reader whose wnPhase is smaller than or equal to
// current wPhase from readRequestQueue.

while ((head = writeRequestQueue.getPendingMember(wPhase)) != NULL) {
reply to the reader with all pseudo pages marked on head.bitmap;

}

}else writeRequestQueue.enqueue(_writer, _wnPhase, _time_stamp, _diff);
}

Figure 4.3: Updating the page owner

60

PageEntry::readRequest(int reader, vector &_wnPhase, int _bitmap){
if (_wnPhase <= wPhase) { // all diffs have arrived
reply to the reader with all pseudo pages marked on _bitmap;

}else {// some diffs are not arrived
readRequestList->enqueue(int reader, vector &_wnPhase, int _bitmap);

}
}

Figure 4.4: The procedure page owners use to handle a read request

PageEntry::localReadRequest(int page){
if (itself is the page owner) readRequest(myid, wnPhase, wBitMap);
else send a request to the page owner.

}

Figure 4.5: The procedure system servers use to handle a read request

4.3.5 Reading an Invalid Page

Read Request

When thread i attempts to read an invalid page α in shared memory, a

memory handler catches the memory fault and sends a read request to its

system server.

If system server i is not page α’s page owner, it sends a read request with

its copy of wnPhasei
α and of wBitMapi

α to the page owner. See Fig. 4.5.

After the page owner receives a read request, it checks whether all diffs

for the read request have arrived by comparing its own local wPhaseα against

wnPhasei
α. If wnPhasei

α[j] is smaller than or equal to wPhaseα[j] for all

j, all diffs of thread i’s active write notices have arrived already. The page

owner sends all pseudo pages marked on wBitMapi
α to system server i. If

the condition does not hold, the page owner puts the read request into a list

readRequestList until all diffs for thread i’s active write notices arrive. See

Fig. 4.3 and Fig. 4.4.

61

(B) merged diffs(A) diffs

one

page
pseudo

(C) pseudo pages
 cover diffs

Figure 4.6: Diffs and pseudo pages

Pseudo Pages

Instead of sending a set of diffs, the single-owner protocol responds to a

read request with a set of pseudo pages. The single-owner protocol merges

all diffs into one entity, called a merged diff. See Fig. 4.6(B). Then it sends

the set of pseudo pages (see Fig. 4.6(C)) which cover the merged diff to the

requesting system server. The merged diff is obtained by applying the set of

diffs to the page in the DAG order. The merged diff consists of all addresses

and the final value written by the set of diffs. The set of pseudo pages is a

superset of the merged diff.

An exceptional situation may occur when a thread writes to page α and the

diff of that page has not been flushed to the page owner. Page α is invalidated

after performing a synchronization operation with attribute acquire. The

pseudo pages acquired from the page owner may clobber what the thread has

written on α.

In order to deal with this problem, the thread creates a diff for page α

62

invalidAccess(int page){
// This procedure is called by memory handler at thread process when
// a invalid page is accessed.

if ((the page has been written but the result has not been flushed to
its page owner) && (the page owner is not local)) {

obtain diff for what the local thread has written to the page;
}

send read request to system server;

wait until the page is updated by the system server;

apply the diff back to the page;

}

Figure 4.7: The procedure threads use to handle an invalid access to a page

before the system server applies the pseudo pages (from the page owner) to

page α. After applying the pseudo pages onto page α, the thread redoes the

diff, thus restoring the thread’s writes. See Fig. 4.7.

There is no need to keep diffs in local sites because the page owner keeps

the current state of α, and each thread knows which pseudo pages should

be fetched. Since a superset of the merged diff is sent to the requesting

thread, there is no diff accumulation at all. At the end of this section, we

will demonstrate that the extra data in the pseudo pages does not affect the

memory consistency.

4.3.6 Writing to a Page

The system does not protect a page from write accesses since the thread

does not read stale information from the page. Later if the thread attempts

to read the written page, a segment fault is raised. The memory handler

63

creates diff containing whatever the thread has written to the page so far and

then sends a read request to its system server. After the system applies the

pseudo pages on its local copy, the thread redoes the diff back to the page.

Then the computation resumes.

Since each thread reads valid pages and all written values depend on all

valid values, delaying the fetching of current data for an invalid page does not

affect its correctness. This procedure is essentially equivalent to protecting

the page from both write and read access. When a segment fault occurs, the

system server acquires a current copy of the page. Then the computation

resumes. In some applications threads just write to a page without reading

it. This approach saves several messages to make the page current.

4.3.7 Correctness of Pseudo Pages

In Sec. 4.3.5, we stated that the response of a page owner to a reader thread

consists of a set of pseudo pages. The set of pseudo pages is a superset of the

merged diff. In Sec. 4.3.4, we also showed that all diffs applied to the page

of the page owner are in a DAG order. In this section, we will demonstrate

that extra data in pseudo pages does not clobber the memory.

Assume that the communication between two processors is in FIFO order.

Some pages in the local memory of a processor are reserved for shared mem-

ory. Those pages are initialized to zero. If thread i intends to read an invalid

page, page α, system server i receives a set of pseudo pages to update its

local copy of page α. We now demonstrate that the set of pseudo pages does

not clobber the memory based on the algorithm we presented at Sec. 4.3.5.

Let X be a word in page α. X’s corresponding value in the pseudo

pages (from the page owner) is x0, but x0 is not in the merged diff. X’s

corresponding value in thread i’s cache is x1. P0 is the phase when x0 is

created. P1 is the phase when x1 is created.

64

In this is thread i’s first attempt to read the page, either P1 is reachable

from P0, P0 ≺ P1, or x0 is equal to x1, P0 = P1, since x1 is the initial value.

X in thread i cannot get clobbered in this case.

Assume this is the first time X in thread i gets clobbered by x0. That

means P1 is reachable from P0, P0 ≺ P1.

Lemma 1 x1 is written by thread i but not by any other thread if X in thread

i gets clobbered by x0.

Proof By contradiction, suppose x1 is written by another thread j. Thread

i can only get x1 from the page owner based on the single-owner protocol.

So x1 is in the page owner before x0. That is, either P1 is concurrent with

P0 or P0 is reachable from P1, P1 ≺ P0 since all writes are applied to the

page owner in the DAG order. X cannot get clobbered in this case. This

contradicts our assumption that x1 is written by thread j and j 6= i. 2

There are two scenarios that may take place before thread i attempts to

read page α. In the first scenario, thread i has executed a synchronization

operation with either a release, release acquire or acquire release attribute

such that x1 has been flushed to the page owner before thread i reads page

α. So x1 is in the page owner before x0. P1 is either concurrent with P0 or

P0 is reachable from P1, P1 ≺ P0. So X is not clobbered.

In the second scenario, thread i only executes synchronization operations

with the acquire attribute after it writes x1. By our algorithm, system server

i keeps a copy of x1 before x0 is written to address X. Afterwards, the system

server writes x1 back to X again. Only when P0 is reachable from P1, X can

be clobbered. However, there is no release operation executed since thread

i writes x1 to X. It is impossible for any phase to be reachable from P1.

It contradicts our assumption that X cannot get clobbered in this scenario.

Therefore pseudo pages do not affect memory consistency.

65

4.4 Garbage Collection

After a thread invalidates pages in shared memory according to its invalida-

tion set, all information is put in the wnPhases and wBitMaps fields of the

page table. The invalidation set is useless for the thread itself. But its sys-

tem server keeps the set until it makes sure all other system servers get those

write notices. Ideally, system server i may remove write notices from its write

notice table as long as the information about those write notices has been put

into the page table and their time stamps, generated by thread j, are smaller

than SiteTV[k][j] for all k 6= i. SiteTV conservatively estimates what write

notices other system servers have.

SiteTV[j] is updated when the local system server sends write notices

to, or receives write notices from, system server j. Synchronization server j

might now have synchronization objects. SiteTV[j] does not change during

the computation in other synchronization servers. So each system server

periodically broadcasts its TableTV to all other threads. All system servers

update their SiteTVs based on the TableTVs they receive.

Once the size of the write notice table exceeds a certain threshold, system

servers may remove useless write notices asynchronously.

66

67

Chapter 5

Performance Evaluation

5.1 Experimental Environment

The platform for the performance evaluation of our current implementation

consists of eight Pentium-Pro personal computers with 64 M bytes RAM

connected by 100Mbps Ethernet; the operating system is Linux; the commu-

nication protocol is TCP/IP; and the reported times are wall clock times.

We pick five applications, EP (embarrassingly parallel benchmark), IS

(integer sort) from NAS [BBB+94], a heat flow transformation problem from

the homework of the distributed computing class at NYU, Barnes-Hut from

SPLASH-2 parallel application suite [WOT+95], and the Mandelbrot set from

[GLS94].

We are going to compare the performance of the single-owner protocol

to one of the multiple-owner protocols, the lazy invalidate protocol. Both of

these protocols implement RCHS. The applications use barriers and locks as

their synchronization primitives, with the exception of the Mandelbrot set,

where we implement a user-definable synchronization object.

In order to get a fair evaluation, both protocols share the same code

for generating diffs and propagating write notices. However, the size of

a write notice in the single-owner protocol is larger than the one in the

multiple-owner protocol since a write notice in the single-owner protocol

includes its 4 bytes pseudo page bit map. The techniques for updating a

stale page are also different between the single-owner protocol and the

multiple-owner protocol.

When a thread intends to access an invalid copy of a page in the

multiple-owner protocol, the system server sends read requests to a subset

of system servers which create the active write notices (see Sec. 1.3.2).

Garbage collection is not implemented in our version of the lazy invalidate

protocol. The single-owner protocol implements garbage collection. The

architecture has been illustrated in Fig. 2.5.

number of keys = 223

number of keys = 223

application problem size
sequential
execution
time (sec)

EP
barrier

barrier
2048x1024 matrix

30 loops

Barnes-Hutt barrier

HFP

IS

IS1024

128

D

HFP &

max of keys = 128

max of keys = 1024

y = [0.5, 1.25]

barrier, semaphore

barrier, semaphore

barrier, semaphore or

8192 bodies

10.7

30.7

10.7

18.2high level sync. obj.

2306.4

44.2

N = 2

synchronizatoin type

Mandelbrot

28

x = [-2, -1.25]

Table 5.1: Application Profiles

68

5.2 Applications

5.2.1 An Embarrassingly Parallel Benchmark (EP)

Brief Statement of the Problem

The benchmark program [BBB+94] generates pairs of Gaussian random de-

viates and tabulates the number of pairs in successive square annuli. First

the algorithm selects pairs of random numbers x, y, which satisfy t = (2x−
1)2 + (2y − 1)2 6= 0. Random numbers are generated based on the pseudo

code in [BBB+94]. Then it calculates independent Gaussian deviates, X

and Y , where X = x((−2 ln t)/t)(1/2) , Y = y((−2 ln t)/t)(1/2). It also tab-

ulates Ql as the count of the pairs (X, Y) that lie in the square annulus

l ≤ max(|X|, |Y |) < l +1, where 0 ≤ l ≤ 9 and l is an integer. After generat-

ing 228 random numbers, it prints the ten Ql counts and the two sums
∑

X

and
∑

Y .

Implementation

In the parallel version, two tables, Q′
l[0..n − 1][0..9] and S[0..n − 1][0..1],

where n is number of threads, are in the shared memory. Each thread

generates 228/n random numbers; 228 divides n without lose of generality.

After obtaining the Gaussian deviates, the thread adds the result to its lo-

cal counts for Ql and local summations for X and Y . At the end of the

computation, thread t writes its local result of Ql into Q′
l[t][0..9], its lo-

cal summation of X into S[t][0], and its local summation of Y into S[t][1],

where 0 ≤ t < n. After all the threads finish, thread 0 sums up values in

Q′
l[0..n − 1][0..9] and S[0..n − 1][0..1] to get Ql,

∑
X, and

∑
Y . Then the

results are printed. The page owner of these two tables is in system server 0

in the single-owner protocol.

69

Performance

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Sp
ee

du
ps

Number of Processors

single-owner

multiple-owner

Figure 5.1: Speedup of EP

The sequential execution time of EP is 2, 306.4 seconds. Threads

only communicate with thread 0 at the end of computation. The

multiple-owner protocol on eight processors takes 291.2 seconds to finish the

task. Its speedup is 7.9. The single-owner protocol takes 290.1 seconds.

Its speedup is 7.9. Table 5.2 shows the number of messages sent and the

total size of messages for the computation. Since the page owner of Q′
l and

S is system server 0 and thread 0 is the only thread that reads those two

arrays, the number of messages passed and total size of those messages in

70

total size of all
messages (K bytes)

total size of all
messages (K bytes)

2 3 4 5 6 7 8number of processors

single
owner
protocol

multiple
owner
protocol

number of messages

number of messages

5 10 15 20 25 30 35

0.2 0.6 1.1

6 12 18 24 30 36 42

0.2 0.6 1.1

1.5 2.1 2.7 3.5

1.7 2.6 3.6 4.9

Table 5.2: Message counts and message size for EP

the single-owner protocol is smaller than in the multiple-owner protocol.

The memory access patterns are illustrated in Fig. 3.3(A) and 3.3(C)

Since EP is a coarse-grained computation, the performance of both

protocols is close to the best result we can get. The result shows the

single-owner protocol does not require too much overhead if threads seldom

access the shared memory.

5.2.2 Heat-ow Transferring Problem (HFP)

Brief Statement of the Problem

The computation simulates the transfer of heat energy over a two

dimensional square boundary. It is a simple classic PDE problem. We

have discussed in Sec. 3.2 the potential difficulties if the program uses the

multiple-owner protocol. Suppose there is a square surface whose sides are

at a certain temperature (which remains constant over time). The interior

of the square starts out with a constant zero temperature. We are interested

in whether the temperature inside the square can reach a steady state—i.e.

71

the change in the temperature of the square is below a threshold over time.

Let T (x, y, t) be the temperature inside the square, where (x, y) specify the

coordinates inside the square, and t is time. The partial differential equation

specifying the heat transfer is ∂2T
∂2x

+ ∂2T
∂2y

= ∂T
∂t

.

To approximate the solution is to divide the plate into a grid and simulate

the equation on the grid over time. For a certain grid point (i, j) at time t,

we can approximate the new temperature at time t + ∆t simply by T (i, j, t +

∆t) = T (i, j, t) + ∆t
(∆d)2

(T (i− 1, j, t) + T (i + 1, j, t) + T (i, j − 1, t) + T (i, j +

1, t)− 4T (i, j, t)), where ∆d is the distance between two neighboring points

on horizontal or vertical lines of the grid, and ∆t is the incremental time step

for the simulation.

Implementation

The program runs in time steps. In the sequential code, we use two 2-

dimensional floating-point arrays A0 and A1 to store the N1 × N2 grid at

the even steps and the odd steps respectively. Each entry, Ax[i][j], at step

k stores the temperature of a grid T (i, j, k∆t), where x = 0 if k is an even

number and x = 1 if k is an odd number. At an even step, the program reads

A1 from the previous step and writes the current temperatures to A0. At an

odd step, the program reads A0 from the previous step and writes the current

temperatures to A1. Before proceeding to next step, the program checks if

| A0[i][j]− A1[i][j] |< ε, for all i, j and for predetermined ε. If the condition

is true, the system has reached steady state and terminates. Otherwise, the

computation continues.

In the parallel version, thread p computes a submatrix of Ax, from row

(N1p)/n to row (N1(p + 1)/n) − 1, where n is number of threads and N1 is

divisible by n (without loss of the generality). The submatrices are stored

in local memory. At each step, the thread checks whether its submatrix is in

72

steady state. If it is, thread p writes 1 to D[p], otherwise, 0. After a barrier,

each thread reads the array D. If D[i] is equal to 1 for all 0 ≤ i < n, all the

threads terminate, otherwise they proceed to the next step. There is a barrier

between two time steps.

When a thread computes the rows on the boundary of its submatrix,

it needs to read rows from other thread’s submatrix (Jacobian computation

[GLS94]). We use array B[0..2n−3][0..N2−1] in shared memory to exchange

the information. When thread t finishes computing its submatrix, it puts the

first row of its submatrix into B[2p−1] and the last row of its submatrix into

B[2p], where p 6= 0 and p 6= n − 1. When thread p computes its submatrix,

it reads other threads’ rows from B[2(p− 1)] and B[2(p + 1)− 1]. Thread 0

writes to B[0] and reads from B[1]. Thread n writes to B[2n− 3] and reads

from B[2n− 4].

We have two sets of programs. One, HFPD, writes 1 or 0 into D and check

whether the system reaches the steady state. Another, HFP, does not write 1

or 0 to D. We are interested in HFP because its access pattern is very similar

to another classic application SOR, successive over-relaxation [Car93].

In the single-owner protocol, the page owner of B[i] is system server i/2+1

if i is even otherwise it is system server (i−1)/2, where i 6= 1 and i 6= 2n−1.

The reader of B[i] owns the pages of B[i]. The system server of thread 0

owns B[1]. System server n− 1 owns B[2n− 4].

Performance

The problem size is 2048 × 1024 with at most 30 loops, if the program

cannot reach the stable state. See Table 5.1.

The execution time for the sequential code is 44.2 seconds. The

execution time of HFP using the single-owner protocol on eight processors

is 6.2 seconds. Its speedup is 7.2. The execution time using the

73

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

HFPD

HFPD

Sp
ee

du
ps

Number of Processors

HFP

HFP

single-owner

multiple-owner

single-owner

multiple-owner

Figure 5.2: Speedup of heat flow problem

multiple-owner protocol is 7.3 seconds. Its speedup is 6.1. Table 5.4 shows

the multiple-owner protocol uses more messages but transmits a similar

amount of data in the course of computation. The single-owner protocol

outperforms the multiple-owner protocol when number of threads is more

than three, see Fig. 5.2.

The pattern of accessing matrix B in both protocols can be depicted by

Fig. 3.7(A) and (C). The single-owner protocol takes advantage of knowledge

about the locations of readers. Writers sends diffs to page owners after they

reach barrier. So thread t does not need to send a read request to get B’s

74

0.5 0.9 1.4 1.9 2.5 3 3.5
total size of all
messages (M bytes)

total size of all
messages (M bytes) 0.5 0.9 1.4 1.9 2.5 3 3.5

182 394 606 818 1030 1242 1454

412 940 1564 2262 2999 3746 4916

2 3 4 5 6 7 8number of processors

single
owner
protocol

multiple
owner
protocol

number of messages

number of messages

Table 5.3: Message counts and message size for HFPD

rows from threads, t − 1 and t + 1 since threads, t − 1 and t + 1 eventually

send diffs to thread t.

HFPD using the single-owner protocol takes 7.6 seconds. Its speed

up is 5.8. HFPD using the multiple-owner protocol takes 8.3 seconds

on eight processors. Its speedup is 5.4. See Fig. 5.2. The speedup

of the multiple-owner protocol does not increase as quickly as the

single-owner protocol when there are more than three threads. Even though

the amount of data sent by the multiple-owner protocol is very close to the

amount sent by the single-owner protocol, the multiple-owner protocol sends

many more messages than the single-owner protocol (see Table 5.3). The

access patterns of writing a value to D and reading D array can be depicted

by Fig. 3.2(A) and (B).

75

total size of all
messages (M bytes)

total size of all
messages (M bytes)

2 3 4 5 6 7 8number of processors

single
owner
protocol

multiple
owner
protocol

number of messages

number of messages

0.5 1.4 1.9 2.4 2.9 3.4

121 244 366 488 854

1.0

294 588 882 1764 20581470

0.5 0.9 1.4 1.9 2.4 2.9 3.4

732610

1176

Table 5.4: Message counts and message size for HFP

5.2.3 Barnes-Hut

Brief Statement of the Problem

The Barnes-Huts method [BH86] is one of the well-known hierarchical meth-

ods to solve the classical N-body problem. The classical N-body problem

models a physical domain as a system of n discrete particles and studies the

changes of the system under the influences exerted on each particle by the

whole set.

Barnes-Hut method consists of four phases [SHT+95], [WOT+95]. The

first phase builds a tree based on the location of each particle. Each leaf in

the tree stores properties of a particle such as its mass, position, acceleration,

potential, velocity, etc. Each internal node of the tree maintains the informa-

tion for the center of mass of all particles in its subtree. In the second phase,

it computes the center of mass for each tree node. In the third phase the tree

is used to compute the forces acting on all the particles. Finally the force

acting on a particle is used to update particles’ properties.

76

Implementation

The sequential execution is divided into time steps. At each time step, a

tree is created based on the locations of all particles. The tree is traversed

bottom up to find the center of mass for each tree node. Then the potential

and acceleration of a particle is computed by calculating the influence of all

other particles. In this phase, the tree is traversed top down for each particle.

If the distance between the tree node and the particle is out of certain range,

the influence from all particles under the subtree to the particle can be just

calculated according to the property in the tree node. Otherwise, the children

of the tree node are visited. In the last phase the new position and the velocity

of each particle is calculated.

In the parallel version, we uses costzones techniques [SHT+95] to par-

tition particles into subsets. The partitioned subsets are determined at the

second time step. The partition of the subsets depends on the location of

particles in space, but it is irrelevant to locations in the array which stores

their coordinates.

Each thread is in charge of the computation for a subset. Threads work on

the same set of particles during the computation. The vectors which maintain

locations of particles are stored in the shared memory. All threads know the

masses of all the particles. In order to reduce the number of synchronizations

at each time step, two arrays are used to keep vectors. In each time step,

threads read the array written in the previous step and then write the result

to the other array.

In the first phase, a private tree is built [LDCZ95] in each thread. The

array keeping the current locations of all particles is read by all threads. Then

the threads compute the centers of mass for all internal tree nodes. In the

third phase, the threads compute forces acting on the particles in its subset.

77

After the new position of each particle is computed, the result is stored into

the array.

Performance

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Sp
ee

du
ps

Number of Processors

single-owner

multiple-owner

Figure 5.3: Speedup of Barnes-Hut problem

We ran Barnes-Hut with 8192 particles for 7 time steps. The last five

iterations are timed to avoid cold start effects. The execution time takes 30.7

seconds. See Table 5.1.

Since the coordinates of the particles a thread computes are irrelevant to

the locations where the particles are stored in the shared memory, threads

78

total size of all

total size of all

2 3 4 5 6 7 8number of processors

single
owner
protocol

multiple
owner
protocol

number of messages

number of messages

24721638 3316 5900

1.45 3.8 5.5 7.2 8.8 10.4 12.1

1598 4309 8148 12392 16406 21624 28208

1.6 3.4 5.3 7.2 9.2 11.3 13.5messages (M bytes)

messages (M bytes)

814 4165 5026

Table 5.5: Message count and message size of Barnes-Hut problem

may write to the same page simultaneously. In the first phase, all threads

read the page. The access patterns are illustrated in Fig. 3.2(A)(B).

As we demonstrated in Chapter 3, the single-owner protocol and the

multiple-owner protocol transmit almost the same amount of data across the

network. But the multiple-owner protocol sends three times more messages

than the single-owner protocol when eight threads run the program. The

speedup of the single-owner protocol with eight threads is 3.0. See in

Fig. 5.3. The speedup of the multiple-owner protocol with eight threads is

1.3.

5.2.4 Integer Sort

Brief Statement of the Problem

The benchmark program integer sort (IS) is selected from NAS [BBB+94].

Integer Sort assumes each of the N inputs keys is an integer in the range from

0 to Bmax − 1 for some integer Bmax. Integer sort is based on determining

the number of keys smaller than i, for all i, 0 ≤ i < Bmax. The information

79

can be used to place a key directly in its position in the output array. The

parameter values suggested in NAS are N = 223 and Bmax = 219. Due to

limited RAM in our environment, the rank of each key is not stored in the

memory, but computed on the fly.

Since the ratio of computation and communication is low, we need to

reduce Bmax to 1024 and 128 to get better performance. We will refer to

the test set for Bmax = 1024 as IS1024 and for Bmax = 128 as IS128. We are

specifically interested in the performance of this application, which exposes

the weaknesses of the single-owner protocol and the multiple-owner protocol.

Implementation

The implementation of IS in the parallel version partitions input keys into n

subgroups evenly, where n is number of threads. Each thread stores one of the

subgroups into its local array. Each thread counts the number of keys equal

to i in its subgroup. Then each thread adds its local counts to a global array,

G, exclusively by requesting a lock. Before a thread adds its local result to

the array, it keeps a local copy of the global array, which is the subtotals

of local counts from those threads that accessed the global array previously.

After all the threads reach a barrier, each thread reads the final result of the

global array. By using the subtotals and final result of the global array all

threads rank keys in their subgroup.

Performance

The sequential execution time is 10.7 second. See Table 5.1. The pat-

terns of accessing the shared memory are depicted by Fig. 3.5(A) and (B).

The writers in the single-owner protocol need to send an extra message to

update the page owners. In contrast, in the multiple-owner protocol thread

80

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Sp
ee

du
ps

Number of Processors

for IS

1024

1024
for IS

for IS 128

128

for IS
multiple-owner

single-owner

multiple-owner

single-owner

Figure 5.4: Speedup of integer sort

t gets the current G from the last writer, tl directly. However, thread t al-

ways sends the diffs which thread tl sends and the new diff it created to the

next reader of G (diff accumulation). Table 5.7 and 5.6 show that the data

sent in the multiple-owner protocol is much larger than the data sent in the

single-owner protocol. The single-owner protocol sends slightly more mes-

sages than the multiple-owner protocol does. However, the speedup chart in

Fig. 5.4 shows IS128 and IS1024 using the multiple-owner protocol outperform

the ones using the single-owner protocol. So sending extra messages to page

owners slows down the system much more than sending messages in large size

81

72 164 266 368 470 572 674

total size of all
messages (K bytes)

total size of all
messages (K bytes)

2 3 4 5 6 7 8number of processors

single
owner
protocol

multiple
owner
protocol

number of messages

number of messages 164

82.3 206.6 334.4 462.4 591.7 722.9 854.8

82 256 348 440 532 624

82.5 247.5 497.5 829.9 1246.1 1746.9 2332.7

Table 5.6: Message counts and message size for IS1024

caused by diff accumulation.

We can exploit some advantages of the single-owner protocol so that the

single-owner protocol outperforms the multiple-owner protocol. For example,

thread i may keep an array Gi in the shared memory where system server i

is the owner of Gi, for each 0 ≤ i < n. After each thread gets its subtotal,

it goes to sleep except for thread 0. Thread 0 writes its subtotal to G1 and

wakes up thread 1. Then thread 0 waits on a barrier. After thread i writes

its subtotal to Gi+1 and wakes up thread i + 1, thread i waits on barrier for

all j, where 0 < j < n − 1. After thread n − 1 writes its result to G0 and

reach the barrier, all threads wake up and read G0. The number of messages

sent is very close to the number sent in a message passing protocol. However,

when the size of G is big as NAS requires, this method requires too much

memory.

82

72 164 266 368 470 572 674

total size of all
messages (K bytes)

total size of all
messages (K bytes)

2 3 4 5 6 7 8number of processors

single
owner
protocol

multiple
owner
protocol

number of messages

number of messages 16482 256 348 440 532 624

82.5 37.6 77.5 129.9 196.1 276.7 371.9

12.3 31.7 54.1 77.1 101.7 127.7 155.6

Table 5.7: Message counts and message size for IS128

5.2.5 Mandelbrot

Brief Statement of the Problem

The Mandelbrot set is defined as the set of all complex numbers c that satisfy

conditions described below.

Define the function fn
c (z) as the repeated application of fc(z) = z2 + c,

where c and z are numbers on the complex plane. Thus f 1
c (z) = fc(z) and

f 2
c (z) = fc(fc(z)). If fn

c (0) stays bounded as n →∞, then we say that c is a

member of the Mandelbrot set.

It can be shown that if |fn
c (0)| > 2 for some n, then fn

c does not stay

bounded at c. For computational purposes, we pick a suitably large number

N and calculate fn
c (0) for n < N . If |fn

c | ≤ 2 for N steps, then we add it to

the set. If not, then we do not add it to the set.

We can characterize each complex number c by a pixel of an image. If fc

stays bounded for N steps we can give it some color, say black. If fc becomes

unbounded after n steps, we can give it another color that is some function of

n. Thus, a sequential version of this program can iterate through all points

83

on the screen, assigning a color to each pixel. In this way, a striking picture

develops.

An optimization to the sequential algorithm is described in [GLS94]. The

authors note that if the border of any square of pixels are all the same color,

then the interior must be of the same color also. Thus our new algorithm

starts by checking the boundary of the region, and if it is all the same color,

it colors the interior. If not, it breaks the region into equal sized blocks

and recursively calls itself on each new region. If a particular block is of a

minimum size, it stops breaking the block and colors the interior pixel by

pixel. This approach substantially speeds up the computation.

Implementation

The simple parallelization of this algorithm involves putting the blocks in a

shared task pool. Each thread accesses the pool, computes the block and

does one of two things: it either breaks up the block and puts the new pieces

in the shared task pool or it colors the whole block (either because it is of

minimum size or because it is all one color).

Because the computation time of each block is small compared to the cost

of communication on a typical network of workstations, we adopt a modifi-

cation of the original scheme to make it slightly coarser grained.

Each thread will have its own local task pool from which it grabs the

blocks. Periodically, say after doing N blocks, the thread will consult with

the global pool to see whether it should take or add blocks to the global

pool to more properly balance the workload. The decision is based on an

approximation to the total number of existing blocks. It takes this number

and divides it by the number of threads. This result can be assumed to be

the number of blocks each thread should be working on (in the ideal case). If

the current thread has more than that number of blocks, it takes some from

84

its local pool and adds it to the global pool. If it has fewer, it takes from the

global and adds to the local.

We use two different methods to implement the algorithm. In the first

one, we use semaphores and barriers to coordinate threads. The global pool

and control information about how many blocks are in the global pool, the

approximate number of blocks in the system and how many threads are sleep-

ing, is protected by a binary semaphore, mutex. When a thread finds out that

the pool is empty and itself does not have any block to work on, it leaves

the critical section and sleeps on a semaphore empty. If a thread finds out

there are more blocks in the pool and some threads asleep on empty, the

thread wakes up those sleeping threads after it leaves the critical section. In

the single-owner protocol, the page owner of the control information and the

global pool resides in the same processor. The control information and the

global pool are in separate pages.

The second method uses a high level synchronization primitive to man-

age the control information and synchronize threads. The information of a

block is still stored in the global pool in shared memory. A high level syn-

chronization class, Pool, is defined. GetAction(. . .), Init(. . .) and Done()

are three interface functions to threads. GetAction() is annotated with at-

tribute acquire. Done() is annotated with attribute release. Init(. . .) is not

annotated with any attribute.

GetAction(. . .) gives the number of blocks in the local memory of the

requesting thread to the synchronization object. The synchronization object

responds to the requesting thread with the number of blocks that the thread

should put into the global pool or get from the global pool. After the thread

finishes putting the blocks into the global pool or getting blocks from the

global pool, it executes Done() to inform the synchronization object that the

work is done. However, the synchronization object can ask the thread not

85

to move any blocks. The thread can keep working on those blocks that it

already has.

If there are no blocks in the pool, the synchronization object just postpones

the response until some threads put blocks into the pool or until every thread

is waiting for a block. In the latter case, the synchronization object sends

termination information to all threads. In our current implementation, only

one thread can access the global pool at a time. Allowing multiple threads

to get blocks from the pool (read the pool) simultaneously is also feasible

for this application. But we are more interested in how the small change

in the program with the high level synchronization object would affect the

performance.

Performance

messages (K bytes)
total size of all

messages (K bytes)
total size of all

messages (K bytes)
total size of all

2 3 4 5 6 7 8number of processors

number of messages

number of messages

number of messages

single
owner
protocol
with high
level sync.

single
owner
protocol
with

basic sync

multiple
owner
with basic
sync.

133 204 291 311 375

5.2 8.3 14.2 19.2 23.1 27.7 35.7

760

188 254 423 476 593 614 780

11.3 19.6 37.6 65.8 90.7 97.7 139.2

215 313 412 554 648 719

103 257

10.1 20.8 40.2 67.4 98.5 138.1 163.5

Table 5.8: Message counts and message size for Mandelbrot set

86

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Sp
ee

du
ps

Number of Processors

with high-level
sync. object

with barrier
and semaphores

with barrier
and semaphores

single-owner

single-owner

multiple-owner

Figure 5.5: Speedup for computing Mandelbrot set

We computed the Mandelbrot set in the plane where x = [−2,−1.25] and

y = [0.5, 1.25]. Assume there are 720 × 480 points in the rectangle. Each

point in the plane is tested by the iteration function, fn
c (z) with z = 0. If

the function stays bounded after 256 iterations, we consider c to be in the

Mandelbrot set.

Sequential execution time is 18.2 seconds. The execution time of

single-owner protocol, with high level synchronization primitives, on eight

processors is 3.95, see Fig. 5.5. Its speedup is 4.6. The execution time

of single-owner protocol without high level synchronization primitives is

87

6.09 seconds on eight processors. Its speedup is 3.0. The execution time

of multiple-owner protocol without high level synchronization primitives is

5.75 seconds on eight processors. Its speedup is 3.2.

Table 5.8 shows that the program with the high level synchronization

primitive uses fewer messages and the message size is also smaller than the

program with basic synchronization primitives. The high level synchroniza-

tion primitive itself eliminates the need for accessing the page in which control

information is located. This information is stored locally in the synchroniza-

tion server. Putting a thread to sleep is done by postponing the response to

the thread.

High-level synchronization primitives also manipulate the waiting queue

easily. The server may work on a request from a thread with higher priority.

In contrast, with semaphores, the thread always needs to fetch one more page

for the control information when it enters the critical section. The thread goes

to sleep or wakes up other sleeping threads by calling another semaphore,

requiring more messages.

We are also interested in comparing the performance of the

single-owner protocol without high-level synchronization primitives to the

multiple-owner protocol. The message size and the access pattern for

fetching the control information and the global pool are like IS128, Sec. 5.2.4.

However, threads may write to the global pool without reading it. In the

single-owner protocol, page faults are not raised until threads attempt to

read a page. In this case, system servers do not need to send a read request

to the page owner of the global pool but send diffs to the page owner. In

contrast, the multiple-owner protocol sends read requests to the last writer

even though threads just write to the global pool.

Fig. 5.5 shows the performance of the program with the

single-owner protocol without high level synchronization primitive is slightly

88

better than the one with the multiple-owner protocol. Even though the

single-owner protocol always needs to send diffs to update page owners, a

stale page does not need to get updated if threads just write to the page

without reading it. However, when the number of threads increases, sending

extra messages to page owners can slow down the system (see Sec. 5.2.4).

The speedup of the single-owner protocol starts to fall behind when there

are eight processors in the system.

89

90

Chapter 6

Related Work

6.1 PVM

PVM (Parallel Virtual Machine) [BDG+91, GBJ+94] is a run time system

built on a heterogeneous collection of originally UNIX computers connected

by a network. PVM provides a uniform interface as a single distributed

memory parallel machine independent of the physical machines. In PVM,

process-to-process communication is done with message passing.

The PVM system consists of two parts, the library of PVM interface

routines and daemons. The library provides functions for users to pass mes-

sages and spawn processes. Daemons reside on all machines and run in the

background. Daemons are used to establish first communication between

two processes. The details of ports and locations are hidden from user pro-

cesses. Some run-time functions are also provided by daemons for example,

broadcasting a message, synchronization, process control etc.[Sun90].

6.2 Munin

Munin [Car93, CBZ95, CBZ91, Car95] provides a virtual address space that

can be accessed by all processes However, Munin supports multiple consis-

tency protocols to improve the performance of the distributed shared memory.

Users need to identify the access patterns of the shared variables and anno-

tate each of them with a proper protocol. Those protocols are conventional,

read-only, migratory and write-shared.

Conventional shared variables are used when multiple processes read the

variables and only one process writes to the variables. This type of vari-

ables follows the sequential consistency model. Read-only shared variables

can be written only during initialization. During the rest of execution, read-

only shared variables cannot be modified. Migratory shared variables are

suitable when processes always access the variables exclusively. These vari-

ables usually are accessed inside a critical section and protected by locks.

The migratory data protocol requires programmers to specify the logical con-

nections between the shared variables and the lock that protect them. The

holder of the lock always keeps the most current values of those corresponding

variables. Write-shared variables are used for an array of variables located

on the same page. Multiple processes write to disjoint parts of the array

concurrently without using synchronization to coordinate the accesses. The

write-shared variables follow the conventional release consistency memory

model [GLL+90]. Munin also supports a suite of synchronization primitives

such as locks, barriers and condition variables.

Munin uses the page-based implementation. The implementation of

Munin’s conventional protocol is based on IVY’s single writer protocol

[LH89] (see Section 1.3.1). Migratory variables are implemented by having

the current lock holder send the values of the associated variables to the

next lock holder when the current holder passes the ownership of the lock

to the next holder. This method eliminates the cost of write misses and

invalidating existing copies of the page in the system. The implementation

of the write-shared variables is described in Section 1.3.2.

91

6.3 TreadMarks

TreadMarks [ACD+96] provides a virtual shared address space like IVY and

Munin. TreadMarks implement lazy release consistency. A program with

a data race condition might get results which programmers do not expect.

However, a program without a data race condition runs as if in a sequen-

tially consistent memory model. Unlike Munin, TreadMarks does not have

different types of shared variables. All of shared memory follows lazy release

consistency. See Section 1.3.2. TreadMarks supports two synchronization

primitives, locks and barriers. Section 1.3.4 describes the implementation of

locks and barriers.

6.4 Calypso

Calypso [BDK95, DKR95] is a software system for writing and executing par-

allel programs on a non-dedicated platform. Calypso provides an abstraction

of a distributed shared memory model with an unbounded number of vir-

tual processors. Programs are executed by steps. Each step can be either

sequential or parallel. In each parallel step, more than one thread works on

the computation. The number of threads created in a parallel step can be

independent of the number of physical processors in the system. Calypso also

provides fault-tolerance and adaptive load balancing functions to avoid exe-

cution on very slow processors and to recover from processor failure. Read-

write conflicts are illegal amongst concurrent threads. In a parallel step, a

process can only read a value written in a previous step. A written value in

the current step is not visible to other threads until the following step.

Computation in Calypso is done by one manager and a dynamically chang-

ing set of worker processes. The manager is reliable but workers can be slow,

fast or even crash. The two-phase idempotent execution strategy [KPS90] is

92

employed. That is, multiple copies of a thread can coexist in the system but

the effect is the same as in the case when only one copy of a thread is executed

on a non-faulty worker. The manager assigns copies of threads to workers

following an eager scheduling strategy [BDK95].

A segment of virtual shared memory is used as a cache of shared memory.

Invalid pages are protected. When a worker accesses protected page, the

system catches the system fault and sends a read request to the manager.

The manager keeps a history of shared memory and gives the last version of

the page to the requesting worker. When a worker finishes the execution of a

thread, it collects the changes it has made to shared memory and sends them

to the manager. The manager accepts the first complete execution of each

thread segment and discards subsequent ones.

6.4.1 Orca

Orca [BBH+96] is an object-based distributed shared memory system. In-

stead of a flat shared memory array, threads in Orca communicate with each

other by executing the user defined operations of shared objects, which are

instances of abstract data types. All operations on shared objects are exe-

cuted atomically (as in monitors [Hoa75]). Operations are also allowed to

block by using condition synchronization.

There are two strategies to implement shared objects. A shared object

stays on one processor and remote threads access the object by using remote

procedure calls. Alternatively, all processors have a copy of the object. When

a read operation is issued on the shared object, the system gets the data

from local copy of the object. Write operations on replicated objects are

implemented by broadcasting the operation and updating all copies [Kaa92].

93

94

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we first identify some weaknesses of modern software dis-

tributed shared memory systems: (1) There are no high level synchronization

primitives provided. Programmers have to use basic synchronization primi-

tives, for example, barriers and locks, to solve synchronization problems. It

is known to be complex. (2) Current multiple writer protocols suffer from

the high cost of making a stale page current if many writers write to the page

and then read the page.

In order to alleviate the above problems, we propose two

mechanisms, user-definable high level synchronization primitives and the

single-owner protocol. The first mechanism provides a friendly paradigm

with which users may compose their own synchronization primitives. The

relationship between synchronization operations and read/write operations

on shared memory is depicted by RCHS.

The single-owner protocol is a new multiple writer protocol. In the

single-owner protocol there is a designated processor, called the page owner

for each page in shared memory. All writers send their diffs to the page

owner. All readers send read requests to the page owner and obtain a set of

pseudo pages which cover the diffs from the page owner.

We have shown the single-owner protocol may reduce the number of mes-

sages to update all readers from O(n2) to Θ(n), when n writers write to

a page and later n readers read the page. However, in a few cases the

multiple-owner protocols use fewer messages than the single-owner protocol

does. The single-owner protocol can still reduce the number of messages in

those cases by assigning the page owner to the processor where one of the

readers of the page resides. But there are some applications, for example

quicksort, that the readers of a page are always fewer than three and are

determined at run time. Thus there is no way for programmers to decide the

location of the page owner. In such applications, multiple-owner protocols

perform better.

In order to take advantage of both protocols, we propose a hybrid owner

protocol, which can be used to increase the efficiency in an adaptive way,

with some pages managed by the single-owner protocol and some by the

multiple-owner protocol.

In our experiments, we implement the single-owner protocol

and a multiple-owner protocol, called the lazy invalidate protocol.

Performance results show the single-owner protocol outperforms the

multiple-owner protocol in most of cases. In the application of the heat flow

problem, even though all threads just write to a small piece of the array on

a page, the performance of the multiple-owner protocol degrades when the

number of processors increases. However, integer sort shows the deficiency

of the single-owner protocol. In this case, there is only one thread reading

and writing to the shared memory exclusively at any point in time. Even

though the multiple-owner protocol suffers from diff accumulation for each

updating message, the effect of the extra messages outweighs the size of

95

messages in our experimental environment. The multiple-owner protocol

performs better than the single-owner protocol does for this application.

We also implement a program, Mandelbrot, using a user-definable

high level synchronization primitive. We compare this program against

a program using only barriers and semaphores. The program with

barriers and semaphores performs similarly when using either the

single-owner protocol or multiple-owner protocol. The program with the

high level synchronization primitive performs 30% better than the program

with barriers and semaphores.

Overall, the result shows the single-owner protocol outperforms the

multiple-owner protocol in most cases. A hybrid protocol may be used for

those cases in which the multiple-owner performs better. User-definable high

level synchronization primitives provide a better application programming

interface for programmers to solve complicated synchronization problems. A

program may also exploit high level synchronization primitives to get better

performance.

7.2 Future Work

The research of shared memory systems used to focus on the hardware im-

plementation. Even though this type of shared memory system promises

very good speedups, the cost of building them is very high. Software dis-

tributed shared memory systems are built on general purpose workstations

(or personal computers) connected by a high latency network. Since local

networks, workstations and personal computers are prevalent, software dis-

tributed shared memory systems may introduce parallel computation technol-

ogy to a larger variety of users. Cost efficient systems and a good application

programming interfaces are essential for software distributed shared memory

96

systems.

In order to implement software distributed shared memory systems in

such a general purpose environment, there are some factors developers need

to be concerned about. These machines are prone to fail [BDK95], and are

shared by several users. If a thread is running on a heavily loaded machine,

it may slow down the computation. An economical way to tolerate faults and

to adapt the system to dynamic load change can make software distributed

shared memory systems more practical.

Some parts of the system we have developed may be improved. One is

to use compiler analysis to reduce the cost for creating diffs. Our current

approach inserts a procedure call before each write to the shared memory.

The procedure call takes the written address and the size of variable as its

parameters. It marks bit maps for the written pages based on the information.

However, operations writing to contiguous addresses or writing to the same

address repeatly in shared memory may be merged to one procedure call. In

the more optimistic case, the compiler may tell the addresses of the diffs at

compile time. This can decrease the cost of creating diffs.

Finally messages with diffs sent to page owners may cause a traffic jam in

the network when all systems servers try to send those messages to other sys-

tem servers at the same time. These messages actually can be overlapped with

computation. They do not need to arrive at their destinations immediately.

Since we use FIFO channels between each pair of system servers, messages

for synchronization purposes could be blocked by messages with diffs. An

effective way to coordinate these messages may enhance the performance of

the single-owner protocol.

97

98

Appendix A

Sample of Code

This appendix shows the code for defining Pool mentioned at Sec. 5.2.5. This

is a full example of a user-definable high level synchronization object.

#ifndef _object_class
#define _object_class

class return_class {
public:
int nrectangles;
int stack_top;

};

class waiting_proc_class{
public:
waiting_proc_class(int proc_id, int n)

{id = proc_id; nrectangles = n;};
waiting_proc_class(){};
int id;
int nrectangles;

};

class Pool {
public:
Pool(int s);
/* return value:

(1) if nrectangle < 0 then pop that many items off
local stack.

(2) if nrectangle > 0 then add items from parameter to
the local stack.

(3) if nrectangle == 0, do nothing
(4) if stack_top == -1, then thread should exit,

computation has finished.
*/

acquire Return_Class GetAction(int nrectangles);

release void Done();

void Init(int nrectangles);
private:
/* data structure defined by the user */
int size_of_stack;
int top;

/*
for holding processes requests when the stack is
empty or some thread is accessing global array

99

*/
queue_class<waiting_proc_class> *mutex;
queue_class<int> *empty;
int stack_in_use;

int num_jobs;
int *proc_jobs;

int NPROC;

void CheckTermination(int proc_id);
void DistribJobs(int proc_id, int nrectangles);

};
#endif

100

#include "queue.H"

template class queue_class<waiting_proc_class>;
template class queue_class<int>;

Pool::Pool(int s)
{
size_of_stack = s;
top = 0;

NPROC = smile_getnsite();
proc_jobs = new int [NPROC];
memset (proc_jobs, 0, sizeof(int) * NPROC);
num_jobs = 0;

stack_in_use = FALSE;

// empty = new Queue_Class<int>(NPROC);
mutex = new queue_class<waiting_proc_class>(NPROC);
empty = new queue_class<int>(NPROC);

}
void
Pool::Init(int nrectangles){
num_jobs = top = nrectangles;

}
void
Pool::GetAction(int nrectangles)
{

int proc_id = GetCliId();

num_jobs = num_jobs - proc_jobs [proc_id] + nrectangles;
proc_jobs[proc_id] = nrectangles;

if ((nrectangles == 0)&&(top == 0))
{
CheckTermination(proc_id);
return;

}

if (stack_in_use) {
}
DistribJobs(proc_id, nrectangles);

}

101

void
Pool::DistribJobs(int proc_id, int nrectangles)
{

int quota = num_jobs / NPROC;

if ((quota == 0)&&(num_jobs > 0)) quota = 1;

if (nrectangles < quota)
{
/* get rectanlges from global stack */
quota -= nrectangles;
if (quota > top) quota = top;

}
else
{/*put rectanlges to global stack */

quota = nrectangles - quota;
if ((top+quota) >= size_of_stack) quota = size_of_stack - top;

quota = -quota;
}

if (quota != 0){/* need to update shared stack */
if (stack_in_use) {

mutex->EnQueue(waiting_proc_class(proc_id, nrectangles));
return;

}else stack_in_use = TRUE;
}

return_class result;
result.nrectangles = quota;
result.stack_top = top;

top -= quota;

proc_jobs[proc_id] = nrectangles + quota;
SyncReply (proc_id, &result);

}

void
Pool::Done(){

stack_in_use = FALSE;
// let the next thread in the queue go if there are jobs waiting for it.

102

if ((top > 0)&&(empty->N_Objects())){
int proc_id;
proc_id = empty->DeQueue();

DistribJobs(proc_id, 0);

return;
}

int nwaiting, i;
if (nwaiting = mutex->N_Objects()){

for (i=0;i<nwaiting;i++){
waiting_proc_class item;
item = mutex->DeQueue();

if ((item.nrectangles > 0)||(top > 0)){

DistribJobs(item.id, item.nrectangles);

if (stack_in_use) return;/* thread will change global stack */
}else CheckTermination(item.id);

}
}

}
void
Pool::CheckTermination(int proc_id)
{
int nwaiting;

nwaiting = empty->N_Objects();

if (nwaiting == (NPROC - 1)) {/* finished */
int i;

return_class r;
int w;

r.nrectangles = 0;
r.stack_top = -1;

for (i=0;i<nwaiting;i++){

103

w = empty->DeQueue();

SyncReply(w, &r);
}
SyncReply(proc_id, &r);

}else empty->EnQueue(proc_id);
}

104

105

Bibliography

[ACD+96] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Raja-
mony, W. Yu, and W. Zwaenepoel. TreadMarks: Shared mem-
ory computing on networks of workstations. IEEE Computer,
29(2):18–28, February 1996.

[Adv93] S. Adve. Designing Memory Consistency Models for Shared-
Memory Multiprocessors. PhD thesis, University of Wisconsin-
Madison, 1993.

[AG95] S. V. Adve and K. Gharachorloo. Shared memory consistency
models: A tutorial. Technical report, Rice University ECE, 1995.

[BBB+94] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter,
L. Dagum, R. Fatoohi, S. Fineberg, P. Frederickson, T. Lasinski,
R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weeratunga.
the NAS parallel benchmarks. Technical Report RNR-94-007,
NASA, 1994.

[BBH+96] H. Bal, R. Bhoedjang, R. Hofman, C. Jacobs, K. Langendoen,
and T. Ruhl. Orca: A portable user-level shared object system.
Technical Report IR-408, Vrije University, 1996.

[BDG+91] A. Beguelin, J. Dongarra, G. Geist, R. Manchek, and V. Sun-
deram. A user’s guide to PVM: Parallel virtual machine. Tech-
nical Report TM-11826, Oak Ridge National Laboratory, 1991.

[BDK95] A. Baratloo, P. Dasgupta, and Z. Kedem. Calypso: A novel soft-
ware system for fault-tolerant parallel processing on distributed
platforms. In Proceeding of the 4th IEEE Intl. Symp. on High
Performance Distributed Computing, 1995.

[BH86] J. Barnes and P. Hut. A hierarchical O(n log n) force calculation
algorithm. Nature, 1986.

[BM93] O. Babaoglu and K. Marzzullo. Distributed Systems, chapter 4.
Addison-Wesley, second edition, 1993.

[BZS93] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon. The Midway
distributed shared memory system. Technical Report CMU-CS-
93-119, Carnegie-Mellon University, 1993.

[Car93] J. B. Carter. Efficient Distributed Shared Memory Based on
Multi-Protocol Release Consistency. PhD thesis, Rice University,
1993.

[Car95] J. B. Carter. Design of the Munin distributed shared memory
system. Journal of Parallel and Distributed Computing on Dis-
tributed Shared Memory, 1995.

[CBZ91] J. Carter, J. Bennett, and W. Zwaenepoel. Implementation and
performance of Munin. In Proceedings of the Thirteen Symposium
on Operating System Principles(SOSP), 1991.

[CBZ95] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Techniques
for reducing consistency-related communication in distributed
shared memory systems. ACM Transactions on Computer Sys-
tems, 13(3):205–243, August 1995.

[CK96] C. Chu and Z. Kedem. Techniques for improving the performance
of multiple writer memory protocols in distributed shared mem-
ory systems. In Proceedings of High Performance Computing,
1996.

[CKK95] J.B. Carter, D. Khandekar, and L. Kamb. Distributed shared
memory: Where we are and where we should be headed. In
Proceedings of the Fifth Workshop on Hot Topics in Operating
Systems, 1995.

[DKR95] P. Dasgupta, Z. M. Kedem, and M. O. Rabin. Parallel processing
on networks of workstations: a fault-tolerant, high performance
approach. In Proc. 15th Intl. Conference on Distributed Comput-
ing Systems, 1995.

[DS90] M. Dubois and C. Scheurich. Memory access dependencies in
shared-memory multiprocessors. IEEE Transaction on Software
Engineering, June 1990.

[DSB86] M. Dubois, C. Scheurich, and F. A. Briggs. Memory access
buffering in multiprocessors. In Proceeding of 13th Annual In-
ternational Symposium on Computer Architecture, 1986.

[DSB88] M. Dubois, C. Scheurich, and F. A. Briggs. Synchronization, co-
herence, and event ordering in multiprocessors. IEEE Computer,
1988.

[GBJ+94] A. Geist, A. Beguelin, J. Dongarra W. Jiang, R. Manchek, and
V. Sunderam. PVM Parallel Virtual Machine A Users’ Guide
and Tutorial for Networked Parallel Computing. MIT Press,
1994.

106

[GLL+90] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta,
and J. Hennessy. Memory consistency and event ordering in
scalable shared-memory multiprocessors. In the Proceedings of
the 17th Annual International Symposium on Computer Archi-
tecture, 1990.

[GLS94] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Par-
allel Programming with the Message-Passing Interface. The MIT
Press, 1994.

[Goo89] J. R. Goodman. Cache consistency and sequential consistency.
Technical Report 61, SCI Committee, 1989.

[Hoa75] C. A. R. Hoare. Monitor, an operating system structuring con-
cept. Communication of the ACM, 17:549–557, October 1975.

[Kaa92] M. F. Kaashoek. Group Communication in Distributed Computer
Systems. PhD thesis, Vrije Universiteit, Amsterdam, 1992.

[KCDZ94] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. Tread-
Marks: Distributed shared memory on standard workstations and
operating systems. In the 1994 Winter USENIX Conference,
1994.

[KCZ92] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release consis-
tency for software distributed shared memory. In the 19th Annual
International Symposium on Computer Architecture, 1992.

[Kel95] P. Keleher. Lazy Release Consistency for Distributed Shared
Memory. PhD thesis, Rice University, January 1995.

[KFJ94] P. T. Koch, R. J. Fowler, and E. Jul. Message-driven relaxed
consistency in a software distributed shared memory. In Pro-
ceedings of the First USENIX Symposium on Operating Systems
Design and Implementation, 1994.

[KPS90] Z. M. Kedem, K. V. Palem, and P. G. Spirakis. Efficient robust
parallel computations. In Proc. 22nd ACM Symp. on Theory of
Computing, 1990.

[Lam79] L. Lamport. How to make a multiprocessor computer that cor-
rectly executes multiprocess programs. IEEE Transactions on
Computers, 28(9):690–691, November 1979.

[LDCZ95] H. Lu, S. Dwarkadas, A.L. Cox, and W. Zwaenepoel. Message
passing versus distributed shared memory on networks of work-
stations. In Proceedings of Supercomputing, 1995.

[LDCZ97] H. Lu, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. Quantify-
ing the performance differences between PVM and TreadMarks.
Journal of Parallel and Distributed Computation, 1997.

107

[LH89] K. Li and P. Hudak. Memory coherence in shared virtual memory
systems. ACM Transactions on Computer Systems, 7(4):321–
359, November 1989.

[Li88] K. Li. IVY: A shared virtual memory system for parallel com-
puting. In Proceedings of the 1988 International Conference on
Parallel Processing, 1988.

[Sch89] C.E. Scheurich. Access Ordering and Coherence in Shared Mem-
ory Multiprocessors. PhD thesis, University of Southern Califor-
nia, May 1989.

[SD88] C. Scheurich and M. Dubois. Concurrent miss resolution in multi-
processor caches. In Proceeding of 1988 International Conference
on Parallel Processing, 1988.

[SHT+95] J. P. Singh, C. Holt, T. Totsuka, A. Gupta, and J. Hennessy.
Load balancing and data locality in adaptive hierarchical N-body
methods: Barnes-Hut, fast multipole, and radiosity. Journal of
Parallel and Distributed Computing, June 1995.

[Ste90] W. R. Stevens. UNIX network programming, chapter 3. Prentice-
Hall,Inc., 1990.

[Sun90] V. S. Sunderam. PVM: A framework for parallel distributed
computing. Concurrency: Practice and Experience, 2(4):315–
339, December 1990.

[Tan92] A. S. Tanenbaum. Modern Operating Systems, chapter 2. Pren-
tice Hall, 1992.

[WOT+95] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological con-
siderations. In Proceedings of 22nd Annual International Sympo-
sium on Computer Architecture, 1995.

[ZSB94] M. Zekauskas, W. Sawdon, and B. Bershad. Software write detec-
tion for a distributed shared memory. In Proceedings of USENIX,
1994.

108

