
Planning in an Imperfect World Using
Previous Experiences

Jen{Lung Chiu

A Dissertation Submitted in Partial Ful�llment

of the Requirements for the Degree of

Doctor of Philosophy

Department of Computer Science

Graduate School of Arts and Sciences

New York University

May 1995

Approved:

Ernest S. Davis, Research Advisor

To My Parents

ii

Acknowledgments

I would like to express my deepest gratitude to my research advisor, Professor Ernie Davis,

for his guidance, advice, supports, and encouragements over these years.

My special thanks are to Professor Ralph Grishman, Professor Richard Wallace, Profes-

sor Jim Hendler, and Professor Robert Hummel for being in my Thesis Proposal Committee

or Dissertation Defense Committee, as well as Professor Martin Davis for being in my Oral

Exam Committee. They have helped me not only at the committee, but also throughout

my graduate school study years.

My thanks should also go to all of the friends I met in New York University. They have

shared my ups and downs during the past years. In particular, my special thanks are due

to Dr. Pei Ouyang, Dr. Frank Chee{Da Tsai, Jyh{Jong Liu, Yaw{Tai Lee, and Shih{Chen

Huang for their helpful discussions and encouragement.

I also appreciate the departmental sta� in the Courant Institute. Their kind assistance

helped me adjust to the new environment with ease and made the study here a smooth and

pleasant experience. Special thanks are due to Anina Karman{Meade, Rosemary Amico,

and Tamar Arnon. The assistantship from the Courant Institute of Mathematical Sciences

is also highly appreciated.

Last but not least, All my family members deserve the greatest merits and special

thanks. They have been always very supportive during my graduate study at New York

University. Abundant credits should go to my wife, for her love, support, understanding

and sacri�ce. Together we went through our enjoyable times and tough roads. I feel happy

to share everything with her and our lovely son in my entire life.

iii

Planning in an Imperfect World Using

Previous Experiences

Jen{Lung Chiu

Advisor : Professor Ernest S. Davis

Abstract

This thesis studies the problem of planning and problem solving in an unpredictable en-

vironment by adapting previous experiences. We construct a single agent planning system

CADDY and operate it in a simple golf world testbed. The study of CADDY combines the

studies of probabilistic, spatial, and temporal reasoning, adapting and reusing plans, and

the tradeo� between gains and costs based on various considerations.

The CADDY planning system operates in an uncertain and unpredictable environment.

Despite limited perception, incomplete knowledge, and imperfect motion control, CADDY

achieves its goal e�ciently by �nding a plan that is already known to work well in a

similar situation and applying repair heuristics to improve it. The capability of adapting

experiences makes CADDY a planning system with learning capability.

In this thesis, we discuss the structure of the CADDY planning system and the results

of experimental tests of CADDY when we applied to a simulated golf world. We compare

CADDY with several other research projects on probabilistic planners and planners which

utilizes experiences. We also discuss how CADDY can be characterized in terms of theoret-

ical work on plan feasibility. Finally, we point out possible directions of system extension

and generalizations of the idea learned from CADDY to other problem domains. Currently

CADDY is not directly applied to real{world problems, but it shows an interesting and

promising direction of study. By combining the techniques of probabilistic reasoning, plan-

ning, and learning, the performance of planning on real{world domains can be improved

dramatically.

iv

v

Contents

1 Introduction 1

1.1 Motivation : 1

1.2 Our Work : 4

1.3 Organization of this Thesis : 5

2 Literature Review 7

2.1 Problems of Classical Planning Systems : : : : : : : : : : : : : : : : : : : 7

2.2 Previous Work on Uncertainty in Planning : : : : : : : : : : : : : : : : : : 8

2.2.1 Probabilistic Temporal Reasoning : : : : : : : : : : : : : : : : : : : 8

2.2.2 BURIDAN: Probabilistic Planning : : : : : : : : : : : : : : : : : : 10

2.2.3 Markov Decision Processes : 12

2.3 Previous Work on Plan Adaptation : 14

2.3.1 HACKER : 14

2.3.2 Case{Based Planning and Memory{Based Planning : : : : : : : : : 15

2.3.3 Adaptive Planning : 19

2.3.4 GTD Paradigm : 21

2.4 Previous Work on Plan Feasibility : 22

3 An Overview of the CADDY Planning System 27

4 The Testbed: A Simple Golf World 31

4.1 Description of the Testbed : 31

4.2 Plans and Quality of Plans : 35

4.3 The Golf World Testbed : 38

5 Implementation 41

5.1 Plan Library : 41

5.2 Estimation Module : 43

5.3 Plan Selection Module : 44

5.4 Plan Adaptation Module : 45

5.5 Plan Execution Module : 53

6 Comparison of CADDY with Other Planning Systems 57

6.1 CADDY and Uncertainty in Planning : 57

6.2 CADDY and Plan Adaptation : 61

6.3 Plan Feasibility Problems : 64

7 Simulation Results 70

7.1 Simulation Result of the Estimation Module : : : : : : : : : : : : : : : : : 71

7.2 Simulation Result of the Plan Selection Module : : : : : : : : : : : : : : : 78

7.3 Simulation Result of the Plan Adaptation Module : : : : : : : : : : : : : : 83

7.4 Simulation Result of the Whole System : 83

7.5 Discussion of Simulation Result : 86

8 Extension and Generalization 87

8.1 System Extension : 87

8.1.1 Run{Time Performance Improvement : : : : : : : : : : : : : : : : : 88

vi

8.1.2 Testbed Extension : 90

8.2 Generalization : 91

vii

viii

List of Figures

3.1 Basic Architecture of the CADDY Planning System : : : : : : : : : : : : : 29

4.1 An Example of a Selected Plan : 36

5.1 Result of the Parsing Stage of the Selected Plan : : : : : : : : : : : : : : : 47

5.2 A Plan Segment and Its Internal Representation with Information Attached

by the Analysis Stage : 48

5.3 Result of the Analysis Stage of the Selected Plan : : : : : : : : : : : : : : 49

5.4 A Replace Heuristic Rule Applied to an Internal Representation of a Plan : 52

5.5 Result of the Adaptation Stage of the Selected Plan : : : : : : : : : : : : : 54

5.6 External Representation of the Adapted Plan : : : : : : : : : : : : : : : : 55

6.1 Causal Structure Changed after R1, R2, or R3 is applied : : : : : : : : : : 68

6.2 Causal Structure Changed after S1 is applied : : : : : : : : : : : : : : : : : 69

7.1 Relation between Plan Cost and Cost Parameter c replace. : : : : : : : : : 72

7.2 Relation between Plan Cost and Physical Parameter alpha. : : : : : : : : : 73

7.3 Relation between Plan Cost and Physical Parameter beta. : : : : : : : : : 74

7.4 Relation between Plan Cost and Physical Parameter lambda. : : : : : : : : 75

7.5 Relation between Plan Cost and Starting Situation distance. : : : : : : : : 76

7.6 Some Example Plans Selected by Simulation of Plan Selection : : : : : : : 79

7.7 Some Example Plans Selected by Simulation of Plan Selection (continued) 80

7.8 The scan PATH of Plan `e1'. : 82

ix

x

List of Tables

4.1 Syntax of a Simple Planning Language Used by the Golf World Testbed : 37

7.1 Simulation Result of the Estimation Module. : : : : : : : : : : : : : : : : : 78

7.2 Plans Selected under Di�erent Parameter Assignments : : : : : : : : : : : 78

7.3 Simulation Result of the Plan Selection Module. : : : : : : : : : : : : : : : 82

1

Chapter 1

Introduction

This thesis studies the problem of planning and problem solving in an unpredictable envi-

ronment by adapting previous experiences. We construct a single agent planning system

CADDY and operate it in a simple golf world testbed. The structure of CADDY suggests

a new direction for the development of automated planners. It combines the study of prob-

abilistic, spatial, and temporal reasoning, of adapting and reusing previous experiences,

and of the tradeo� between costs of sensing and costs of acting. The result of the project

is to demonstrate that adaptive planning can be used e�ectively by agents with imperfect

perception and control.

1.1 Motivation

Planning has always been a central topic in arti�cial intelligence. A large number of

techniques have been introduced in progressively more ambitious systems over a long period

of time. [THD90, McD91] have provided an excellent overview of work in the development

of programs for generating plans. [AHT90, Dav90, Hen92, Ham94] provide a wide ranging

discussion about issues related to planning.

A plan can be viewed as a program that controls the actions of an autonomous agent.

Given a problem, the planning system constructs a set of actions (or a plan) that can reach

a desired goal. This plan can then be passed to an e�ector, such as a mobile robot, a

robot arm, or a manufacturing system, to produce a desired result. Some planners form

a complete plan before any action takes place; others interleave planning and execution.

Interleaving planning and execution enables the planners to repair or enhance the plan if

the planner detects errors caused in plan execution, if changes in the environment force

corrective replanning or permit opportunistic replanning, or if the user requests changes to

the plan.

The problem of planning can be divided into these major parts:

1. Representation. How to represent the plan and its component actions and how to

represent the background knowledge (spatial, temporal, and so on).

2. Physical, epistemic, or other feasibility problem during the execution of plans. The

includes problems about physical preconditions as well as knowledge preconditions;

limitations on perceptions; and exact control of motions (can the plan agent executes

primitive actions perfectly?).

3. How to construct a desired plan for the given starting point; how to search a good

plan from the problem space. Sometimes we can �nd an adequate plan from the

beginning; sometimes we can only �nd a partial plan due to the uncertainty of the

planning environment.

One way to solve the uncertainty problem is to interleave plan building and plan

execution. The planner can generate a sequence of steps at a time, execute these

steps just generated and collect information, then re{generate another sequence of

steps for execution. This allows the planner to guide the planning process and make

the planner less susceptible to errors caused by the changes of the environment, since

2

the planner can generate only those steps the planner has complete knowledge at a

time, instead of a partial plan with uncertainty in it. Work on interleaving planning

and execution can be found in NASL [McD78], SIPE [Wil83], and PRS [PL87].

The other way to solve the uncertainty problem is plan repair or plan correction. The

planner constructs and executes the plan. When an error is detected, the planner

repairs the plan to overcome the error. Works on re{planning can be found in Hayes

[Hay75], Daniel [Dan84], the SIPE planning system [Wil83], and the PRIAR reuse

framework [Kam89, KH89].

Our study mainly focuses on the third problem, how to construct a desired plan for a given

starting point; but we also discuss the other two problems brie
y in our study.

The aim of CADDY is to address the following gaps in classical planning systems:

1. Classical planning systems do not consider uncertainty and unpredictability. They

assume that the planning agents have complete and accurate knowledge of the environ-

ment and perform actions error{free. They thus avoid the consideration of problems

such as knowledge acquisition, error adjustment, failure recovery, and so on.

2. They do not consider the reuse of experience. Classical planning systems always

emphasize the construction of the desired plans from scratch, ignoring the experiences

the systems may have encountered in previous planning.

3. They do not consider the quality of plans. Some plans for a given problem are more

e�cient than others. Classical planning systems emphasize the correctness of the

constructed plans, rather than their e�ciency.

Several previous studies have addressed one or another of these problems (see chapter 2

for detail), but few have considered all three.

3

1.2 Our Work

The CADDY planning system operates in an uncertain and unpredictable environment,

and constructs plans by learning from its experiences to build better and better plans.

CADDY maintains a library of plans which records the quality of each plan under various

circumstances. Given a new situation, CADDY selects from the library the plan that

appears most suitable, modi�es it using domain{speci�c heuristics based on properties of

the current situation, tests the resulting plan, and extends the library accordingly. As a

testbed, we use a simulated world in which CADDY plays golf on a foggy day. In this

world both perception (how far CADDY can see the ball and how accurately it can track

its motions) and control (how accurately CADDY can hit the ball) are limited.

CADDY deals with imperfect perception and control, which are modeled probabilis-

tically. It knows its limitation of perception, and knows that it cannot predict the exact

outcome after executing an action. Given a problem, CADDY will �rst search, in the plan

library where it stores its experiences, for a plan expected to �t the current situation best.

It then uses several heuristics to adjust that plan in order to get a better one for later

execution. The quality of the plan is determined using repeated simulations. If the new

plan is determined to be e�cient, CADDY puts this plan, labelled with its average cost in

this setting into its plan library for future use; otherwise, CADDY discards the plan. Thus,

CADDY is both a planning system and a learning system.

The CADDY planning system is not applied directly to real{world problems, but it

shows an interesting and promising direction of study. With the ability to learn from

experiences, the performance of planning systems should be improved dramatically.

4

1.3 Organization of this Thesis

The thesis will focus primarily on the description and discussion of the CADDY planning

system.

Chapter 2 surveys the previous related literature. We point out the problems of classical

planning systems, then survey research work about planning in uncertainty, planning by

using previous experiences, and plan feasibility problems.

Chapter 3 gives an overview of CADDY. Here we just present the basic block architec-

ture, without mentioning the underlying testbed. We keep the discussion abstract within

this chapter so that these basic ideas can be applied to other problem domains.

Chapter 4 describes in detail the simple golf world which we use as the system testbed.

We will present the spatial and temporal models we use within the testbed, the primitive

actions the planning agent can execute, the representation of plans, the measurement of

cost of each primitive action as well as the whole plan, and the motivation of this testbed.

Chapter 5 extends chapter 3 with detailed discussion of each module of CADDY as

applied to the golf world testbed. We will present implementation details and suggestions

for further improvement.

Chapter 6 discusses several issues of the CADDY planning system. We compare

CADDY to other planning systems mentioned in section 2.2 and section 2.3. We also

discuss the plan feasibility problem. We informally present the physical preconditions and

knowledge preconditions of primitive actions as well as control{structure operators we use

to construct the desired plan, then describe how the CADDY planning system conquers

the plan feasibility problem.

Chapter 7 presents simulated results of the CADDY planning system. We present

several simulation results regarding di�erent separatemodules as well as the whole planning

system. We also have a brief discussion of these simulation results.

5

Finally, chapter 8 discusses some possible directions for improvement and extension

of the CADDY planning system, and how to generalize CADDY to other richer problem

domains.

6

7

Chapter 2

Literature Review

2.1 Problems of Classical Planning Systems

Classical planning systems (like STRIPS [FN71], NOAH [Sac75a, Sac75b, Sac77], and

TWEAK [Cha87]) assume a completely controlled environment. The planning agent is

assumed to have complete and error{free knowledge of its environment and perfect control

of its actions. The agent knows the initial situation of the environment and the e�ects of

each action. It can therefore predict the state of the environment after executing a planned

course of actions. In particular, the agent can know ahead of time whether a speci�c plan

will or will not achieve the goal. With these assumptions, they do not need to deal with

many problems like imperfect or uncertain knowledge, limited perception, or imperfect

mobile control.

Unfortunately, these assumptions are unrealistic in many real world problems. People

may not know some detail of an action until they get more information (A thief cannot open

a combination lock until he/she knows the combination); people have limited perception

capability (We cannot see what happens in Washington D.C. if we are currently in New

York City); and people cannot perform any action perfectly without any error (Michael

Jordan cannot shoot the basket 1000 times without a miss). Therefore these planning

systems can only be applied to simpli�ed and limited domains.

Another limitation of most classical planning systems is that they emphasize construct-

ing plans from scratch, rather than on reusing, learning, or adapting known experiences.

That is, these planning systems have no knowledge about plans they have constructed

before. They will always perform the same search task to �nd the same plan again and

again, in case they are asked to solve the same problem. Many resources and much time

are wasted in this way.

2.2 Previous Work on Uncertainty in Planning

Some work related to uncertainty in planning has been done in recent years. Some testbeds

(like the Tileworld, the Truckworld, and Phoenix discussed in [HPC93]) also use proba-

bilistic models to govern the occurrence of events.

2.2.1 Probabilistic Temporal Reasoning

Dean and Kanazawa [DK87, DK88] �rst introduced probabilistic temporal reasoning, which

uses easily obtainable statistical data to provide expectations concerning how long proposi-

tions are likely to persist in the absence of speci�c knowledge to the contrary, and described

an approach to compute probabilistic assessments.

The commonsense law of inertia [McC80, McC86] states that in order to infer that

a proposition ceases to be true, an event with contravening e�ects must be predicted to

occur. Such predictions are often di�cult to make due to the lack of perfect knowledge.

Probabilistic temporal reasoning uses past experiences to provide an estimate of how long

certain propositions are likely to persist. The persistence rule states that the probability

of \ proposition P holds at time t" is in
uenced by the following conditional probabilities

and the probabilities of the conditions:

8

Natural Attrition represents the conditional probability that, given no direct evidence of

events to a�ect P and that P is true in a prior situation, P tends to remain true. The

law of inertia claims that this conditional probability ought generally to be 1, but in

practice, this conditional probability decreases as time passing by, and the decreasing

rate depends on the persistence nature of P .

Causal Accretion represents the conditional probability that, given the occurrence of

events that make P true, P becomes true. This conditional probability is generally

1.

Negative Causal Accretion represents the conditional probability that, given the occur-

rence of events that make P false, P becomes true. This conditional probability is

generally 0.

Spontaneous Causation represents the conditional probability that, given no direct ev-

idence of events known to a�ect P and P is false in a prior situation, P suddenly

becomes true. In view of the law of inertia, this conditional probability is generally

0.

By giving the probabilistic distribution of the initial situation, the probability of events

known to a�ect proposition P , and above conditional probabilities, it is easy to determine

the probability of P being true by simple probability calculation.

By expressing knowledge of causal rules in terms of conditional probabilities, prob-

abilistic temporal reasoning can make appropriate judgments concerning the persistence

of propositions and the probabilistic projection problem [DK87], which is a probabilistic

version of the projection problem [DM87], which involves computing the consequences of

a set of conditions (observations) given a set of cause{and{e�ect relations (causal rules).

Further work can be found in Kanazawa & Dean [KD89] and Dean et. al [DFM89].

9

2.2.2 BURIDAN: Probabilistic Planning

BURIDAN [KHW93, KHW94] is an implemented partial{order planer that uses probabil-

ities to represent uncertainty in the world state and in the e�ects of its operators. Given

a probabilistic distribution over possible initial world states, a boolean combination of

propositions representing the goal, conditional probability distributions over operator out-

comes, and a probability threshold � ,BURIDAN produces a plan that achieves the goal

with probability at least � .

BURIDAN extends the STRIPS representation to allow conditional and probabilistic

e�ects. The initial state is represented as a probability distribution over possible world

states. The goal state is represented as a boolean combination of propositions which must

holds at the end. The action representation is adapted from Hanks' work on probabilistic

projection [Han90a, Han90b]. An action's e�ects are modeled by partitioning world states

into mutually exclusive and exhaustive equivalence classes and mapping each class into a

particular outcome. This action model assumes that every action can be executed in any

world state, but the e�ect of executing the action depends on the state at the execution

time as well as on random chance.

Re�ning a plan with conditional and probabilistic operators di�ers from re�ning a plan

in classical planning systems in two important ways.

� First, classical plan re�nement establishes a single link between a producing step (a

step which sets propositions' truth values) and a consuming step (a step which can

be feasible only if the propositions hold), and the link ensures that the supported

propositions will be true. Causal support in a probabilistic plan is a cumulative

concept: multiple links may be necessary to support a proposition since no single

link makes the proposition su�ciently likely to be true, but the disjunction of these

links does. The more links supporting a proposition, the more likely it is that the

10

proposition will be true.

� Second, classical plan re�nement resolves threats (a step which voids the e�ect of

producing step so that the consuming step will not be feasible if the threat occurs

between them) by ordering the threatening step either before the producing step

(demotion) or after the consuming step (promotion). Probabilistic plan re�nement

can also resolve the threats without changing the structure of the proposed plan, as

long as the threat is su�ciently unlikely to occur (confrontation).

BURIDAN searches through a space of partial plans. Each plan consists of a set of

action instances faig, a partial temporal ordering relation < over faig, and a set of causal

links. A causal link has form i=�Q
S
j, meaning that proposition Q is a trigger condition for

action aj 's outcome, outcome � of action ai contains Q and that BURIDAN is counting

on ai=� to make Q true and remain true until aj is executed. S stores information about

which threats are resolved by confrontation. A step ak is said to threaten link i=�Q
S
j if

some outcome of ak asserts �Q and ak can possibly occur between ai and aj . The probability

that link i=�Q
S
j succeeds in producing Q for aj is the probability that executing ai results

in outcome � and that each step representing a confronted threat results in an outcome

that does not make Q false. BURIDAN confronts a threat by modifying the threatening

step so that each outcome which does not change Q to false produce a safety condition

Si and includes Si into set S. The safety condition is then adopted as an additional goal.

Since the safety condition is only produced by the threatening step's outcome which does

not change Q to false, planning for the safety condition amounts to planning to force the

threatening step to have the outcome which does not change Q to false.

BURIDAN begins from the initial plan which contains

� the initial step a0, which has several outcomes. Each outcome describes a possible

11

initial world. The corresponding trigger records that world's probability;

� the goal step aG, which has a single outcome that produce the success of the plan

triggered by the goal conditions; and

� the ordering constraint a0 < aG.

BURIDAN sequentially executes the following two steps to construct the plan:

Plan Assessment Determine if the probability of the current plan achieving the goal

exceeds � . Terminate execution and return the resulting plan if so.

Plan Generation Otherwise, try to increase the probability of goal satisfactionby re�ning

the current plan. A plan can be re�ned by either resolving a thread to a causal link (by

demotion, promotion, or confrontation), or adding a link to increase the probability

that a desired trigger condition will be true. Each re�nement generates a new partial

plan. If there are no possible re�nements, signal failure; otherwise choose a new

partial plan nondeterministically and loop again.

C{BURIDAN [DHW94] is an extension of BURIDAN which both include actions of

imperfect sensing and combine it with a framework for contingent actions. Further works are

also presented in Bagchi et. al [BBK94], Barret & Weld [BW94b, BW94a], and Williamson

& Hanks [WH94].

2.2.3 Markov Decision Processes

Domains in which actions have probabilistic results and the planning agent has direct access

to the state of the environment can be formalized as Markov Decision Processes (MDPs)

[How60]. An MDP is de�ned as a tuple (S;A; T;R) where S is a set of possible world

states, A is a set of actions, T is a set of state transition functions which map elements

12

of S � A to discrete probability distributions over S, and R is a set of reward functions

which map S � A to real numbers that specify the instantaneously reward of taking the

action at the state. A policy � is a mapping from S to A specifying an action to be taken

at each state. MDPs models have played an important role in planning research (Dean et.

al [DKKN93]), but the assumption of complete observability limits their applicability to

real{world problems.

An extension of MDPs models to Partially Observable Markov Decision Processes

(POMDPs) provides an elegant solution to the problem of acting in partially observ-

able domains. POMDPs extend MDPs by including a set B of possible observations and

a set O of observation functions which map A � S to discrete probability distributions

over B. A belief state is a discrete probability distribution over the set of world states

S. A controller of POMDPs contains two components: a state estimator and a policy.

The policy maps belief states into actions; the state estimator takes last belief state, the

most recent action, and the most recent observation as inputs and produces an updated

belief state (a vector of probabilities over world states). The policy can be constructed

from � and the state estimator can be constructed from T and O by straightforward ap-

plication of Bayes' rule. Monahan [Mon82] and Lovejoy [Lov91] give extensive surveys of

the operations research literature on POMDPs. Chrisman [Chr92] and McCallum [McC93]

describe algorithms for including a POMDPs from interactions with the environment and

use relatively simple approximations to the resulting optimal value function. Cassandra et.

al [CKL94a, CKL94b] present an algorithm for �nding arbitrarily good approximations to

optimal policies and a method for the compact representation of many such policies.

MDPs model provides a framework of gain/cost tradeo�, while POMDPs model adds

the consideration of incomplete knowledge.

13

2.3 Previous Work on Plan Adaptation

Employing heuristic rules to generate initial plans and then debugging if the generated

plans is incorrect has proven to be a useful problem solving and planning strategy. The

e�ectiveness of this strategy depends on the assumptions that the heuristics can be used to

generate e�ciently plans that are correct or near{correct so that debugging plans, while not

necessary e�cient, is robust enough to solve the problems which are incorrectly handled by

the heuristics of generating plans. Memory management, plan indexing, plan modi�cation,

and learning are central issues in planning from experiences.

Due to the gains being made in machine learning and the new work on case{based

reasoning, designing planning systems which learn from experience has emerged as an

important new research direction. Some planning systems have used past experiences in

developing plans for new problems. Here we discuss several famous ones.

2.3.1 HACKER

HACKER [Sus75] is a blocks{world planning system with the capability of failure{driven

learning. It solves problems by looking up plan schemas in its Plan Library, and �tting

them together. Given a problem statement, HACKER constructs a plan by either looking

up in Plan Library whether the input problem instance is an example of a generalized

problem and there exists a generalized plan schema to solve it, or building up a new plan

by knowledge from its Programming Techniques Library and Blocks World Knowledge

Library. If the execution of the constructed plan is halted by bugs, HACKER \criticizes"

and corrects the plan for re{execution. Critics can also be learned by summarizing the

experiences of bug analyzers so that HACKER will avoid the same bug the next time.

HACKER has never been fully implemented yet.

14

2.3.2 Case{Based Planning and Memory{Based Planning

Case{based planning is an extension of Sussman's ideas of retrieval and repair and an

application of case{based reasoning to planning. This approach is also characterized as

memory{based because the organization of the memory of previous plans is changed during

the planning process.

CHEF [Ham86a, Ham86b, Ham89] (and WOK [Ham83]) is a case{based planner that

builds new plans out of its memory of old ones. CHEF's domain is Chinese Szechwan

cooking and its task is to build new recipes on the basis of users' requests. CHEF's input

is a set of goals for di�erent tastes, textures, ingredients, and type of dishes and its output

is a single plan (recipe) that satis�es all of the goals. CHEF consists of six processes:

Problem Anticipation

The problem anticipator notices features in the current input which have previously partic-

ipated in past planning problems. The problem anticipator tries to predict any problems

that might occur as a result of planning of those input features. If the features that are

related to past problems are presented, the memory of the failure is activated and the plan-

ner is informed of the possibility of the failure occurring. A goal to avoid these problems

is also added to the set of goals to be planned for.

Plan Retrieval

The plan retriever searches through the plan library for a plan that satis�es as many of

its current goals as possible while avoiding the problems that have been predicted by the

problem anticipator. The plan retriever uses three kinds of knowledge in �nding the best

match for a set of goals: a plan memory that is indexed by the goals the plans satisfy and

the problems they avoid; a similarity metric that allows the plan retriever to notice partial

15

matches between goals; and a value hierarchy that allows it to judge the relative importance

between goals.

Plan Modi�cation

The plan modi�er alters the plan found by the plan retriever so as to satisfy goals that are

not yet achieved. For each goal that is not yet satis�ed, the plan modi�er looks for the

modi�cation rules associated with the goal and the general plan type. If no rule exists for

a particular goal, the plan modi�er steps up in an abstraction hierarchy and �nds rules for

a more general version of the goal. Once rules are found, actions described in the rules are

merged with existing steps into the plan.

If the goal is partially satis�ed by the plan, the plan modi�er does not have to go to the

modi�cation rules. It can replace the old items by the new ones, remove steps that were

added by old items' critics and add new steps required by the new items' critics.

Plan Repair

If the plan fails after simulation, the plan repairer �xes the faulty plan by building up a

causal explanation of why the failure occurred and using the explanation to �nd di�erent

strategies for repairing it. The causal explanation is built by back chaining from the failure

to the initial steps that causes the failure using a set of causal rules. The explanation is then

used to �nd a structure that organizes a set of strategies for solving the problem described

by the causal explanation. These structures are indexed by the description of a particular

type of planning problem.

16

Credit Assignment

While repairing a faulty plan, CHEF also attempts to repair the characterization of the

world that allowed CHEF to create the faulty plan in the �rst place. CHEF uses the causal

explanation of why the failure occurred to identify the features in the input that led to the

problem so that the failure can be predicted by plan anticipator later.

Plan Storage

Plans are placed in the plan library indexed by the goals satis�ed by the plans and the

problems avoided by them.

Plan retrieval, modi�cation, and storage are essential to the basic planning loop that

allows old plans to be modi�ed in service of new goals. Plan repair, credit assignment are

used when constructed plans fail to satisfy the given goals. Plan anticipator uses knowledge

collected by credit assignment to predict possible problems during plan construction.

Hammond [Ham86a] demonstrated how CHEF works. In planning for the goals to

include SNOW PEAS and CHICKEN in a STIR FRY dish,

1. The plan anticipator is reminded of a past failure CHEF encountered in building the

BEEF AND BROCCOLI plan. CHEF had tried to stir fry BEEF and BROCCOLI

together, which allowing the liquid from the BEEF to make the BROCCOLI soggy.

CHEF adds a new goal to avoid this problem.

2. The plan retriever uses the descriptions of the food (CHICKEN, SNOW PEAS),

tastes (hot, spicy, savory, fresh, etc), textures (crunchy, chewy, �rm, etc), and types

of dishes (STIR{FRY, pasta, etc) as indices to retrieve the plan from plan library. It

chooses BEEF{BROCCOLI, STIR{FRY recipe as the base plan.

3. The plan modi�er alters the plan by substituting CHICKEN for BEEF and substi-

17

tuting SNOW PEAS for BROCCOLI, then adding a step of boning the CHICKEN

before chopping by the critic under the concept CHICKEN.

4. CHEF does not run into any failure for this STIR{FRY dish with CHICKEN and

SNOW PEAS, so there is no need to run the plan repairer and credit assignment.

5. The newly generated recipe is stored into plan library.

Other Case{Based Planners

Kambhampati's work on the PRIAR reuse framework [Kam89, KH89, KH92] applies a

case{based approach in a classical planning framework. PRIAR is an extension of NONLIN

[Tat77a, Tat77b] which allows the planning systems to annotate plans being created with

information about the dependency structure between operators in the completed plan. This

information can also be used to guide retrieval, reuse, and re{planning.

R. Oehlmann, D. Sleeman, and P. Edwards [OSE92, OSE93] suggest that in addition

to the standard features of plan modi�cation, execution, and repair, a planning system

should not only be able to transform plans based on knowledge about actions, but also

be able to learn the transformation strategies in order to apply to other plans in future

use. Their approach is based on the principle that learning a more appropriate plan can

be supported by the generation of appropriate self{questions and answers. If an answer

cannot be found, a reasoning component plans and executes experiments in an attempt to

acquire the missing knowledge. They implement their approach of plan transformation in

an exploratory discovery system, IULIAN (Interrogative Understanding and Learning In

AberdeeN), and test the system in various problem domains.

18

2.3.3 Adaptive Planning

Adaptive planning [Alt86a, Alt86b, Alt88] is an approach to the
exible utilization of the old

plans. It takes advantage of the details associated with speci�c plans while still maintaining

the
exibility of a planner that works from general plans to speci�c ones. The adaptive

planning techniques are thus su�ciently robust to handle a wide range of relationships

between an old speci�c plan and the current circumstances.

Adaptive planners use a process of situation matching to retrieve a speci�c plan from

background knowledge, which includes general plans, categorization knowledge, and causal

knowledge. It uses the position of the old plan in a planning network as a starting point

for �nding a match to the planning system's current circumstances. The interaction of

the planning knowledge and current situation determine a plan which �ts to the current

context and realizes the goal. If current circumstances indicate goals not accounted for by

the old plan, one of several di�erent types of situation di�erences is encountered: failing

preconditions, step{out{of{order, di�ering goals, or failing outcome. Associated with each

type of situation di�erences are strategies which can be used to �x the problems. Adaptive

planners consider a failing step of a plan as a representative of a category of action to

be accomplished. They use category knowledge and abstraction/specialization technique

based on an is{a or step/sub{step hierarchy to �nd an alternate version of a failed step to

repair it. Alterman built an adaptive planner PLEXUS and demonstrated how PLEXUS

successfully adjusts an old plan of riding BART (Bay Area Rapid Transit, a subway system

used at San Francisco, California) to a new plan of riding the New York City subway.

Consider the subway riding example. There are several di�erences between the plan of

riding BART and the new plan of riding the NYC subway. In the following, di�erences are

pointed out and solutions are also presented.

19

Ticket Purchase

In BART, the ticket can only be bought from the ticket machine; while in the NYC subway

(as of 1986), the subway token can only be bought from a teller. This is a case of failing pre-

conditions: no ticket machine is encountered. PLEXUS abstracts out the failing condition

\there exists a ticket machine" to the general plan of \buying a ticket". It then adapts the

similar sub{category \buying a theater ticket from the theater teller" by changing \ticket"

to \token" to produce the correct step \buying a token from the token teller".

Entrance

A BART rider inserts the ticket into the entrance machine, gets the returned ticket, then

pushes through the turnstile; while a NYC subway rider inserts the token then pushes

through the turnstile, but the token is not returned. This is a case of step{out{of{order,

the second step of entering BART (get back the ticket) is unnecessary for NYC subway

riding.

Exit

In BART, the ticket is needed to exit and is returned after exiting; while in the NYC

subway, the token is not needed to exit. This is a case of failing outcome; the outcome

of the step \ ticket returned" in entering BART is that the rider \has the ticket", and the

reason for \ticket returned" is that it can be used when exiting the station. PLEXUS applies

one of the strategies associated with failing outcome and �nds an alternate interpretation

of the situation where the outcome of \ticket returned" is no longer necessary. PLEXUS

re{interprets exiting BART in such a manner that it can exit without the ticket, and decide

to delete the \get returned ticket" step in the entering sub{plan. Now PLEXUS encounters

failing precondition, no ticket to insert when exiting, and abstracts to \exit institution"

20

then specializes to similar sub{category \exit turnstile door".

2.3.4 GTD Paradigm

The GTD paradigm (Generate, Test, and Debug problem solving paradigm) [Sim88a,

Sim88b] uses a generator to construct an initial hypothesis by matching a library of heuristic

rules against the initial and goal circumstances and by composing the partial sets of actions

suggested by each rule. The tester tests if the generated hypothesis satis�es the goals. If

the hypothesis is tested successfully, the hypothesis is accepted as a solution plan. Oth-

erwise, the debugger uses causal dependency structures and several domain{independent

debugging strategies to locate and repair the faulty assumptions. The repaired hypothesis

is then tested again. This debug/test loop continues until the test succeeds or the generator

is invoked to produce a new hypothesis because the debugger appears to be moving far from

the solution.

Simmons [Sim88b] proposed a theory of debugging by using four general reasoning

techniques: 1) bugs are located by tracing through causal dependency structures; 2) as-

sumption changes are indicated by regressing values back through the dependency; 3) bugs

are repaired by domain{independent repair strategies that repair faulty assumptions; and

4) the goodness of proposed repairs is estimated by determining the e�ect on the overall

problem. Simmons claimed that a small set of assumptions and associated repair strategies

are needed to handle a wide range of bugs over a large class of problem domains. This

assumption{oriented debugging approach stands in contrast to other approaches in which

repair heuristics are associated either with bug manifestations (adaptive planning) or with

certain stereotypical patterns of causal explanations (HACKER and case{based planning).

Simmons also built GORDIUS, an implementation of GTD paradigm, and used to solve

problems in several domains, including geologic interpretation, block worlds planning, and

21

the Tower of Hanoi problem.

2.4 Previous Work on Plan Feasibility

As mentioned in Chapter 1, one central concept in the theory of planning is the feasibility

of a plan being executed. The conditions under which a plan is feasible to be carried out

are the preconditions of the plan. Preconditions can be divided into two categories:

� Physical preconditions deal with what should be true in the physical world for the

planning agent to execute the desired plan. If the physical preconditions of a plan is

not satis�ed at a situation, the plan cannot be executed.

� Knowledge preconditions deal with what the agent has to know in order to execute

the plan. Unlike physical preconditions, a plan may still occur even if its knowledge

preconditions is not satis�ed. Consider that an agent is about to execute the plan

\visit the biggest city of the United States". The agent can successfully execute the

plan by going to New York City even if the agent does not know that New York

City is the biggest city of the United States. In this case, this plan is not executed

deliberately.

The branching features of the situation calculus [MH69] or McDermott's temporal logic

[McD82, McD85] make them suitable to express the notion of the physical preconditions.

In McDermott's formalism, for example, a sequence of events \can" occur in situation S if

it occurs in some branch of the time structure starting in S.

Most AI planning systems consider only physical preconditions, not knowledge precon-

ditions. In STRIPS [FN71] and TWEAK [Cha87], each primitive action expresses explicitly

the physical preconditions for the action to be executed. They are thus e�ectively limited

to problems in which the planner has all the relevant knowledge from the start.

22

Reasoning about the satis�ability of the knowledge preconditions of plans requires a

theory that integrates temporal reasoning and reasoning about knowledge. In order to

determine whether an agent knows enough to execute a plan, we must be able to characterize

what he knows at the beginning of the plan execution, and how the state of the world and

knowledge of the agent changes as the result of the plan execution.

McCarthy and Hayes [MH69] were the �rst to address the Knowledge Preconditions

Problem. They suggests writing down explicit knowledge precondition axioms for each

action so that the planning system can reason that the planning agent knows how to perform

an action if the relevant knowledge precondition axioms are true. This approach has a major

drawback that it leads to an explosion of knowledge precondition axioms for every action

encountered.

The �rst extensive discussion of knowledge preconditions for actions was that of Moore

[Moo80, Moo85]. Moore presented a theory integrating knowledge and actions. He used

two languages:

� A model language contains the following two operators:

{ An epistemic operator KNOW (A; P), \Agent A knows the proposition P".

{ A dynamic operator RES(ACT; P), \Proposition P will be true as the result

of performing action ACT".

The operator KNOW is referentially opaque; that is, the substitution of arguments

by their equal terms may change the truth value.

� The language of possible worlds uses situations,
uents, and actions precisely as in

the situation calculus, but adds two new relations between situations:

{ K(A;W1;W2) means \Possible world W2 is knowledge accessible from W1 rel-

ative to agent A".

23

{ R(ACT;W1;W2) means \Possible world W2 will be the result of performing

action ACT in W1".

The two languages are related by axioms for translating one to the other.

Using this representation, Moore was able to de�ne the notion of \can". The operator

CAN(A;ACT; P),meaning that an agentA could achieve property P by performing action

ACT , is de�ned formally as

(8a)((9x)KNOW (a; ((x= ACT)^ RES(DO(a;ACT); P)))� CAN(a; ACT; P))

The axiom states that an agent A can achieve P by performing action ACT if he

knows what ACT is and that P would be true as the result of performing ACT . An agent

knows what action ACT is if he knows the general procedures of the action ACT and what

objects the procedures are to be applied to. For example, an agent can perform the action

UNLOCK(SAFE1; COMBINATION(SAFE1)) if he knows

1. The general procedure of the action UNLOCK. That is, to dial the combination of

the safe to unlock it.

2. Which particular safe SAFE1 represents.

3. The combination of SAFE1.

In this case, the term representing the general procedure of ACT must be a rigid designator;

that is, it must have the same denotation in every possible world.

A modi�cation and extension of Moore's theory was proposed by Morgenstern [Mor87,

Mor88]. Morgenstern began by identifying two problems that a theory of
exible planning

would encounter:

� The Knowledge Preconditions Problem for Actions. The theory must explain under

what circumstances an agent knows how to perform an action.

24

� The Knowledge Preconditions Problem for Plans. The theory must explain how an

agent can carry a plan that includes steps he does not currently know how to perform.

Actually, Moore also addressed this problem within his formalism.

Morgenstern built her theory on a �rst order logic in which knowledge was represented

as a relation on strings. Strings are taken by predicates like HOLD and KNOW as

arguments to represent a propositional sentence. For example,

KNOW (John; \At(Joe;NY C; S3)"; S5)

means that at situation S5, John knew that Joe was in NYC at situation S3. The use

of strings as parameters of predicates makes these predicates referentially opaque. For

example, consider the predicate

know how to perform(agent; action string; situation)

Assuming that favorite block(Mary) = BLOCK1, the proposition

know how to perform(John; \put on(favorite block(Mary);BLOCK2)"; S1)

is not equivalent to the proposition

know how to perform(John; \put on(BLOCK1; BLOCK2)"; S1)

unless we explicitly express that John knows favorite block(Mary) = BLOCK1 at situa-

tion S1.

Morgenstern's theory solved the knowledge preconditions problem for actions by posit-

ing that an agent knows enough to do an action if he knows a standard identi�er for the

action. For example, an agent A knows how to perform the following action

put on(favorite block(Mary); favorite block(Jane))

25

if he knows the basic procedures for the action put on as well as the standard identi�ers

for these two blocks.

The theory solved the knowledge preconditions problem for plans by positing that an

agent knows enough to perform a plan if he knows initially that at each step he will

know how to proceed with the plan. The general rule was axiomatized by giving speci�c

recursive conditions for knowing enough to carry out various control structure operators

such as sequences, conditionals, loops, and concurrency.

Davis [Davng] proposes a simple formalism to solve the knowledge preconditions prob-

lem for plans. The formalism uses the situation calculus with branching time feature as the

temporal model. The basic idea behind the formalism is that a plan P is executable for a

planning system at situation T if and only if

� P will eventually terminate when starts execution at T .

� After P begins execution starting at T ,

(1) The planning agent will know whether P has successfully �nished;

(2) The planning agent will know of every action whether or not it is a next step of

P ; and

(3) All the next step actions of P are feasible.

In [Dav94], Davis extends the above formalism to a continuous model of time.

26

27

Chapter 3

An Overview of the CADDY

Planning System

In this chapter, we describe the abstract structure of the CADDY planning system in

domain{independent terms. The testbed and detailed implementation will be discussed in

the following chapters. Our purpose in doing this is that the same abstract structure can

be applied to other problem domains later. This will be important in the discussion of

generalization in section 8.2.

As discussed in chapter 1, the central issues addressed in CADDY are limited perception

and control, plan reuse, and plan quality. The architecture of the CADDY planning system

re
ects this focus. In order to reuse stored plans in a new situation, CADDY must have

the following capabilities:

1. A measurement method to determine the quality (or cost) of a plan at one speci�c

situation. With this cost value, CADDY can determine whether a plan is better than

another one for the current situation

2. A library of plans, together with associated information used to estimate the cost of a

plan in di�erent situations. This library serves as the previous experiences CADDY

knows.

3. Knowledge of several heuristic rules, either domain independent or domain dependent,

which CADDY can use to adjust the selected plan to get a new plan with expected

better quality.

Figure 3.1 shows the basic block architecture of the CADDY planning system. The

function of each block is described as follows:

Plan Library (PL)

The Plan Library includes a set of plans, each of which can be chosen as a base plan for

future adjustment, and a plan table which records the cost of each plan at each template

starting situation.

Estimation Module (EM)

Given a plan and a starting situation, the Estimation Module estimates the cost of the

selected plan under the input starting situation using the recorded costs of that plan in

related circumstances as recorded in the Plan Library.

Plan Selection Module (PSM)

Given a starting situation, the Plan Selection Module will choose from the Plan Library a

plan which expected to be best for the starting situation. the Plan Selection Module will

use the Estimation Module to estimate the cost of each plan stored in the Plan Library and

select the one with the lowest cost.

28

Input Situation

Selected Plan

Adapted Plan

Plan
Selection
Module

Plan
Adaptation
Module

Plan
Execution
Module

Estimation
Module

Plan Library

Figure 3.1: Basic Architecture of the CADDY Planning System

29

Plan Adaptation Module (PAM)

Given the plan selected by the Plan Selection Module and a starting situation, the Plan

Adaptation Module uses heuristics to adjust the input plan with small changes in order to

form a new plan with expected better quality.

Plan Execution Module (PEM)

Given the plan adjusted by the Plan Adaptation Module and a starting situation, the Plan

Execution Module will simulate and monitor the execution of that selected plan until it

reaches the goal. The Plan Execution Module executes numbers of simulations to get the

average cost of the adapted plan. If the simulation cost of the adapted plan is better than

the estimated cost of the original selected plan, the Plan Execution Module outputs the

adapted plan as well as the simulation result to the Plan Library.

30

31

Chapter 4

The Testbed: A Simple Golf World

This chapter describes the underlying testbed we are using. A detailed description of the

testbed (the spatial model, the temporal model, the primitive actions CADDY can execute,

and so on), the representation of plans, and de�nition of quality of plans are given. The

motivation of the choice of the golf world as the testbed is also discussed.

4.1 Description of the Testbed

Our testbed is a simple golf world: CADDY plays golf on a foggy day. Beginning a distance

D from the hole, CADDY's goal is to hit the ball into the hole, which is de�ned as bringing

the ball to within distance � to the hole.

We can see that CADDY works on a �xed goal: getting the golf ball into the hole.

Therefore, the goal of CADDY is not an input to the system. In this respect, the CADDY

planning system has elements in common with Schoppers' Universal Plans [Sch87].

Spatial Model

We use a two dimensional X{Y coordinate system as our spatial model to represent the

golf �eld, with the hole always at the origin (0:00; 0:00). CADDY and the golf ball are

represented by their position. CADDY always know its position as well as hole's position,

but CADDY may have imperfect knowledge of the position of the golf ball if the golf ball

is outside CADDY's perception distance.

Temporal Model

We use the situation calculus as our temporal model. Each situation is represented by

CADDY's position (Rx; Ry), the actual position of the golf ball (Bx; By), the CADDY's

estimate of golf ball's position (Kx; Ky), and the position from which CADDY has most

recently hit the ball (Hx; Hy). (Rx; Ry) and (Bx; By) represent the physical state of one

situationwhile (Kx; Ky) and (Hx; Hy) represent CADDY's knowledge state of one situation.

The signi�cance of (Kx; Ky) and (Hx; Hy) will be described in detail later in this section.

Initially, CADDY and the golf ball are at the same position. The goal situation is

described as the distance between (Bx; By) and the origin being less than �.

Primitive Actions

There are �ve primitive actions CADDY can execute. Each primitive action, along with

the transition functions, is described below. We use the STRIPS rule to avoid the frame

problem; that is, any state of a situation that is not mentioned in the transition functions

remains unchanged during action execution.

(hit X � Z)

where X and � are input parameters while Z and are output parameters.

CADDY tries to hit the golf ball to distance X in direction �. Due to the imperfect

control of hitting, golf ball actually goes to distance Y in direction �, where Y follows a

normal distribution centered at X with standard deviation �1 �X and � follows a normal

32

distribution centered at � with standard deviation �1.

After hitting the ball, CADDY looks at the
ying ball and makes an estimate of its �nal

position. Due to imperfect perception, CADDY's estimate di�ers from the true position;

it perceives that the golf ball will land at a position with distance Z and direction from

CADDY's current position, where Z follows a normal distribution centered at Y with

standard deviation �2 � Y and follows a normal distribution centered at � with standard

deviation �2. All these distributions are independent.

After (hit X � Z), (Rx; Ry) remains the same, (Bx; By) changes to (Rx + Y �

cos(�); Ry+Y �sin(�)), (Kx; Ky) changes to (Rx+Z �cos(); Ry+Z �sin()), and (Hx; Hy)

changes to (Rx; Ry).

The cost of (hit X � Z) is c hit, independent of the hitting distance.

(move X �)

where X and � are input parameters.

CADDY moves distance X in direction �. We assume that CADDY has perfect control

in moving.

After (move X �), (Rx; Ry) will change to (Rx+X � cos(�); Ry +X � sin(�)); (Bx; By),

(Kx; Ky), and (Hx; Hy) remain the same.

The cost of (move X �) is c move times X .

(look Z)

where Z and are output parameters.

CADDY looks around and searches for the golf ball. Since CADDY has limited per-

ception, CADDY may not always locate the position of the ball after executing look. If

the ball is within distance � (the perception range of CADDY's sensors), Z and will be

33

distance and direction of the ball from CADDY; otherwise Z will be �1.

After (look Z), (Kx; Ky) changes to (Bx; By) if CADDY �nds the ball; otherwise

(Kx; Ky) will be unde�ned. (Rx; Ry), (Bx; By), and (Hx; Hy) remain the same.

The cost of (look Z) is a constant c look.

(scan PATH Z)

where PATH is input parameter while Z and are output parameters.

PATH is a list of (distance, direction) pairs. CADDY moves along PATH scanning

for the golf ball. If it �nds the ball (that is, the ball is within distance �), then it stops,

and returns Z and to be the distance and direction of the ball from CADDY's current

position. Otherwise, it completes scanning the whole PATH and returns Z = �1. We

can view scan as a sequence of looking andmoveing a short distance along the pre{de�ned

route PATH .

After (scan PATH Z), (Rx; Ry) changes to the position where CADDY stops while

(Kx; Ky) changes to (Bx; By) if CADDY �nds the ball; otherwise (Kx; Ky) will be unde-

�ned. (Bx; By) and (Hx; Hy) remain the same.

The cost of (scan PATH Z) is c look plus c scan times the distance CADDY actually

moves through the PATH . c scan should be greater than c move but less than c move+

c look=�. The �rst inequality ensures that scan is more expensive than the sequence of

moves, which form the PATH ; while the second inequality ensures that scan is cheaper

than repeatedly move a short distance � and look.

(replace)

CADDY gives up looking the golf ball, returns to the position of the last hit, and starts

again with a new ball.

34

After (replace), values of (Rx; Ry), (Bx; By), and (Kx; Ky) change to (Hx; Hy) while

(Hx; Hy) remains the same.

The cost of (replace) is c replace plus c move times the distance CADDY travels to

return back to the position where CADDY hits the ball last time.

We can see that look is a pure sensing action (actions that provide information of the

physical environment);move and replace are e�ect actions (actions that change the state of

the physical environment); while scan and hit involve both sensing and physical changes.

The planner can perfectly predict the e�ects of actions move and replace. It cannot

perfectly predict the e�ects of look and scan, due to the limits of perception, nor the e�ect

of hit, due to the limited perception and imperfect physical control.

CADDY's knowledge about the ball's position varies over time. If the golf ball is

within CADDY's perception distance and CADDY has executed a search operation to

look for the ball, (Kx; Ky) and (Bx; By) should have the same value. Otherwise CADDY

only knows that the position of the golf ball is within an area, which is controlled by

two independent normal probabilistic distributions described in hit operation. The only

information CADDY knows regarding to the position of golf ball are (Kx; Ky) returned

by previous hit and those four physical parameters controlling the normal distributions.

CADDY knows that it is unlikely that (Kx; Ky) is the exact position of the ball; instead,

CADDY treats (Kx; Ky) as a reference position to guide its search.

The characteristic of the golf world is determined by six physical parameters (�1, �1,

�2, �2, �, and �) and �ve cost parameters (c hit, c move, c look, c scan, and c replace).

4.2 Plans and Quality of Plans

CADDY can have several di�erent strategies for hitting the ball, for searching the ball

in the �eld, and for deciding to replace the ball. Di�erent sequence of strategies lead to

35

(sequence (cond (ge (distance agent hole) 120)
(hit 120 (direction agent hole) Dist Dir)
(hit (distance agent hole) (direction agent hole) Dist Dir))

(while (not ball in) (sequence
(move Dist Dir)
(look Dist Dir)
(cond (ge Dist 0.0) (move Dist Dir) (replace))
(cond (ge (distance agent hole) 120)

(hit 120 (direction agent hole) Dist Dir)
(hit (distance agent hole) (direction agent hole) Dist Dir)))))

Figure 4.1: An Example of a Selected Plan

di�erent plans. Since CADDY adapts and uses pre{stored plans for problem solving, the

Plan Library must have methods to store known plans.

Table 4.1 gives the syntax which is used by CADDY to represent a plan in the Plan

Library. It has a LISP{like syntax with three control{structure operators: sequence, con-

dition, and while loop. A task is de�ned as one speci�c execution of a plan under given

parameter assignments and a starting situation.

Figure 4.1 shows an example of a simple plan. It repeatly hits a �xed short distance

towards the hole, moves to the reference point returned by hit, searches the ball, then either

moves to the ball (if it �nds the ball) or gives up and replaces a new ball (if it does not

�nd the ball) for next hit.

A plan may perform very well at one starting situation but very poorly at another start-

ing situation. The quality of a plan is the measurement of how e�ciency the plan may be

under current parameter assignments. Since several uncertainty factors are included in the

testbed, di�erent executions of the same plan under the same parameter assignments may

lead to di�erent outcome. The quality of a plan under one parameter assignments cannot

be determined by the cost of one execution of the plan; instead, it should be determined

36

PLAN � (hit EXP EXP Variable Variable) j
(move EXP EXP) j
(look Variable Variable) j
(scan (PATH) Variable Variable) j
(replace) j
(sequence PLAN PLAN) j
(cond COND PLAN PLAN) j
(while COND PLAN)

COND � ball in j
(eq EXP EXP) j (ne EXP EXP) j
(gr EXP EXP) j (ge EXP EXP) j
(le EXP EXP) j (ls EXP EXP) j
(and COND COND j
(or COND COND) j
(not COND)

PATH � (EXP EXP) j (EXP EXP) PATH

EXP � Constant j Variable j
(+ EXP EXP) j (- EXP EXP) j
(* EXP EXP) j (/ EXP EXP) j
(exp EXP EXP) j (sqrt EXP) j
(sin EXP) j (cos EXP) j
(abs EXP) j
(distance POINT POINT) j
(direction POINT POINT)

POINT � robot j hole j ball

Table 4.1: Syntax of a Simple Planning Language Used by the Golf World Testbed

37

by the average cost of executions of the plan. The cost of an execution is the sum of the

costs of the primitive actions executed.

The goal of the CADDY planning system is to construct a plan which achieves the goal

of hitting the golf ball into the hole with the least cost.

4.3 The Golf World Testbed

The golf world testbed is designed as a setting which is simple but still raises interesting

problems of imperfect control and knowledge. It was speci�cally intended to be unlike

classical planning domains such as the blocks world; the di�cult issues of the blocks world

do not arise in the golf world and vice versa.

1. This is a single agent system, so we do not need to consider issues about multiple

agents, like problems about how to communicate and coordinate behaviors between

agents, how to specify the e�ect of simultaneous actions.

2. There is a clear interface between CADDY and the environment and a simple yet

well{de�ned model of time (the situation calculus) and space (the 2{D coordinate

system).

3. There is a simple de�nition of cost of each primitive actions as well as the measures

of plan quality, which will ease the design of the Plan Library and the Estimation

Module.

4. The uncertainty of behavior is controlled by a set of numerical parameters. This

provides a convenient way for us to control di�erent experiments by varying these

parameters systematically and analyze the performance over a set of sample problems

and conditions, which will further help us the design of the Plan Library.

38

5. Unlike other planning systems in which the planning agent usually have di�erent top{

level goals for di�erent executions, CADDY has a constant top{level goal (hitting

the ball into the hole) for each execution. The choice of a plan to be executed depends

on the initial situation and physical parameters.

6. It has a simple set of primitive actions, which are also clearly de�ned, and a simple

causal structure: CADDY sequentially hits the golf ball, looks for the ball, then

moves to a speci�ed point for another hit. This will ease the design of the Plan

Execution Module.

If we compare CADDY with the blocks world planners in these respects, we note the

following similarities and contrasts: Point (1) applies equally to both. Point (2) applies

even more strongly to the blocks world, which, in e�ect, uses a discrete model of space.

Point (3) is irrelevant for most blocks world planners since they generally ignore costs.

Point (4) does not apply in the blocks world since it is deterministic. Point (5) is false in

the blocks world. As regards point (6), the blocks world also has a simple model of actions.

The physical causal structure of the golf world is simpler than that of the blocks world: a

sequence of actions in the golf world is physically feasible if and only if each hit is preceded

either by replace or by move to the position of the ball. On the other hand, the epistemic

structure is more complex. The blocks world, which assumes perfect knowledge, has no

epistemic structure.

Despite these simplicities, the golf world is nonetheless rich enough to support interest-

ing planning.

� Planning in the world involves probabilistic, epistemic, and spatial reasoning, and the

tradeo� of costs based on those various considerations.

39

For example, in deciding whether to hit the ball far, CADDY must balance the gain

of making physical progress towards the hole against the loss of losing sight of the

ball. Which is better depends in a complex way on the control of hit (�1, �1), the

power of perception (�2, �2, �), and the relative costs of searching and hitting.

Another example: in choosing a path to scan, CADDY must �nd a path that probably

takes it within � of the ball.

� CADDY has limited perception and incomplete knowledge of the test environment

and it cannot predict the exact outcome of primitive actions it intends to execute.

The support of uncertainty in the testbed increases the complexity in planning.

� Though there is only an unique top{level goal, the choice of optimal plan may vary

under di�erent circumstances. Depending on the quantities of physical parameters

and the current situation, di�erent strategies may be appropriate.

For example, CADDY may prefer to replace the golf ball every time it hits the golf

ball to a wrong direction if cost of replacement is far cheaper than cost of searching

the ball
ying to wrong direction; but if cost of replacement is expensive, CADDY

may rather search for the golf ball even if it
ies to the wrong direction.

Another example: CADDY may wish to hit a long distance if its perception distance

is large; but if its perception distance is short due to the foggy environment,CADDY

may prefer to hit a short distance to avoid more cost on ball searching.

40

41

Chapter 5

Implementation

This chapter gives a detailed discussion about the implementation of each module in

CADDY's architecture as applied to the golf world testbed. It also discusses brie
y possible

improvements to each module.

5.1 Plan Library

The Plan Library contains the following:

� A collection of plans. Plans are represented as a combination of control{structure

operators and primitive actions. Currently we use a LISP{like notation with three

simple control{structure operators (sequence P1 P2), (cond Q P1 P2), and (while Q

P1). Figure 4.1 is an example of a plan.

� A Best Table (BT) recording the history of CADDY's execution. It stores a collec-

tion of actual executions CADDY has performed (the system parameter setting, the

starting situation, the plan executed, and the simulated cost). Every time CADDY

executes under one speci�c circumstance, CADDY updates information in the Best

Table: if similar circumstance has been met before, update the plan entry and sim-

ulated cost entry whenever current run results in a less simulated cost; otherwise it

adds the new result in the Best Table.

� A Failure Table (FT) recording the failed experiences CADDY has encountered.

Every time CADDY knows that the adapted plan is outperformed by the original

selected plan, CADDY records the selected plan, the system parameter settings, and

the heuristic rules applied to the Failure Table so that next time CADDY encounters

similar situations, CADDY will not apply the same set of heuristic rules again.

� A Simulation Table (ST) recording the simulated costs of each plan under di�erent

selected circumstances. Every time a new plan has been included in the Plan Library,

the Simulation Table needs to be updated.

� A collection of maintenance modules. These include routines of table retrieval, table

update, plan retrieval, plan addition, etc.

The Best Table and the Failure Table are implemented as K{D trees [FBF77]. A K{D

tree is a K dimensional binary search tree such that at each level a di�erent attribute value

is tested to determine the direction in which a branch is to be made. For example, in a

2{D tree, the �rst attribute is compared at the root and at even levels (assuming root is

level 0), while the second attribute is compared at odd levels. Search and insert/delete

operations are the same as in an ordinary binary search tree, except that the appropriate

attribute value is used at each level.

The Best Table is a 5{D tree for the four system parameters (�, �1, �1, c replace) and

the starting situation (the distance between the hole and CADDY at the beginning). New

entries are inserted into the Best Table, or old entries in the Best Table may be modi�ed

during CADDY's execution. The Best Table is not a balanced tree.

42

The Failure Table is also a 6{D tree for the plan id, the four parameters (�, �1, �1,

c replace) and the starting situation (the distance between the hole and CADDY at the

beginning). New entries are inserted into the Failure Table but old entries are not modi�ed

or deleted. The Failure Table is not a balanced tree.

The Simulation Table is a linear table, with each entry represents a plan stored in the

Plan Library. Each element in the Simulation Table contains the name of the plan and a �ve

dimensional linked list which stores several simulated costs of selected system parameter

settings and the starting situations. Each node in the top dimension linked list contains

a speci�c value of parameter c replace and a four dimensional linked list; each node in

the four dimensional list contains a speci�c value of parameter �1 and a three dimensional

linked list; and so on.

The reason of using a linked list, instead of a balanced search tree, in each level of the

Simulation Table is that CADDY only needs to store a few value settings of each parameter.

Therefore using binary search does not improve run{time performance much. Once a entry

has been inserted into the Simulation Table, the entry will not be modi�ed.

5.2 Estimation Module

The Estimation Module is an assistance tool used by the Plan Selection Module. It uses

information stored in the Simulation Table and calculates the estimated cost of a plan under

one circumstance.

Using information in the Simulation Table, the Estimation Module uses linear interpo-

lation on current parameter settings and starting situation. There are 5 stages of interpo-

lation, with 1 for cost parameter c replace; 3 for physical parameters �, �1, and �1; and 1

for the distance between the hole and the ball at the starting distance. For each stage, the

Estimation Module linearly searches through the linked structure of the Simulation Table,

43

chooses two nearest values of the current parameter, and applies linear interpolation to get

the estimated cost under current interpolation stage. The order of choices of parameters

to interpolate follows the order how the linked list structure of each plan in the Simula-

tion Table stores the simulated result. After passing down then passing up �ve stages, the

EstimationModule will get the estimated cost of a speci�c plan under current circumstance.

For example, with the starting circumstance which (c replace, �, �1, �1, dist) equals to

(130.00, 35.00, 20.00, 0.20 ,200.00), the Estimation Module �rst interpolates the c replace

by 100.00 and 200.00; for each of these two c replace value, the Estimation Module inter-

polates the �1 by 10.00 and 24.00; for each �1 value, the Estimation Module interpolates

the �1 by 0.10 and 0.24; for each �1 value, the Estimation Module interpolates � by 20.00

and 60.00; and �nally for each � value, the Estimation Module interpolates dist by 100.00

and 300.00. After the Estimation Module gets the interpolated cost at the dist level, these

values are passed up to the � level and the Estimation Module gets the interpolated cost

with � and dist equal to current setting. After �ve levels of passing up, the Estimation

Module gets the interpolated cost under current circumstance.

These interpolation calculations are computation intensive. Currently the result of the

Estimation Module is acceptable but still needs improving. We should make the di�erence

between the estimated cost and the simulated cost as small as possible.

5.3 Plan Selection Module

The objective of the Plan Selection Module is to select the expected best plan from the

Plan Library, given the current system parameter settings and the starting situation.

The Plan Selection Module �rst looks through the Best Table to �nd if CADDY has

met similar circumstances before. If a match is found, the Plan Selection Module retrieves

the plan from the Plan Library and passes it to the Plan Adaptation Module; otherwise the

44

Plan Selection Module uses the EstimationModule to get the estimated cost of each plan in

the Plan Library and passes the plan with the least estimated cost to the Plan Adaptation

Module.

The current CADDY planning system needs to interpolate every plan in the Plan Li-

brary to get the plan with the least estimation cost. As more new plans are added in the

Plan Library, it will be time consuming for the Plan Selection Module to get the expected

best plan. The most obvious way of improving the performance of the Plan Selection

Module is to reduce those unnecessary interpolations or improve the performance of the

interpolations.

5.4 Plan Adaptation Module

Since one main objective of the CADDY planning system is to adapt previous experiences,

the Plan Adaptation Module plays the key role in CADDY. The execution of the Plan

Adaptation Module contains three stages:

1. The Parsing Stage.

2. The Analysis Stage.

3. The Adaptation Stage.

The Parsing stage reads in the selected plan and translates into the internal represen-

tation. The internal representation of a plan is a step/sub{step relation tree. Each internal

node represents a control{structure operator, containing an ID which identi�es the type of

the internal node (sequence,cond, or while), and pointers to the condition structure (cond

and while) and sub{plans (while has one sub{plan while sequence and cond have two sub{

plans). Each external node represents a primitive action, containing information about the

45

type of the primitive actions and the parameters. Figure 5.1 is the result of the Parsing

Stage of a plan in �gure 4.1.

The Analysis Stage reads in the internal plan representation and attaches to each node

description information about knowledge or causal relation, etc. This information helps

CADDY to gain global knowledge of the selected plan and then adequately apply heuristic

repair rules during the Adaptation Stage. Consider the plan segment and its internal

representation in �gure 5.2. This plan segment hits the ball towards the hole with distance

X , if possible. Figure 5.2 also shows information attached to each plan node by the Analysis

Stage.

After the Analysis Stage, CADDY knows that the purpose of the cond node is to hit

the ball towards the hole with appropriate distance, and the �rst hit is to hit the ball with

constant distance while the second hit is to hit the ball with distance between CADDY

and the hole. If the Plan Adaptation Module decides to adjust the hitting distance, it will

know only to change the X parameter of the �rst hit, but not of the second hit.

The information attached to plan nodes should also prevent the Adaptation Stage from

applying the same heuristic rules again and again. Figure 5.3 gives the result of the Analysis

Stage of the plan in �gure 4.1.

The Analysis Stage passes the internal plan representation with information attachment

to the Adaptation Stage to perform plan modi�cation by using a set of domain{independent

or domain{dependent heuristic rules. Currently we only implement a small set of domain{

dependent heuristic rules within CADDY, but we will explore more in the near future.

Rules currently used include:

� Rules for adapting hit.

H1: If CADDY's hit is accurate under current parameter settings (�1 and �1 are

both very small), CADDY will substitute hit operations by another hit operations

46

SEQUENCE

COND

HIT HIT

WHILE

SEQUENCE

COND

HIT HIT

SEQUENCE

SEQUENCE COND

MOVE REPLACEMOVE LOOK

Figure 5.1: Result of the Parsing Stage of the Selected Plan

47

(cond (ge (distance Agent Hole) X)
(hit X theta Z psi)
(hit (distance Agent Hole) theta Z psi))

(cond Q P1 P2)

(Toward Hole Hit Cond)

P1 P2Q

HIT

(Constant Hit)

HIT

(Distance Hit)

Figure 5.2: A Plan Segment and Its Internal Representation with Information Attached by
the Analysis Stage

48

SEQUENCE

(main sequence)

COND

(toward hole hit cond)

HIT

(constant hit)

HIT

(distance hit)

WHILE

(main while loop)

SEQUENCE

(search then hit sequence)

COND

(toward hole hit cond)

HIT

(constant hit)

HIT

(distance hit)

SEQUENCE

(search ball sequence)

SEQUENCE

(move and look sequence)

COND

(found detection cond)

MOVE

(after search move)

REPLACE

(move replace)

MOVE

(before search move)

LOOK

(after move look)

Figure 5.3: Result of the Analysis Stage of the Selected Plan

49

with the maximum distance CADDY can hit.

H2: In order to have a good chance that the ball is within CADDY's perception

distance � while CADDY can still gain more forward progress, the Plan Adaptation

Module adjusts the hitting distance of any constant hit operation by the following

rule: For (hit X � Z) while X is a constant, if X is larger than �1 � �, the Plan

Adaptation Module decreases X by d, a small adjustment constant; otherwise the

Plan Adaptation Module increase X by d.

� Rules for replacing the golf ball.

R1: If replacing the ball costs less than moving distance d1 (a pre{de�ned constant)

then looking (c replace is less than c look + c move � d1) and CADDY can hit the

ball with direction accuracy (�1 is small), the Plan Adaptation Module will insert the

plan segment before the search operations that CADDY can replace the ball, instead

of starting the search, if CADDY detects the ball
ies out of direction (angle between

� and is greater than �=3).

R2: If replacing the ball costs less than moving distance d1 then looking (c replace

is less than c look + c move � d1), the Plan Adaptation Module will insert the plan

segment before the search operations that CADDY can replace the ball, instead of

starting the search, if CADDY detects the forward progress is too small (Z � X

after (hit X � Z)).

R3: If replacing the ball costs less than moving backwards for distance d2 (a

pre{de�ned constant), hitting the ball back, then moving back to current position

(c replace is less than c hit + c move � 2 � d2), the Plan Adaptation Module will

insert the plan segment before the search operations that CADDY can replace the

ball, instead of starting the search, if CADDY detects that the ball
ies backwards

50

(angle between � and is greater than �=2).

� Rules for avoiding replace.

S1: If replacing ball is too costly under current parameter settings (c replace is

very large), CADDY will either extend the scan path by distance d, where d �

c replace=c scan, if the search operation before replace is scan; or insert a scan

operation with path of length d if the search operation before replace is look. The

format of path depends on the values of �1 and �1. If no search operations before

replace (the replace operation is inserted by heuristic rules R1 to R3), CADDY will

do nothing.

Currently the inserted/extended scan path is a spiral{like path centered at the position

where CADDY currently stands. In the future, the structure of the path should depend

on the physical parameters �1, �1, �2, and �2, which a�ect the outcome of primitive

action hit. For example, if �1 is large and �1 is small, which means that CADDY

can can hit the ball with more distance accuracy but poor directional accuracy, the

inserted/extended path should emphasize on a wide direction range but a narrow

distance range. Similarly, the inserted/extended path should emphasize on a wide

distance range but a narrow direction range if �1 is small while �1 is large.

After collecting heuristic rules which CADDY intends to apply to the selected plan, the

Plan Adaptation Module checks the Failure Table whether applying these rules matches

previous failed experiences. If not, the Plan Adaptation Module is safe to apply those col-

lected heuristic rules to the selected plan; otherwise the Plan Adaptation Module randomly

chooses a subset of the collected heuristic rules and checks if the newly formed collection

of heuristic rules still matches previous failed experiences. The Plan Adaptation Module

continues choosing subset of the collected heuristic rules until the subset does not match

51

COND

SEQUENCE

(toward hole hit cond)

CONDSEQUENCE
(toward hole hit cond)

SEUQNECE

(search then hit sequence)

(search ball sequence)

(search ball sequence)
REPLACE

(no move replace)

SEQUENCE
(search then hit sequence)

COND
(replace heuristic applies)

After Execution of the Adaptation Stage

Figure 5.4: A Replace Heuristic Rule Applied to an Internal Representation of a Plan

52

any failed experience in the Failure Table.

Figure 5.4 shows how heuristic rule for replacing the golf ball (either R1, R2, or R3)

applies to an internal plan segment.

For example, with the following parameter assignments where (c replace, �, �1, �1)

= (120:00, 35:00, 3:00, 0:03) and the starting situation where CADDY the golf ball are

at position (200:0, 200:0), the Plan Adaptation Module applies heuristic rules H1 (since

�1 = 3:00 and beta1 = 0:03 are both small) and R3 (since c replace = 120:0 is not less

than c move � 120:0 = 120:0 but is less than c move � 2 � 120:0+ c hit = 300:0) to the plan

in �gure 4.1 and gets the adapted plan in �gure 5.5.

We can view the Plan Selection Module as selecting a plan which is expected to suit

current circumstance best; while adapting the plan by the Plan AdaptationModule as small

adjustments of the parameters within the plan.

Currently LISP{like plans are stored in the Plan Library and are parsed and analyzed

by the Plan Adaptation Module. We did this to simplify the representation of plans and

hence to simplify the construction of the initial Plan Library. One way to improve the run{

time performance of the Plan Adaptation Module is to store the whole internal structure

of plans (the step/sub{step tree and the information attached by the Analysis Stage) in the

Plan Library and a new retrieval routine in the Plan Adaptation Module to read in the

plan. This will save the processing time spent by the Parsing Stage and the Analysis Stage.

But we need to transform each plan currently in the Plan Library to the new form.

5.5 Plan Execution Module

The Plan Execution Module simulates the execution of the plan generated by the Plan

Adaptation Module until it reaches the goal: the golf ball is in the hole. CADDY has a

graphic interface which can demonstrate the execution of a plan on a graphic board and

53

SEQUENCE

(main sequence)

MOVE

(after search move)

REPLACE

(move replace)

MOVE

(before search move)

LOOK

(after move look)

COND

(toward hole hit cond)

HIT HIT

(distance hit)

WHILE

(main while loop)

SEQUENCE

(search then hit sequence)

COND

(toward hole hit cond)

SEQUENCE

(search ball sequence)

SEQUENCE

(move and look sequence)

COND

(found detection cond)

COND

(replace heuristic cond)

(constant hit)

HIT HIT

(distance hit)(constant hit)REPLACE

(no move replace)

Figure 5.5: Result of the Adaptation Stage of the Selected Plan

54

(sequence (cond (ge (distance agent hole) 150)
(hit 150 (direction agent hole) Dist Dir)
(hit (distance agent hole) (direction agent hole) Dist Dir))

(while (not ball in) (sequence
(cond (ge (abs (- Dir (direction agent hole))) 90) (replace) (sequence

(move Dist Dir)
(look Dist Dir)
(cond (ge Dist 0.0) (move Dist Dir) (replace))))

(cond (ge (distance agent hole) 150)
(hit 150 (direction agent hole) Dist Dir)
(hit (distance agent hole) (direction agent hole) Dist Dir)))))

Figure 5.6: External Representation of the Adapted Plan

give helpful information like the primitive action currently executed, the current situation

and system parameter settings, and the total cost so far. Another text window also shows

the execution log for trace purpose.

If the plan generated by the Plan Adaptation Module shows a lower average cost than

the estimation cost of the original plan selected by the Plan Selection Module, the Plan

Execution Module will

1. store the newly generated plan in the Plan Library.

2. record the simulated cost of the current system parameter settings in the Best Table

so that the same plan can be selected again by the Plan Selection Module if similar

circumstance is encountered again. The information in the Best Table thus saves the

future computation of a series of interpolations and plan adaptation.

3. invoke several simulation runs under selected circumstances and record the simulated

costs in the Simulation Table so that it can be interpolated and selected by the next

run.

55

For example, if the plan in �gure 5.5 (adapted plan) outperforms the plan in �gure 5.3

(original plan), the internal plan representation will be transformed to the plan in �gure 5.6

and be recorded in the Plan Library, the simulation results are also recorded in the Best

Table and the Simulation Table. The di�erences between �gure 5.6 and �gure 4.1 are

underlined in �gure 5.6.

If the plan generated by the Plan Adaptation Module shows a greater average cost than

the estimated cost of the original plan selected by the Plan Selection Module, the Plan

Execution Module discards the newly generated plan and updates the Best Table with the

original plan selected by the Plan Selection Module and its estimated cost. The failed

experience is also recorded in the Failure Table.

If the plan chosen by the Plan Selection Module is not changed by the Plan Adaptation

Module, the Plan Execution Module updates the Best Table with the plan and its simulated

cost.

The current system treats physical parameters as constants during plan execution.

We would like to extend this by allowing physical parameters varying values during plan

execution. This variation can either follow pre{de�ned functions or be obtained from

probabilistic models.

56

57

Chapter 6

Comparison of CADDY with Other

Planning Systems

This chapter compares the CADDY planning system with some recent planners and con-

siders how theoretical work on plan semantics applies to CADDY.

6.1 CADDY and Uncertainty in Planning

Several probabilistic planning systems or probabilistic reasoning techniques are discussed

in section 2.2. We will compare CADDY with BURIDAN [KHW93, KHW94] and Partially

Observable Markov Decision Processes [CKL94a, CKL94b] in a number of respects.

Model of Actions

CADDY, BURIDAN, and POMDPs all use similar representations of primitive actions

with probabilistic outcomes. BURIDAN's action model extends the standard STRIPS

representation to allow conditional and probabilistic e�ects. The possible e�ects of an

action are partitioned into mutually exclusive and exhaustive classes, and each class is

mapped a particular probabilistic value. POMDPs de�nes state transition functions as

mappings from environmental states and actions into discrete probabilistic distributions

over a set of states.

The action model of CADDY di�ers from those of BURIDAN and POMDPs in that

POMDPs and BURIDAN assume a �nite (in practice, a small) state space as the e�ects of

an action; while CADDY uses a continuous (uncountably in�nite) state space as the e�ects

of an action.

In the golf world testbed, only one action has a probabilistic outcome: the hit operation.

All other actions have deterministic outcomes. We can use either of the above probabilistic

models to represent the hit operations. Consider the POMDPs model of action (hit X � Z

) with X and � as given constants. Each situation listed below are represented by three

points: CADDY's current position (Rx; Ry), the golf ball's current position (Bx; By), and

CADDY's belief of the ball's position (Kx; Ky). Before executing hit, CADDY and the ball

are at the same position.

S0 = (Rx, Ry), (Rx, Ry), (Rx, Ry)

After hit, the ball
ies distance Y in the direction �, where Y follows a normal distri-

bution centered at X with standard deviation �1 �X , and � follows a normal distribution

centered at � with standard deviation �1. The original situation transfers to the following

situation

S1 = (Rx, Ry), (Rx + Y cos(�), Ry + Y sin(�)), (Rx, Ry)

with probability

P1 = 1p
2�X�1

exp(�1

2
(Y�X
X�1

)2) � 1p
2��1

exp(�1

2
(���
�1

)2)

= 1

2�X�1�1
exp(�1

2
[(Y�X
X�1

)2 + (���
�1

)2])

for all possible Y and � combinations, since the two normal distributions are independent.

After hit, CADDY believes that the ball
ies distance Z in the direction , where Z

follows a normal distribution centered at Y with standard deviation �2 � Y , and follows

58

a normal distribution centered at � with standard deviation �2. The original situation

transfers to the following situation

S2 = (Rx, Ry), (Rx + Y cos(�), Ry + Y sin(�)), (Rx + Z cos(), Ry + Z sin())

with probability

P2 = 1p
2�X�1

exp(�1

2
(Y�X
X�1

)2) � 1p
2��1

exp(�1

2
(���
�1

)2)

� 1p
2�Y �2

exp(�1

2
(Z�Y
Y �2

)2) � 1p
2��2

exp(�1

2
(��
�2

)2)

= 1

4�2XY �1�2�1�2
exp(�1

2
[(Y�X
X�1

)2 + (���
�1

)2 + (Z�Y
Y �2

)2 + (��
�2

)2])

for all possible Y , �, Z, and combinations. Again, these four normal distributions are

independent. P2 now can be served as the transition probability of action hit (from situation

S0 to S2). Thus, the probability distribution of (hit X � Z) is
P
Y

P
� P2 for all possible

Z and combinations.

The representation of hit operation using BURIDAN's model can be constructed simi-

larly.

BURIDAN does not contain perception actions, it assumes that the perceptions are

of all{or{nothing style. POMDPs uses incomplete perceptions. a discrete probabilistic

distribution over a set of possible physical states. As for CADDY (within the golf world

testbed), outcomes of sensing actions (look and scan) are of all{or{nothing style; CADDY

either knows the exact position of the ball or knows nothing after sensing actions. On

the other hand, action hit implicitly contains a probabilistic perception action (the output

parameter Z and).

Plan Construction

BURIDAN and POMDPs generate plans from scratch while CADDY reuses or adapts

pre{stored plans.

59

CADDY and BURIDAN follow the traditional planning models, completing plan con-

struction before executing the plan. On the other hand, POMDPs interleaves planning and

execution 1; they only generate one action to be executed next at each step.

In order to re{use and adapt experiences, CADDY allows external plan representation

containing control{structure constructs like sequences, conditionals, and while loops. The

plan generated by POMDPs can be viewed as a set of test/action rules; POMDPs generates

actions to be executed next according to the current circumstance at each step. The plan

generated by BURIDAN can be viewed as a sequence of primitive actions. C{BURIDAN

also uses conditionals. Loops can be achieved implicitly during the plan{assessment/plan{

generation loop, they are unnecessary to be represented in the �nal plan.

De�nition of Successful Planning

The conditions to end plan construction are di�erent. BURIDAN continues plan assessment

and plan generation loop until the constructed plan can achieve the goal with probability

at least � , a user{speci�ed probability threshold. POMDPs continues generating next

steps until it reaches a state which satis�es the goal conditions. CADDY adapts previous

experiences and constructs a plan which can reach its goal e�ciently. The issue of e�ciency

is critical in the golf world testbed, since there are many very costly plans that can still

reach the goal with high probability.

BURIDAN and POMDPs are guaranteed to produce a plan which satisfy the goal

requirement. CADDY is heuristic; the generated plan may or may not achieve the goal

e�ciently.

1POMDPs pre{computes a whole table of what actions to apply under what circumstances, which can

be considered as a pre{computed complete plan.

60

E�ciency Consideration

BURIDAN does not consider the issue of plan e�ciency while CADDY and POMDPs does

consider the e�ciency of the generated plans.

POMDPs uses reward functions which maps a environmental state and an action to a

real number that specify the instantaneous reward the planning agent derives from taking

the action in the given state. At each state, POMDPs enumerates all possible actions and all

possible outcomes and decides to execute a speci�c action which narrows the gap between

the current state and the goal with possible maximum reward.

CADDY uses cost as a measurement of plan e�ciency, which can be viewed as a

negative reward. CADDY tries to �nd a plan with low estimated costs.

6.2 CADDY and Plan Adaptation

We next compare CADDY with several plan adaptation systems. HACKER [Sus75], WOK

[Ham83], CHEF [Ham86a, Ham86b, Ham89], PLEXUS [Alt86a, Alt86b, Alt88], GTD

paradigm [Sim88a, Sim88b], and CADDY are similar in a number of respects. They are all

single agent planning systems; they attempt to use past experiences to overcome current

problems encountered; they use a collection of plans to serve as past experiences; and they

use heuristics (or critics) to correct or adjust plans if they do not �t current circumstance.

Still, several characteristics distinguishes CADDY from the others:

� CADDY deals with an uncertain environment, in which the agent has limited percep-

tion and imperfect control when executing primitive actions. HACKER deals with a

blocks world with complete knowledge about the environment and perfect control of

action execution; while WOK, CHEF, PLEXUS, and GTD paradigm generate a �nal

plan with rather \abstract" actions. None of them deal with problems of knowledge,

perception, and control.

61

� CADDY considers not only the correctness of the generated plans (the plan will

indeed lead to the �nal goal), but also the quality of plans (the plan will lead to the

�nal goal e�ciently); while other systems (HACKER, WOK, CHEF, PLEXUS, and

GTD paradigm) only deal with the correctness of the generated plan.

� In considering the golf world testbed, CADDY has an unique top{level goal: hitting

the golf ball into the hole. Other systems usually encounter di�erent goals during

di�erent executions.

Comparing the plan adaptation mechanism, CADDY is more like the case{based plan-

ning system. HACKER and GTD paradigm use pattern match techniques to retrieve

pre{stored programs and subroutines; adaptive planning employs abstraction/speci�cation

of plans as transformation strategies. CADDY and case{based planning can be charac-

terized as memory{based because the organization of the plans can be changed during the

planning processes.

Let us consider how CADDY achieves the tasks of processes in CHEF:

Problem Anticipation

The purpose of the Problem Anticipator is to notify features in the current input that

have participated in past planning problems. The Problem Anticipator avoids CHEF from

making the same fault it has made before. In CADDY, the Plan Adaptation Module uses

information in the Failure Table to prevent CADDY from constructing failed plans. The

di�erence is that the Problem Anticipator is executed at the beginning and these features

are added as a goal to avoid these problems; while in CADDY, the Failure Table serves as

to inform the Plan Adaptation Module that the adapted plan is not a good one.

62

Plan Retrieval

The Plan Selection Module chooses plan either by consulting information in the Best Table

or by choosing the plan with the least cost with the assistance of the Estimation Module.

Plan Modi�cation

The Plan Adaptation Module uses domain{dependent heuristic rules to adapt the plan

selected by the Plan Selection Module.

Plan Repair and Credit Assignment

CHEF �xes the faulty plan when a plan fails to achieve its goal, and CHEF also records

the causal explanation of why the failure has occurred so that the Problem Anticipator

can identify the features in the input that lead to the same problem in future planning

executions. CADDY does not try to repair the faulty plan but CADDY records the failure

experience in the Failure Table to prevent from making the same plan given the same

circumstance.

Since CHEF does not deal with uncertainty and e�ciency issues, it can correctly predict

whether the constructed plan will succeed, and it only considers the correctness of the

constructed plan. While in CADDY, the uncertainty can make a plan be an e�cient

one in one try but an awful one in the next try. CADDY uses simulation to estimate the

e�ectiveness of the generated plan, but it cannot predict the outcome of an actual execution.

This is why we do not repair the generated plan, a plan can be poorly executed although

it is projected as a good one.

63

Plan Storage

The Plan Execution Module stores needed information in the Best Table, in the Failure

Table, or in the Simulation Table. The generated plan is also stored in the Plan Library if

it outperforms the original selected plan.

6.3 Plan Feasibility Problems

As discussed in section 2.4, plan feasibility has been playing a central concept in the theory

of planning. In this section, we �rst present the preconditions of each primitive action in

the golf world testbed and the knowledge preconditions of the control{structure operators

in informal terms, then discuss how CADDY solves the plan feasibility problems.

Preconditions Axioms

For all primitive actions, we assumes that CADDY knows the values of the input parameters

before executing the action, and knows the values of the output parameters after executing

the action.

For (hit X � Z), the one physical precondition required is that CADDY and the

golf ball be at the same position ((Rx; Ry) = (Bx; By)). No knowledge preconditions are

required. The result of executing hit is unpredictable by CADDY and is controlled by the

underlying testbed (the values of �1, �2, �1, and �2).

For (look Z) and (scan PATH Z), no physical and knowledge preconditions are

needed. The result of executing look or scan depends on the CADDY's perception capability

(the value of �).

For (move X �), no physical and knowledge preconditions are required and CADDY

executes move error{free.

For (replace), no physical preconditions are required. The one knowledge precondition

64

required is that CADDY knows the position that it most recently hits the ball (the value

of (Hx; Hy)). CADDY executes replace error{free.

The knowledge preconditions of the control{structure operators are adopted from Mor-

genstern's model [Mor87]. For (sequence P1 P2), the knowledge preconditions require that

CADDY knows how to execute sub{plan P1 at the beginning, and knows how to execute

sub{plan P2 after P1 is complete. For (cond Q P1 P2), the knowledge preconditions require

that CADDY knows CADDY knows the truth value of Q at the beginning, and knows

either how to execute sub{plan P1 if Q is TRUE or how to execute sub{plan P2 if Q is

FALSE. For (while Q P1), the knowledge preconditions are de�ned recursively in terms

of sequences and conditionals since (while Q P1) is equivalent to (cond Q (sequence P1

(while Q P1)) ;).

It seems that the epistemic feasibility problem is rather simple in CADDY, since only re-

place requires knowledge preconditions. The problemwith this \local view" is that CADDY

does not consider the causal structure (hit, search, then move or replace loops) of the plans.

We must extend the \local view" to a \global view" of the whole plan structure. Several

conditions must be preserved during plan generation so that the generated plans are feasible

for later execution.

S1 : In order to hit the ball, CADDY must move to the the same position where the ball

resides or replace the ball. This requires that every hit must be preceded by either a

move to the position of the ball or a replace.

S2 : In order to move to the position of the ball, CADDY must know the position. This

requires that a successful look or scan must have taken place.

S3 : In order to replace the ball, CADDY must know the position where it most recently

hits the ball. Condition S3 can be easily achieved since CADDY can store the required

65

position into its internal knowledge each time it hits the ball.

In this \global view" of CADDY, a plan is epistemically feasible if the following two

conditions are satis�ed:

Q1 : When CADDY is about to execute a primitive action, the preconditions of the prim-

itive action is satis�ed.

Q2 : Conditions S1, S2, S3 are preserved during plan execution. Since S3 can be easily

preserved with extra internal storage, we focus on S1 and S2.

We now discuss how CADDY preserves the feasibility conditions during plan gener-

ation (the execution of the Plan Selection Module followed by the execution of the Plan

Adaptation Module).

Solutions to Plan Feasibility Problem

For planning systems which assume complete knowledge, the plan feasibility problem re-

duces to the physical preconditions problems. The agents always have complete and error{

free knowledge of the underlying environment, all knowledge preconditions axioms will be

satis�ed. Classical planning systems like STRIPS and TWEAK are within this category.

For planning systems which interleave planning and acting, the plan feasibility problem

is implicitly solved by the planning stage. At each planning stage, the planning systems

only consider those actions which are feasible for the agent. That is, the planning system

only considers those actions whose physical preconditions and knowledge preconditions are

satis�ed at the time the planning systems are about to generate next steps. POMDPs are

within this category.

CADDY operates in an unknown environment and has limited perceptions, and CADDY

will not take any execution until the plan has been generated. CADDY does not fall into

66

either of the above categories, CADDY must have ways to solve the feasibility problem.

Instead of constructing plans from scratch, CADDY adapts experiences. To solve the

feasibility problem, CADDY must take care of the following two issues:

� The plans which are pre{store in the Plan Library satisfy the requirements of precon-

ditions.

� The heuristic rules which are used to adapt the selected plans must maintain the

requirements of preconditions.

In the simplest execution, CADDY just selects a plan from the Plan Library and ex-

ecutes it. In order to solve the plan feasibility problem, the plans which reside in the

Plan Library must satisfy the requirement of physical preconditions as well as knowledge

preconditions. The plans initially in the Plan Library are constructed with care so that

CADDY is feasible to execute either of these plans if it is selected. That is, condition Q1

and Q2 are preserved during the execution of every plan stored in the Plan Library.

The plans stored by the Plan Execution Module are plans modi�ed by the Plan Adapta-

tion Module. After the Plan Selection Module chooses a plan, the Plan Adaptation Module

modi�es the plan by applying the heuristic rules. These modi�cations change the internal

structure of the plans and have potential to destroy the feasibility of the plans, CADDY

should apply these rules with care so that conditions Q1 and Q2 are still preserved even

the plan structure is altered.

Applying the heuristic rules for adapting hit (H1 andH2) only changes theX parameter

of the primitive action hit, but the internal structure of the plan remains the same. Hit

does not require knowledge preconditions and the physical preconditions are still satis�ed

(the adaptation rules do not alter the ball's position or CADDY's position before the hit),

Q1 is preserved. Q2 is also preserved since changing the hitting distance of hit does not

67

hit

replace

hit

original flows

Figure 6.1: Causal Structure Changed after R1, R2, or R3 is applied

alter the causal structure of the plan, S1 and S2 are una�ected.

Applying the heuristic rules for adapting replace (R1,R2, andR3) changes the internal

structure of the plan by adding a cond plan segment before searching the ball. The plan

segment tests some condition and executes replace if the condition is TRUE, otherwise

resumes the search execution. Action replace does not require physical preconditions and

the knowledge required can be extracted from the instantaneous situation (the (Hx, Hy)

point in each situation); the condition testing does not change anything if the condition is

FALSE, so the preconditions needed for the �rst action of the search sub{plan are still

satis�ed. Q1 is preserved. The insertion of the plan segment changes the causal structure of

the plan to the one shown in �gure 6.1. The new
ow (hit{replace{hit) preserves condition

S1 and S2 (hit is preceded by a replace, no move is involved in the causal
ow), the original

ows are known to preserve conditions S1 and S2. Q2 is also preserved.

Applying the heuristic rules for preventing replace (S1) changes the internal structure

by adding a scan action before replace action to extend the search. Since scan does not

require physical preconditions and knowledge preconditions, replace does not require phys-

ical preconditions and the knowledge required can be extracted from the instantaneous

situation (the (Hx, Hy) point), Q1 is preserved. The extra search step added into the plan

changes the causal structure of the plan to the one shown in �gure 6.2. The added scan

action can be viewed as s search
ows extension, and the global causal structure remains

68

hit search flows hitscan original flows
after search

Figure 6.2: Causal Structure Changed after S1 is applied

the same. Q2 is also preserved.

The plans initially in the Plan Library are feasible to be executed, and the heuristic

adaptation rules do not destroy the feasibility of the plans. This concludes that the plan

which CADDY is about to execute will not cause any feasibility problem.

69

70

Chapter 7

Simulation Results

Currently the CADDY planning system along with the golf world testbed are implemented

on a SUN workstation, with a simple graphic interface. All program modules are written

in C. The Plan Library initially contains 18 di�erent plans, the Best Table is empty, and

the Simulation Table contains the simulated cost results of the 18 plans under di�erent

parameter assignments.

The graphic interface enables users to set the value of physical parameters �1, �1, �,

and cost parameter c replace; while �2 = 0:75 � �1 and �2 = 0:75 � �1. The golf world

testbed currently treats physical parameter � and cost parameters c hit, c move, c look,

c scan as constants. We decided against relaxing these to variable parameters in order

to keep a reasonable bound on the dimensionality of the search space and hence on the

computational demands.

The graphic interface enables users to change parameter settings as well as to initialize

the position of CADDY and the golf ball at the starting situation. While the graphic

interface will simulate and display the e�ect of each primitive action performed and the

execution of the selected plan, another text window will also display the log for tracing

purpose.

Since the performance of several key modules will a�ect the performance of the whole

system, we will �rst discuss several simulation result of individual modules within the

CADDY planning system, then present some simulation result of the whole system in the

following sections.

7.1 Simulation Result of the Estimation Module

We show the relation between the simulation cost and those system parameters (�, �1,

�1, c replace, and the distance between the golf ball and the hole at the starting situation

dist), then compare the result of the Estimation Module from the averaged simulation cost.

Figure 7.1 through �gure 7.5 show the relation between the simulated cost of a plan and

the system parameters. For each selected parameter settings, four values are displayed.

� x indicates the estimated costEC of the plan, as generated by the EstimationModule.

� o indicates the simulated cost SC of the plan, as generated by averaging the cost of

hundreds of simulations of the plan under the selected parameter settings.

� Two+'s indicates the variance of the simulation cost derivation. These two+'s mark

the cost value of (SC � �) and (SC + �) where � is the standard derivation.

The four plans used (a3, b2, c3, and e1) are enumerated in �gures 7.6 and 7.7.

Figure 7.1 shows the relation between cost parameter c replace and the cost of the

chosen plan with (�, �1, �1, dist) bound to (20.00, 24.00, 0.24, 300.00). EC is close to

SC. The cost increases while c replace increases except for simulation result of e1, in

which it seems that the cost and c replace are independent. The reason may be that e1

does not immediately replace the golf ball until a long PATH of scan, while other plans

give up search either after a look or after a short PATH of scan.

71

Figure 7.1: Relation between Plan Cost and Cost Parameter c replace.

72

Figure 7.2: Relation between Plan Cost and Physical Parameter alpha.

73

Figure 7.3: Relation between Plan Cost and Physical Parameter beta.

74

Figure 7.4: Relation between Plan Cost and Physical Parameter lambda.

75

Figure 7.5: Relation between Plan Cost and Starting Situation distance.

76

Figure 7.2 shows the relation between physical parameter �1 and the cost of the chosen

plan with (c replace, �, �1, dist) bound to (100.00, 30.00, 0.08, 400.00). The di�erence

between EC and SC is small. When �1 increases, both the cost and variation increase.

Figure 7.3 shows the relation between physical parameter �1 and the cost of the chosen

plan with (c replace, �, �1, dist) bound to (100.00, 30.00, 8.00, 400.00). EC is usually

larger than SC but within SC+�. When �1 increases, both the cost and variation increase.

�1 and �2 determine the directional accuracy of CADDY's hit action, and �1 and �2

determine the distance accuracy of CADDY's hit action. Larger �s or �s means a larger

area of points the ball may land (or points CADDY assumes the ball are landing) after

CADDY hits the ball. Increasing either value not only potentially increases the hit error,

which increases the total cost either by increasing the cost of searching the golf ball, by

increasing the times of replacing the ball, or by both; but also increases the variation of the

total cost due to the increase of variation of cost of hit action. The large variation in the

result of c replace simulation (�gure 7.1) is explained in the same way.

Figure 7.4 shows the relation between physical parameter � and the cost of the chosen

plan with (c replace, �1, �1, dist) bound to (100.00, 8.00, 0.08, 400.00). EC stays close

with SC, and with larger �, EC is almost equal to SC. Cost decreases when � increases

under current parameter settings.

Figure 7.5 shows the relation between the initial situation dist and the cost of the chosen

plan with (c replace, �, �1, �1) bound to (100.00, 30.00, 8.00, 0.08). EC is usually larger

than SC but stays close to SC. Cost increases when dist increases under current parameter

settings.

Table 7.1 gives the comparison of EC and SC for 3750 trials of randomly chosen

parameter assignments. The di�erence percentage jSC�ECj
SC

may sometimes be rather large

(for example, over 30%), but EC is almost always within the range (SC��, SC+�). The

77

d = jSC�ECj
SC

d � 1% 1% < d � 5% 5% < d � 10% 10% < d � 20% 20% < d � 30% d > 30%

236 931 998 1256 257 72
6:29% 24:83% 26:61% 33:49% 6:58% 1:92%

SC � � � EC � SC + � Otherwise

3747 3
99:92% 0:08%

Table 7.1: Simulation Result of the Estimation Module.

� 10.00 50.00 100.00 10.00 50.00 100.00 10.00 50.00 100.00

�1 0.00 0.00 0.00 20.00 20.00 20.00 40.00 40.00 40.00

�1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Plan Selected a3 a3 a3 e3 a3 d3 e1 e2 d3

� 10.00 50.00 100.00 10.00 50.00 100.00 10.00 50.00 100.00

�1 0.00 0.00 0.00 20.00 20.00 20.00 40.00 40.00 40.00

�1 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

Plan Selected d3 d3 d3 e2 e3 d3 e1 e2 b2

� 10.00 50.00 100.00 10.00 50.00 100.00 10.00 50.00 100.00

�1 0.00 0.00 0.00 20.00 20.00 20.00 40.00 40.00 40.00

�1 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40

Plan Selected d3 d3 d3 e1 e3 d3 e1 e2 c2

Table 7.2: Plans Selected under Di�erent Parameter Assignments

performance of the Estimation Module is thus applicable judging from above simulation

result.

7.2 Simulation Result of the Plan Selection Module

Two simulation results are demonstrated here:

� The Plan Selection Module selects di�erent plans for di�erent parameter assignments.

� For several input starting situations, the Plan Selection Module usually selects the

actual optimal plans or near{optimal plans within the Plan Library.

78

Plan a3
(sequence (cond (ge (distance agent hole) 120)

(hit 120 (direction agent hole) Dist1 Dir1)
(hit (distance agent hole) (direction agent hole) Dist1 Dir1))

(while (not ball in) (sequence
(move Dist1 Dir1)
(look Dist2 Dir2)
(cond (ge Dist2 0.0) (move Dist2 Dir2) (replace))
(cond (ge (distance agent hole) 120)

(hit 120 (direction agent hole) Dist1 Dir1)
(hit (distance agent hole) (direction agent hole) Dist1 Dir1)))))

Plan b2
(sequence (cond (ge (distance agent hole) 60)

(hit 60 (direction agent hole) Dist1 Dir1)
(hit (distance agent hole) (direction agent hole) Dist1 Dir1))

(while (not ball in) (sequence
(look Dist2 Dir2)
(cond (ge Dist2 0.0) (move Dist2 Dir2) (sequence

(move Dist1 Dir1)
(look Dist2 Dir2)
(cond (ge Dist2 0.0) (move Dist2 Dir2) (replace))))

(cond (ge (distance agent hole) 60)
(hit 60 (direction agent hole) Dist1 Dir1)
(hit (distance agent hole) (direction agent hole) Dist1 Dir1)))))

Plan c3
(sequence (cond (ge (distance agent hole) 120)

(hit 120 (direction agent hole) Dist1 Dir1)
(hit (distance agent hole) (direction agent hole) Dist1 Dir1))

(while (not ball in) (sequence
(move (/ Dist1 2) Dir1)
(scan ((Dist1 Dir1)) Dist2 Dir2)
(cond (ge Dist2 0.0) (move Dist2 Dir2) (replace))))
(cond (ge (distance agent hole) 120)

(hit 120 (direction agent hole) Dist1 Dir1)
(hit (distance agent hole) (direction agent hole) Dist1 Dir1)))))

Figure 7.6: Some Example Plans Selected by Simulation of Plan Selection

79

Plan e1 (e2 and e3 are similar, with larger hitting distance)
(sequence (cond (ge (distance agent hole) 30)

(hit 30 (direction agent hole) Dist1 Dir1)
(hit (distance agent hole) (direction agent hole) Dist1 Dir1))

(while (not ball in) (sequence
(move (- Dist1 lambda) Dir1)
(scan (((* (sqrt 2) lambda) (+ Dir1 45))

((* (sqrt 2) lambda) (- Dir1 45))
((* 2 (* (sqrt 2) lambda)) (+ Dir1 225))
((* 2 (* (sqrt 2) lambda)) (+ Dir1 135))
((* 3 (* (sqrt 2) lambda)) (+ Dir1 45))
((* 3 (* (sqrt 2) lambda)) (- Dir1 45))
((* 4 (* (sqrt 2) lambda)) (+ Dir1 225))
((* 4 (* (sqrt 2) lambda)) (+ Dir1 135))
((* 5 (* (sqrt 2) lambda)) (+ Dir1 45))
((* 5 (* (sqrt 2) lambda)) (- Dir1 45)))
Dist2 Dir2)

(cond (ge Dist2 0.0) (move Dist2 Dir2) (replace))))
(cond (ge (distance agent hole) 30)

(hit 30 (direction agent hole) Dist1 Dir1)
(hit (distance agent hole) (direction agent hole) Dist1 Dir1)))))

Figure 7.7: Some Example Plans Selected by Simulation of Plan Selection (continued)

80

Table 7.2 shows that, with the same starting situation which CADDY and the golf ball

are at (200:00; 200:00) and �xed cost parameter c replace, di�erent plans are selected by

the Plan Selection Module for di�erent settings of physical parameters �, �1, and �1. Some

plans selected by this simulation are enumerated in �gure 7.6 and �gure 7.7. The major

di�erence between these plans is the search strategy. The intended hitting distance of these

plans are also di�erent.

� a3 moves to the position returned by hit action then looks around to locate the golf

ball. If CADDY �nds the ball, moves towards the ball and re{hits again; otherwise

gives up search immediately and replaces the ball for next hit.

� b2 di�ers from a3 in one respect. b2 looks around to locate the ball right after

CADDY hits the ball. b2 can locate the ball earlier if either the hitting distance is

short or � (the perception distance) is fairly large.

� c3 scans a short straight line through the direction returned by hit. If �1 is rather

small while �1 is large, c3 has a great chance locating the ball through the scan path.

� e1 looks for the golf ball through a spiral{like path centered at the position returned

by a hit action. e1 should execute the replacement rarely due to the long search path

and the large search area. Figure 7.8 shows the scan path after the move.

The Plan Selection Module selects plans either (1) by remembering a near{perfectmatch

of experiences or (2) by selecting a plan with the least estimated cost (refer to section 5.3

for more detail). Case (1) is simple: The plan for near{matched experience has been

constructed by previous execution of the Plan Selection Module and the Plan Adaptation

Module, and has been stored in the database marked as optimal (or near optimal, depends

on the performance of the Plan Selection Module at that time) for that starting situation.

81

Dir1

lambda

Figure 7.8: The scan PATH of Plan `e1'.

P1 = P2 P1 6= P2
653 371

(63.77 %) (36.23 %)
� � 1% 1% < � � 5% 5% < � � 10% � > 10%
102 218 44 7

(9.96 %) (21.29 %) (4.30 %) (0.68 %)

Table 7.3: Simulation Result of the Plan Selection Module.

We next consider the performance of the Plan Selection Module for case (2). In order to

demonstrate that the Plan Selection Module is e�ective in selecting the expected best plan

in the Plan Library for the current starting situation, we compare the result of the Plan

Selection Module and the actual optimal plan by the following simulation procedure. Given

di�erent randomly selected parameter settings, the simulation procedure �rst evokes the

Plan Selection Module to select a plan P1 with estimated cost C1, then simulates each plan

within Plan Library under the given parameter settings and chooses P2 with the smallest

average cost C2. If P1 is di�erent from P2, the simulation procedure also compares the

cost di�erence by calculating the di�erence percentage value � = jC1�C2j
C2

. Table 7.3 shows

the simulation result after 1024 random trials.

82

The simulation result shows that the percentage of the Plan Selection Module selecting

the right plan (P1 is equal to P2) is only 63:77%. While more than one third times the

Plan Selection Module does not select the optimal plan, most of the time the di�erence (�)

is rather small. We can see that only 0:68% times the di�erence is rather large (� > 10%)

while 73:73% times the Plan Selection Module either selects the right plan or the di�erence

is very small (� � 1%); if we increase the error percentage to 5%, 95:02% times the Plan

Selection Module's performance satis�es the request. This shows that the Plan Selection

Module satis�es, to some extent, the requirement of selecting the optimal or near{optimal

plan from the Plan Library.

7.3 Simulation Result of the Plan Adaptation Mod-

ule

We have demonstrated in section 5.4 how the Plan Adaptation Module can apply heuristic

rules to adapt the plan selected by the Plan Selection Module. Since the resulting plan

adapted by the Plan AdaptationModule cannot be guaranteed to be better than the original

plan selected by the Plan Selection Module (though we hope this always is the case), we

just present the following simulation result.

Of 256 random trials, the Plan Adaptation Module applies heuristic rules to adapt

selected plans 192 times while remains selected plans unchanged 64 times. Of those 192

trials, P2, the adapted plan generated by the Plan Adaptation Module, outperforms P1, the

original plan selected by the Plan Selection Module, 126 times while P1 outperforms P2 66

times. This also demonstrates that these heuristic repair rules do not always work.

7.4 Simulation Result of the Whole System

Demonstrated below are several typical simulation results we got from the current system.

83

With (c replace, �, �1, �1) = (120:00, 35:00, 3:00, 0:03) and initial position (200:0,

200:0), the Plan Selection Module chooses plan a3 with estimated cost 714:16, and the Plan

Adaptation Module applies heuristic rules H1 and R3 to plan a3. After 256 simulations,

the average costs of both plans are 752:66, 670:84; with 3:96, 3:28 hit operations and 0:00,

0:00 replace operations. Actual simulation results show that after adapting the selected

plan, CADDY gets a better plan with less average cost and less hit operations. The newly

generated plan p0 is stored in the Plan Library; the record (p0, c replace = 120:00,

� = 35:00, �1 = 3:00, �1 = 0:03, dist = 282:00, cost = 670:84) is recorded in the Best

Table; and the Plan Execution Module evokes simulations of the plan p0 under selected

circumstances and records the result in the Simulation Table.

With (c replace, �, �1, �1) = (54:00, 26:00, 28:00, 0:24) and initial position (200:0,

200:0), the Plan Selection Module chooses plan e3 with estimated cost 1526:65, and the Plan

Adaptation Module applies heuristic rules H2 and R1 to plan e3. After 256 simulations,

the average costs of both plans are 2074:67, 1934:58; with 8:26, 9:02 hit operations and

0:04, 1:48 replace operations. Though with higher number of hit and replace operations,

the adapted plan shows a less average cost because it now spends less on scaning those

bad hits. Again, simulation results show that applying heuristics makes CADDY get a

better plan with lower average cost. Again, the newly generated plan p1 is stored in the

Plan Library; the record (p1, c replace = 54:00, � = 26:00, �1 = 28:00, �1 = 0:24,

dist = 282:00, cost = 1934:58) is recorded in the Best Table; and the Plan Execution

Module evokes simulations of the plan p1 under selected circumstances and records the

result in the Simulation Table.

With (c replace, �, �1, �1) = (100:00, 56:00, 20:00, 0:20) and initial position (200:0,

200:0), the Plan Selection Module chooses plan e3 with estimated cost 1259:75, and the Plan

Adaptation Module applies heuristic rules H2 and R1 to plan e3. After 256 simulations,

84

the average costs of both plans are 1359:77, 1420:30; with 6:69, 7:07 hit operations and 0:00,

0:45 replace operations. This time, the adapted plan is worse than the original plan with

higher cost. The newly generated plan is then discarded by the Plan Execution Module,

the adaptation experience (e3, � = 56:00, �1 = 20:00, �1 = 0:20, c replace = 100:00,

dist = 282:00, fH2, R1g) is recorded in the Failure Table, and the record (e3, c replace =

100:00, � = 56:00, �1 = 20:00, �1 = 0:20, dist = 282:00, cost = 1359:77) is recorded in the

Best Table.

With (c replace, �, �1, �1) = (54:00, 26:00, 28:00, 0:24) and initial position (200:0,

200:0), the Plan Selection Module chooses plan p1 with estimated cost 1934:58 since

CADDY remembers the similar situation has been inputed before (p1 was generated from

e3 by the Plan Adaptation Module with the same input starting situation). the Plan Adap-

tation Module does not apply any heuristic repair rules to the selected plan, and the Plan

Execution Module shows similar simulation result.

With (c replace, �, �1, �1) = (100:00, 56:00, 20:00, 0:20) and initial position (200:0,

200:0), the Plan Selection Module chooses plan e3 with estimated cost 1259:75, and the

Plan Adaptation Module intends to apply heuristic rules H2 and R1 to plan e3 but �nds

the failed experience in the Failure Table, so the Plan Adaptation Module decides to apply

only rule H2 only. After 256 simulations, the average costs of both plans are 1359:77,

1398:16; with 6:69, 6:78 hit operations and 0:00, 0:00 replace operations. This time, the

adapted plan is still worse than the original plan with higher cost. The newly generated plan

is then discarded by the Plan Execution Module, the adaptation experience (e3, � = 56:00,

�1 = 20:00, �1 = 0:20, c replace = 100:00, dist = 282:00, fH2g) is recorded in the

Failure Table, and the record (e3, c replace = 100:00, � = 56:00, �1 = 20:00, �1 = 0:20,

dist = 282:00, cost = 1359:77) is updated in the Best Table. Though the adapted plan is

still outperformed by the original selected plan, the simulated cost this time (1398:16) is

85

slightly better than the simulated cost last time (1420:30).

7.5 Discussion of Simulation Result

We have shown the following simulation results to demonstrate the performance of the

CADDY planning system under the golf world testbed.

� We have studied the relation between plan cost and each of the system parameters.

Though we only demonstrate the relation with speci�c �xed settings of parameters and

a small set of plans, we believe the relation should be similar under other parameter

assignments and other plans.

� The performance of the EstimationModule and the Plan Selection Module is adequate

to our purposes.

� Heuristic adaptation rules do not always improve the quality of plans. The Plan

Adaptation Module may or may not adapt the input plans, and the adapted plans

may not always outperform the original ones.

� The performance of the integrated system is satisfactory since the Estimation Module

can get satisfactory estimate cost of plans; the Plan Selection Module can choose

a near{optimal plan from the Plan Library for current parameter settings and the

starting situation; the Plan Adaptation Module can apply heuristic repair rules to

adjust the selected plan; and the Plan Execution Module can learn experiences by

storing the better quality plans and simulation result back to the Plan Library.

Though the current system is satisfactory, it is far from perfect. We will discuss some

directions for improvement in section 8.1.

86

87

Chapter 8

Extension and Generalization

In this chapter, we will �rst point out directions where the performance of the CADDY

planning system can be improved, then discuss how to generalize the ideas we get from

CADDY to other problem domains.

8.1 System Extension

Although the current system gives us some useful and promising results, CADDY is far

from perfect. A couple of directions for system improvement are addressed here:

� Improve the run{time performance.

The current prototype is implemented using several naive and straightforward meth-

ods, which simplify the implementation at the cost of e�ciency. Chapter 5 has pointed

out several directions of implementation improvement, which will be addressed in de-

tail within this section.

� Extend the testbed complexity.

The current golf world testbed is, to some extent, too simplistic to be considered as a

real{world problem. Several extension concerns are also addressed later to complicate

the testbed so that the gap between real{world problems and the testbed is narrowed.

� Explore more heuristic repair rules.

The current system only includes some simple heuristic adaptation rules. More heuris-

tics should be explored, especially when the underlying testbed is extended.

8.1.1 Run{Time Performance Improvement

As we have pointed out in chapter 5 and chapter 7, while CADDY is tested in the golf world

testbed, work can be done to improve the run{time performance, both the accuracy (the

interpolations) and the e�ciency. We will present some directions of improvement here.

Plan Library

The performance of the K{D tree (the Best Table and the Failure Table) and the 5{

dimension linked list structure (the Simulation Table) are fair. The biggest problem that

can a�ect the performance of CADDY is the increasing size of the Simulation Table. As

more plans being stored in the Plan Table, the size of the Simulation Table increases dra-

matically. One way to control the size of the Simulation Table is to periodically check

all plans in the Plan Library and discard plans which are outperformed by others under

selected circumstances. Another way is to replace these discrete entries in the Simulation

Table by functions of the plans and system parameters. This will needs a comprehensive

numerical analysis of the simulation result to get the cost estimation function of each plan

in the Plan Library.

Estimation Module and Plan Selection Module

We can see, from the simulation result in section 7.1, that the estimated cost and the

simulated cost are not always compatible. For example, the Estimation Module usually

88

over{estimates the cost when �1 is large (see �gure 7.3). One way to improve the accuracy

of estimation is to increase the reference points in the Simulation Table so that the linear

interpolation can choose points closer to the current setting, but this will increase the size

of Simulation Table and then delay the search of two nearest points. Another possible

improvement is to use other interpolation methods or other simulation techniques.

Controlling the size of the Plan Library will also improve the performance of the Plan

Selection Module. Remember that the Plan Selection Module needs to perform interpola-

tions of each plan stored in the Plan Library, removing plans which are outperformed by

others can reduce the number of unnecessary interpolations.

Plan Adaptation Module

We should explore more heuristic rules. Especially when the underlying testbed is extended,

more domain{dependent heuristics should be easily included.

Parallel Execution

Two major performance bottlenecks are encountered during the execution of the CADDY

planning system:

1. Searching for a new plan from the Plan Library. The Plan Selection Module uses the

Estimation Module to interpolate every plan within the Plan Library and chooses the

one with least cost. As we have pointed out, the interpolation calculation in the Esti-

mation Module is a computation intensive process, so the sequence of interpolations

performed by the Plan Selection Module can be expected to be time consuming.

2. Storing generated plans and simulation results in the Plan Library. The Plan Execu-

tion Module needs simulations of the adapted plan under selected circumstances and

records the simulation result in the Simulation Table. We have pointed out that the

89

Plan Execution Module needs hundreds of simulations in order to get the average cost

of a plan under one speci�c circumstance. A large number of simulated executions of

a plan is also expected to be time consuming.

Distributing these computations to multiple processors will speed up these bottlenecks.

The Plan Selection Module can be modi�ed to use parallel execution to speed up its per-

formance, with several machines running the Estimation Module independently to calculate

interpolations of di�erent plans. The Plan Execution Module can be modi�ed to use paral-

lel execution to speed up its performance, with several machines independently simulating

the plan under di�erent circumstances then outputting these result to the Simulation Table.

Putting these modules in parallel execution will help improving the run{time performance

of CADDY.

8.1.2 Testbed Extension

We have pointed out in section 4.3 that, while the golf world testbed, like the blocks world,

has the advantages of simplicity, it also raises interesting problems of imperfect perception,

control, and knowledge. However, the golf world testbed ignores several issues which would

be encountered in a real world golf course. Extending the golf world testbed for
exibility

will narrow the gap. The extension of the golf world may be of no practical interest, but the

discussion of the extension can help us to understand more about testbed designing, which

can then help us to design other testbeds when we generalize CADDY to other domains.

One obvious way of extending the testbed is to include more system parameters. For

example, considering the wind factor and the golf �eld factor will certain complicate the

testbed. The wind factor will a�ect the hitting distance and direction, which then a�ects

CADDY to decide what distance/direction to hit. The �eld factor (the obstacles will block

CADDY's perception, CADDY should avoid hitting the ball into the pond or the sand

90

ground, etc) also will complicate the underlying environment, which then a�ects CADDY's

decision of plan actions.

To include more primitive actions which CADDY can execute is also a possible way

of extending the testbed. For example, we can extend the hit operation with one more

parameter club, which represents which golf club CADDY uses to hit the ball. Di�erent

clubs can have di�erent hitting abilities (di�erent hitting distance, di�erent accuracy, one

club may �t at one kind of �eld while another may not, etc), which surely a�ects CADDY's

decision on which club to use under di�erent circumstances. Another example is that we can

extend look operation so that CADDY has di�erent accuracy of perception under di�erent

distances. Allowing CADDY have partial perception accuracy increases the information

CADDY can gather (the current look model is a kind of all{or{nothing, either CADDY

knows the exact location of the ball or CADDY gains nothing), but also complicates the

degree of uncertainty.

The use of uncertainty model gives another potential extension of the testbed. The un-

certainty model currently used is a normal probabilistic distribution with �xed parameters,

the values of the physical parameters and the cost parameters are unchanged during plan

execution. Allowing parameters changes values during plan execution and the use of dif-

ferent probabilistic distribution models increase the complexity of the underlying testbed.

This variation can either follow pre{de�ned functions or be obtained frommeta{level prob-

abilistic models.

8.2 Generalization

Generalization of CADDY to other domains will be our main concern. We have already

pointed out that the golf world is a rather simpli�ed testbed with a build{in set of parame-

ters which characterize the behavior of the tested world and simple uncertainty model. We

91

will consider how the insights gained from the study of CADDY can be extended to other

richer domains.

Each new domain requires a speci�cation of the testbed, used for simulation; the plan-

ning language; the cost function on plan execution; the estimation techniques to be used

by the Estimation Module; and the heuristic adaptation rules used by the Plan Adaptation

Module.

92

93

Bibliography

[AHT90] James F. Allen, James Hendler, and Austin Tate. Readings in Planning. Mor-
gan Kaufmann Publishers, Inc., San Mateo, California, U.S.A., 1990.

[Alt86a] Richard Alterman. Adaptive Planning : a Case of Flexible Knowing. Technical
report, University of California at Berkeley, 1986.

[Alt86b] Richard Alterman. An Adaptive Planner. In Proceedings of the Fifth National
Conference on Arti�cial Intelligence, pages 65{69, Philadelphia, Pennsylvania,
U.S.A., August 11 { 15 1986. American Association for Arti�cial Intelligence.

[Alt88] Richard Alterman. Adaptive Planning. Cognitive Science, 12:393{421, 1988.

[BBK94] Sugato Bagchi, GautamBiswas, and Kazuhiko Kawamura. Generating Plans to
Succeed in Uncertain Environments. In Kristian J. Hammond, editor, Proceed-
ings of the Second International Conference on Arti�cial Intelligence Planning
Systems, pages 1{6, Chicago, Illinois, U.S.A., June 13 { 15 1994.

[BW94a] Anthony Barret and Daniel S. Weld. Partial{Order Planning : Evaluating
Possible E�ciency Gains. Arti�cial Intelligence, 67(1):71{112, 1994.

[BW94b] Anthony Barret and Daniel S. Weld. Schema Parsing : Hierarchical Planning
of Expressive Languages. In Proceedings of the Twelfth National Conference on
Arti�cial Intelligence, Seattle, Washington, U.S.A., July 31 { August 4 1994.
American Association for Arti�cial Intelligence.

[Cha87] David Chapman. Planning for Conjunctive Goals. Arti�cial Intelligence,
32(3):333{377, 1987.

[Chr92] L. Chrisman. Reinforcement Learning with Perceptual Aliasing : The Percep-
tual Distinctions Approach. In Proceedings of the Tenth National Conference
on Arti�cial Intelligence, pages 183{188, San Jose, California, U.S.A., July 12
{ 16 1992. American Association for Arti�cial Intelligence.

[CKL94a] Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman. Acting
Optimally in Partially Observable Stochastic Domains. In Proceedings of the

Twelfth National Conference on Arti�cial Intelligence, Seattle, Washington,
U.S.A., July 31 { August 4 1994. American Association for Arti�cial Intelli-
gence.

[CKL94b] Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman. Algo-
rithms for Partially Observable Markov Decision Processes. Technical Report
CS{94{14, Department of Computer Science, Brown University, 1994.

[Dan84] L. Daniel. Planning and Operations Research. In Tim O'Shea and Marc Eisen-
stadt, editors, Arti�cial Intelligence : Tools, Techniques, and Applications.
Harper and Row, New York, New York, U.S.A., 1984.

[Dav90] Ernest S. Davis. Representations of Commonsense Knowledge. Morgan Kauf-
mann Publishers, Inc., San Mateo, California, U.S.A., 1990.

[Dav94] Ernest S. Davis. Branching Continuous Time and the Semantics of Continuous
Action. In Kristian J. Hammond, editor, Proceedings of the Second Interna-
tional Conference on Arti�cial Intelligence Planning Systems, pages 231{236,
Chicago, Illinois, U.S.A., June 13 { 15 1994. Poster.

[Davng] Ernest S. Davis. Knowledge Preconditions for Plans. Journal of Logic and
Computation, Forthcoming.

[DFM89] Thomas L. Dean, R. James Firby, and David Miller. Hierarchical Planning
Involving Deadline, Travel Times, and Resources. Computational Intelligence,
4(4):381{398, 1989.

[DH93] Marek J. Druzdzel and Max Henrion. E�cient Reasoning in Qualitative Prob-
abilistic Networks. In Proceedings of the Eleventh National Conference on Arti-
�cial Intelligence, pages 548{553, Washington D.C., U.S.A., July 11 { 15 1993.
American Association for Arti�cial Intelligence.

[DHW94] Denise Draper, Steve Hanks, and Daniel S. Weld. Probabilistic Planning with
Information Gathering and Contingent Execution. In Kristian J. Hammond,
editor, Proceedings of the Second International Conference on Arti�cial Intel-
ligence Planning Systems, pages 31{36, Chicago, Illinois, U.S.A., June 13 { 15
1994.

[DK87] Thomas L. Dean and Keiji Kanazawa. Persistence and Probabilistic Inference.
Technical Report CS{87{23, Department of Computer Science, Brown Univer-
sity, 1987.

[DK88] Thomas L. Dean and Keiji Kanazawa. Probabilistic Temporal Reasoning. In
Proceedings of the Seventh National Conference on Arti�cial Intelligence, pages
524{528, St. Paul, Minnesota, U.S.A., August 21 { 26 1988. American Associ-
ation for Arti�cial Intelligence.

94

[DKKN93] Thomas L. Dean, Leslie Pack Kaelbling, Jack Kirman, and Ann Nicholson.
Planning with Deadlines in Stochastic Domains. In Proceedings of the Eleventh
National Conference on Arti�cial Intelligence, pages 574{579, Washington
D.C., U.S.A., July 11 { 15 1993. American Association for Arti�cial Intelli-
gence.

[DM87] Thomas L. Dean and Drew V. McDermott. Temporal Data Base Management.
Arti�cial Intelligence, 32:1{55, 1987.

[Dru93] Marek J. Druzdzel. Probabilistic Reasoning in Decision Support Systems : from
Computation to Common Sense. PhD thesis, Department of Engineering and
Public Policy, Carnegie Mellon University, 1993.

[FBF77] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An Algorithm for Finding Best
Matches in Logarithmic Expected Time. ACM Transactions on Mathematical
Software, 3:209{226, 1977.

[FN71] Richard E. Fikes and Nils J. Nilsson. STRIPS : A New Approach to the
Application of Theorem Proving to Problem Solving. Arti�cial Intelligence,
2(3):189{208, 1971.

[Ham83] Kristian J. Hammond. Planning and Goal Interaction: The Use of Past Solu-
tions in Present Situations. In Proceedings of the Third National Conference
on Arti�cial Intelligence, pages 148{151, Washington D.C., U.S.A., August 22
{ 26 1983. American Association for Arti�cial Intelligence.

[Ham86a] Kristian J. Hammond. CHEF : A Model of Case{based Planning. In Proceed-
ings of the Fifth National Conference on Arti�cial Intelligence, pages 267{271,
Philadelphia, Pennsylvania, U.S.A., August 11 { 15 1986. American Associa-
tion for Arti�cial Intelligence.

[Ham86b] Kristian J. Hammond. Learning to Anticipate and Avoid Planning Problems
through the Explanation of Failures. In Proceedings of the Fifth National Con-
ference on Arti�cial Intelligence, pages 556{560, Philadelphia, Pennsylvania,
U.S.A., August 11 { 15 1986. American Association for Arti�cial Intelligence.

[Ham89] Kristian J. Hammond. Case{Based Planning : Viewing Planning as a Memory
Task. Academic Press, Inc., San Diego, California, U.S.A., 1989.

[Ham94] Kristian J. Hammond, editor. Proceedings The Second International Confer-
ence on Arti�cial Intelligence Planning Systems, Chicago, Illinois, U.S.A., June
13 { 15 1994. American Association for Arti�cial Intelligence.

[Han90a] Steve Hanks. Practical Temporal Projection. In Proceedings of the Eighth
National Conference on Arti�cial Intelligence, pages 158{163, Boston, Mas-
sachusetts, U.S.A., July 29 { August 3 1990. American Association for Arti�cial
Intelligence.

95

[Han90b] Steve Hanks. Projecting Plans about Uncertain Worlds. PhD thesis, Computer
Science Department, Yale University, January 1990.

[Hay75] Philip J. Hayes. A Representation for Robot Plans. In Advance Papers of the
Fourth Annual International Joint Conference on Arti�cial Intelligence, pages
181{188, Tbilisi, Georgia, USSR, September 3 { 8 1975.

[HD91] Max Henrion and Marek J. Druzdzel. Qualitative Propagation and Scenario{
Based Approaches to Explanation of Probabilistic Reasoning. In Piero P.
Bonissone, Max Henrion, L. N. Kanal, and J. F. Lemmer, editors, Uncertainty
in Arti�cial Intelligence 6, pages 17{32. North{Holland:Elsevier, 1991.

[Hen92] James Hendler, editor. Proceedings The First International Conference on
Arti�cial Intelligence Planning Systems, College Park, Maryland, U.S.A., June
15 { 17 1992. American Association for Arti�cial Intelligence.

[How60] Ronald A. Howard. Dynamic Programming and Markov Processes. The MIT
Publisher, Cambridge, Massachusetts, U.S.A., 1960.

[HPC93] Steve Hanks, Martha Pollack, and Paul Cohen. Benchmarks, Testbeds, Con-
trolled Experimentation, and the Design of Agent Architectures. Technical
Report 93{06{05, Department of Computer Science and Engineering, Univer-
sity of Washington, June 1993.

[Kam89] Subbarao Kambhampati. Flexible Reuse and Modi�cation in Hierarchical Plan-
ning : a Validation Structure Based Approach. PhD thesis, Department of
Computer Science, University of Maryland at College Park, 1989.

[KD89] Keiji Kanazawa and Thomas L. Dean. A Model for Projection and Action. In
Proceedings of the Eleventh Annual International Joint Conference on Arti�cial
Intelligence, pages 985{990, Detroit, Michigan, U.S.A., August 20 { 25 1989.

[KH89] Subbarao Kambhampati and James Hendler. Flexible Reuse of Plans via An-
notation and Veri�cation. In Proceedings of the Fifth IEEE Conference on
Applications of Arti�cial Intelligence, Miami, Florida, U.S.A., 1989.

[KH92] Subbarao Kambhampati and James Hendler. A Validation{Structure{Based
Theory of Plan Modi�cation and Reuse. Arti�cial Intelligence, 55:193{258,
1992.

[KHW93] Nicholas Kushmerick, Steve Hanks, and Daniel S. Weld. An Algorithm for
Probabilistic Planning. Technical report, Department of Computer Science,
University of Washington, January 1993.

[KHW94] Nicholas Kushmerick, Steve Hanks, and Daniel S. Weld. An Algorithm for
Probabilistic Least{Commitment Planning. In Proceedings of the Twelfth Na-
tional Conference on Arti�cial Intelligence, Seattle, Washington, U.S.A., July
31 { August 4 1994. American Association for Arti�cial Intelligence.

96

[Lov91] W. S. Lovejoy. A Survey of Algorithmic Methods for Partially Observed
Markov Decision Processes. Annals of Operations Research, 28(1):47{65, 1991.

[McC80] John McCarthy. Circumscription { A Form of Nonmonotonic Reasoning. Ar-
ti�cial Intelligence, 13(1,2):27{39, 1980.

[McC86] John McCarthy. Applications of Circumscription to Formalizing Common{
Sense Knowledge. Arti�cial Intelligence, 28(1):89{116, 1986.

[McC93] R. A. McCallum. Overcoming incomplete Perception with Utile Distinction
Memory. In Proceedings of the Tenth International Conference on Machine
Learning, Amherst, Massachusetts, U.S.A., 1993. Morgan Kaufmann.

[McD78] Drew V. McDermott. Planning and Acting. Cognitive Science, 2(2):71{109,
1978.

[McD82] Drew V. McDermott. A Temporal Logic for Reasoning about Processes and
Plans. Cognitive Science, 6(2):101{155, 1982.

[McD85] Drew V. McDermott. Reasoning about Plans. In Jerry R. Hobbs and Robert C.
Moore, editors, Formal Theories of the Commonsense World, pages 269{317.
ABLEX Publishing Corp., Norwood, New Jersey, U.S.A., 1985.

[McD91] Drew V. McDermott. A Reactive Plan Language. Technical Report Yale Re-
search Report 864, Computer Science Department, Yale University., August
1991.

[MH69] John McCarthy and Patrick J. Hayes. Some Philosophical Problems from the
Standpoint of Arti�cial Intelligence. In B. Meltzer and D. Michie, editors, Ma-
chine Intelligence 4, pages 463{502. Edinburgh University Press., Edinburgh,
United Kingdom, 1969.

[Mon82] G. E. Monahan. A Survey of Partially Observable Markov Decision Processes
: Theory, Models, and Algorithms. Management Science, 28(1):1{16, 1982.

[Moo80] Robert C. Moore. Reasoning about Knowledge and Action. Technical Report
191, SRI International, Menlo Park, California, U.S.A., 1980.

[Moo85] Robert C. Moore. A Formal Theory of Knowledge and Action. In Jerry Hobbs
and Robert C. Moore, editors, Formal Theories of the Commonsense World,
pages 319{358. ABLEX Publishing, Norwood, New Jersey, U.S.A., 1985.

[Mor87] Leora Morgenstern. Knowledge Preconditions for Actions and Plans. In Pro-
ceedings of the Tenth Annual International Joint Conference on Arti�cial In-
telligence, pages 867{874, Milan, Italy, August 23 { 28 1987.

97

[Mor88] Leora Morgenstern. Foundations of a Logic of Knowledge, Action, and Com-
munication. PhD thesis, Courant Institute of Mathematical Sciences, New York
University, 1988.

[OSE92] R. Oehlmann, D. Sleeman, and P. Edwards. Self{Questioning and Experi-
mentation in an Exploratory Discovery System. In Proceedings of the ML{92
Workshop on Machine Discovery, pages 41{50, 1992.

[OSE93] R. Oehlmann, D. Sleeman, and P. Edwards. Learning Plan Transformations
from Self{Questions : A Memory{Based Approach. In Proceedings of the
Eleventh National Conference on Arti�cial Intelligence, pages 520{525, Wash-
ington D.C., U.S.A., July 11 { 15 1993. American Association for Arti�cial
Intelligence.

[PL87] Michael P.George� and Amy L. Lansky. Reactive Reasoning and Planning. In
Proceedings of the Sixth National Conference on Arti�cial Intelligence, pages
677{682, Seattle, Washington, U.S.A., July 13 { 17 1987. American Association
for Arti�cial Intelligence.

[Sac75a] Earl D. Sacerdoti. A Structure for Plans and Behavior. Technical Report 109,
SRI Arti�cial Intelligence Center, Menlo Park, California, U.S.A., 1975.

[Sac75b] Earl D. Sacerdoti. The Nonlinear Nature of Plans. In Proceedings of the Forth
Annual International Joint Conference on Arti�cial Intelligence, pages 206{
214, Tbilisi, Georgia, USSR, September 3 { 8 1975.

[Sac77] Earl D. Sacerdoti. A Structure for Plans and Behaviour. Elsevier{North,
Holland, 1977.

[Sch87] M. J. Schoppers. Universal Plans for Reactive Robots in Unpredictable Do-
mains. In Proceedings of the Tenth Annual International Joint Conference on
Arti�cial Intelligence, pages 1039{1046, Milan, Italy, August 23 { 28 1987.

[Sim88a] Reid G. Simmons. A Theory of Debugging Plans and Interpretations. In
Proceedings of the Seventh National Conference on Arti�cial Intelligence, pages
94{99, St. Paul, Minnesota, U.S.A., August 21 { 26 1988. American Association
for Arti�cial Intelligence.

[Sim88b] Reid G. Simmons. Combining Associational and Causal Reasoning to Solve
Interpretation and Planning Problems. PhD thesis, Massachusetts Institute of
Technology, Arti�cial Intelligence Laboratory, 1988.

[Sus75] Gerald Jay Sussman. A Computer Model of Skill Acquisition. American Else-
view Publishing Company, Inc., New York, New York, U.S.A., 1975.

[Tat77a] Austin Tate. Generating Project Networks. In Proceedings of the Fifth An-
nual International Joint Conference on Arti�cial Intelligence, Cambridge,Mas-
sachusetts, U.S.A., August 22 { 25 1977.

98

[Tat77b] Austin Tate. Project Planning Using a Hierarchical Non{linear Planner. Tech-
nical Report 25, Department of Arti�cial Intelligence, Edinburgh University,
1977.

[THD90] Austin Tate, James Hendler, and Mark Drummond. A Review of AI Planning
Techniques. In James F. Allen, James Hendler, and Austin Tate, editors, Read-
ings in Planning, pages 26{49. Morgan Kaufmann Publishers, Inc., San Mateo,
California, U.S.A., 1990.

[Wel87] Michael P. Wellman. Probabilistic Semantics for Qualitative In
uences. In
Proceedings of the Sixth National Conference on Arti�cial Intelligence, pages
660{664, Seattle, Washington, U.S.A., July 13 { 17 1987. American Association
for Arti�cial Intelligence.

[Wel90a] Michael P. Wellman. Fundamental Concepts of Qualitative Probabilistic Net-
works. Arti�cial Intelligence, 44(3):257{303, 1990.

[Wel90b] Michael P. Wellman. Qualitative Probabilistic Networks for Planning under
Uncertainty (revised). In G. Shafer and J. Pearl, editors, Readings in Uncertain
Reasoning. Morgan Kaufmann Publishers, Inc., San Mateo, California, U.S.A.,
1990.

[WH94] Mike Williamson and Steve Hanks. Optimal Planning with a Goal{directed
Utility Model. In Kristian J. Hammond, editor, Proceedings of the Second
International Conference on Arti�cial Intelligence Planning Systems, pages
176{181, Chicago, Illinois, U.S.A., June 13 { 15 1994.

[Wil83] David E. Wilkins. Representation in a Domain{Independent Planner. In Pro-
ceedings of the Eighth Annual International Joint Conference on Arti�cial In-
telligence, pages 733{740, Karlsruhe, West Germany, August 8 { 12 1983.

99

