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Abstract

In this thesis we present formal logical systems, concerned with reasoning about
algebraic data types.

The first formal system is based on the quantifier-free calculus (outermost univer-
sally quantified). This calculus is comprised of state change rules, and computations
are performed by successive applications of these rules. Thereby, our calculus gives
rise to an abstract decision procedure. This decision procedure determines if a given
formula involving algebraic type members is valid. It is shown that this calculus
is sound and complete. We also examine how this system performs practically and
give experimental results. Our main contribution, as compared to previous work on
this subject, is a new and more efficient decision procedure for checking satisfiability
of the universal fragment within the theory of algebraic data types.

The second formal system, called Term Builder, is the deductive system based on
higher order type theory, which subsumes second order and higher order logics. The
main purpose of this calculus is to formulate and prove theorems about algebraic
or other arbitrary user-defined types. Term Builder supports proof objects and is
both, an interactive theorem prover, and verifier. We describe the built-in deductive
capabilities of Term Builder and show its consistency. The logic represented by our
prover is intuitionistic. Naturally, it is also incomplete and undecidable, but its
expressive power is much higher than that of the first formal system. Among our
achievements in building this theorem prover is an elegant and intuitive GUI for
building proofs. Also, a new feature from the foundational viewpoint is that, in
contrast with other approaches, we have uniqueness-of-types property, which is not

modulo beta-conversion.
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Part 1

Introductory Background

1 High Level Overview

The focus of this dissertation is the algebraic data types. We propose and describe
the automatic and interactive deductive systems associated with reasoning about
algebraic data types, their members, and functions operating on them. This in-
troductory background has the following purpose: (i) to give a preview of what is
presented in the next parts, and (ii) to highlight and explain the shared formal com-
ponents that are used throughout the whole document. From the very beginning it
will be useful to frame our entire work in terms of logical signatures and associated

typed deductive systems.

The Objectives of this Thesis can be summarized as follows. For the fully
automatic system, our goal is composed of the following sub-goals:
e to carry out the construction in many-sorted logic, for multi-constructor
types
e to allow for arbitrary well-founded mutual recursion between the alge-
braic data types
e to present the decision procedure abstractly and delegate the con-
cretization to the implementation phase
e to allow for customized strategies within the framework that can yield

high practical performance



In the case of an interactive system, our motivations are as follows:

e to build a point-and-click user interface that is easy to learn and use
e to implement the entire system based on the Curry-Howard Isomor-
phism
e to adapt the underlying type system and allow for the absence of the
conversion rule
The whole document is comprised of four main parts and two additional parts. Be-
low we give a general overview of each part. The related work is described within
the context of the respective parts. Following this introductory section, we give an
example of an elementary type system as a tool for deduction, and provide an intro-
ductory setting for reasoning about algebraic data structures and their semantics.
In order to provide motivation for part II, we note that, in general, application of
functions in the theory of algebraic types must sometimes be undefined. Therefore,

an adequate theory to that effect requires dealing with partial functions.

Part II: Semantics of Partial Functions. Part II proposes a typed formalism
of the first order logic with partial functions, and gives the method of handling the
semantics of partial functions. Most approaches to automated deduction assume
a mathematical formalism in which functions are total, even though partial func-
tions occur naturally in many applications. Furthermore, although there have been
various proposals for logics of partial functions, there is no consensus on which is
“the right” logic to use for verification applications. In part II we propose using
a three-valued Kleene logic, where partial functions return the “undefined” value
when applied outside of their domains. The particular semantics are chosen accord-

ing to the principle of least surprise to the user; if there is disagreement among



the various approaches on what the value of the formula should be, its evaluation
is undefined. We show that the problem of checking validity in the three-valued
logic can be reduced to checking validity in a standard two-valued logic. The typed

formalism for part II is shown in Figures 2 and 3.

Part III: Deciding Theories of Algebraic Data Types. Algebraic data types
are commonly used in programming. In particular, functional languages support
such structures explicitly. The same notion is also a convenient abstraction for
common data types such as records and linked lists or trees used in more conventional
programming languages. The ability to reason automatically and efficiently about
these data structures provides an important tool for the analysis and verification of
programs.

Part III describes an abstract decision procedure for satisfiability of the quantifier-
free formulas in the theory of algebraic data types relative to the intended model
of that theory. In the past, decision procedures have been proposed for various
theories of algebraic data types, some focused on the universal fragment, and some
focused on handling arbitrary quantifiers. Because of the complexity of the full
theory, previous work on the full theory has not focused on strategies for practical
implementation. However, even for the universal fragment, previous work has been
limited in several significant ways. In part III, we present a general and practical
algorithm for the universal fragment. The algorithm is presented declaratively as
a set of abstract rules which we show to be terminating, sound, and complete. We
show how other algorithms can be realized as strategies within our general frame-
work, and we propose a new strategy and give experimental results indicating that

it performs well in practice. The typed signature for the theory of algebraic types



is shown in Figures 4 and 5.

Equality Predicates. A distinctive feature of our treatment is the usage of the
equality predicate. We accept the notion of equality as a built-in primitive in each
of our formalisms. This is especially uncommon in the context of part IV. The
equality predicates in the formal systems that we study are denoted by =, while
the informal equality in the meta language of discourse is denoted by = as usual. A
particular usage of equality = is when the two sides are syntactically identical. In

this case we use the equivalence symbol =.

Part IV: Deductive Reasoning about Algebraic Data Structures. A de-
ductive approach to verifying assertions about algebraic structures becomes nec-
essary when the set of formulas, valid in the intended model of the theory is un-
decidable. In particular, this happens in second order logic. Part IV presents a
concept theorem prover, called Term Builder. We have developed it to support
reasoning about both interpreted and uninterpreted functions and predicates over
algebraic types. Term Builder is not limited to reasoning in an algebraic setting,
and can be also used for interactive proofs in theories that admit a type-theoretic
representation. The deductive system of Term Builder is based on dependent type
theory, which subsumes standard higher order logic. Traditionally, explicit equality
predicates are not necessarily supported in pure type theory. As a consequence, the
uniqueness-of-types property must sometimes be sacrificed due to the introduction
of the “conversion rule”. We show how to preserve uniqueness of types by replacing

the conversion rule by explicit support of equality.



Part V: Using the Theorem Prover. This part describes the user interface
of the prover. It explains the relationship between the prover commands and the
type rules that are used to build the proof objects. In addition, it goes through an

example of a proof session.

2 The Concept of an Algebraic Data Type

In this section we will give a general idea about the concept of an algebraic data
type. This includes a short preview of how they are declared and used. We base
this exposition on several commonly known examples. In what follows, the term

“algebraic data type” may be abbreviated as ADT.

Perhaps the best-known example of a simple algebraic data type is the list type
used in LISP. Lists are either the null list or are constructed from other lists using
the constructor cons. This constructor takes two arguments and returns the result
of prepending its first argument to the list in its second argument. To access the
elements of a list, a pair of selectors is provided: car returns the first element of a
list and cdr returns the rest of the list. Another simple algebraic data type is natural
numbers with zero and successor. Natural numbers and lists can be captured by the

following declarations. Note that the elements of lists are also taken to be lists:

nat = succ(pred : nat) | zero;

list = cons(car: list, cdr: list) | null;

The type nat has two constructors: zero, which takes no arguments; and succ, which



takes a single argument of type nat and has the corresponding selector pred. The
primary use of ADTs is the traversal by recursive functions, which may apply and
remove constructors. For example, the addition of natural numbers is defined by

recursion over the second operand:
(+) = Az :nat. Ay : nat. if (y = zero) then z else succ(x + pred(y)) endif;

It will be shown in section 5.3 that another formalization of ADTs may be carried
out in Set Theory. In particular, in the following notation, p is the set-theoretic

least fixed point operator, while succ and cons are set transformers:

nat = pN. succ(N) U {zero};

list = uL. cons(L, L) U {null};

More generally, we are interested in any set of (possibly mutually recursive) algebraic
data types, each of which is built with one or more constructors. Each constructor
has selectors that can be used to retrieve the original arguments as well as a tester
which indicates whether a given term was constructed using that constructor. Con-
sider the following mutually recursive example. The list type is as before, except
that we now specify that the elements of the list are of type tree, and not [list. The
tree type in turn has two constructors: node, which takes an argument of type list
and has the corresponding selector children, and leaf, which takes an argument of

type nat and has the corresponding selector data:

nat = succ(pred: nat) | zero;
list = cons(car: tree, cdr: list) | null;
tree = mnode(children : list) | leaf(data : nat);



The testers for this set of data types are is_succ, is_zero, is_cons, is_null, is_node,
and is_leaf. Propositions about a set of inductive data types can be captured in a
sorted first-order language which closely resembles the structure of the data types
themselves in that it has function symbols for each constructor and selector, and a
predicate symbol for each tester. For instance, propositions that we would expect

to be true for the example above include the following:

1. Yz : nat. succ(x) % zero,
2. Va: list. z =~ null V is_cons(x), and

3. Va: tree. is_leaf(x) — (data(x) = zero V is_succ(data(z))).

In part III of the thesis we construct a procedure for deciding such formulas. We
focus on satisfiability of a set of literals, which (through well-known reductions) can

be used to decide the validity of universal formulas.

3 Type Systems and Deductive Systems

3.1 The Concept of a Type System

Here we shall state our notational conventions used throughout parts I — V. For
instance, t(z) denotes an expression ¢ with a possible occurence of the free vari-
able x. As usual, F'V(t) denotes the set of free variables in ¢t. Expression t{a/x}
corresponds to ¢ after substituting a for variable 2. When we write t{a} instead,
we implicitly mean the same substitution when there is only one free variable in
t. Furthermore, t; = t5 denotes syntactic identity of expressions ti,¢,. This is, of

course, a much stronger property than the equality predicate (x,), which we have
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given here instantiated with A as the domain of individuals. Subexpression (a : A)
is commonly used to indicate that a has type A. Superscript type annotations, like
a®, are useful when trying to infer the type of a subexpression. Statements of the
form Vx : A. B express that for any a of type A, the proposition B{a/x} holds.

By I' we usually mean a context, which is a sequence of variable declarations of the

form {z: X, y:Y, z: Z, ...}. An empty context is denoted by (). More formally,

BNF for contexts: T :=0 | T,z : A

Type Judgements: T' = a : A, which means that a is of type A in context '

An important requirement for contexts is that a declared variable, (for exam-
ple y), may only occur freely in the types to the right of it (in Z in this case,
but not in X or Y). With this in mind, our context I', in general, looks like
{z: X, y:Y(x), z: Z(x,y), ...}. This will be needed to support formation of

dependent types in part IV.

It will be useful to consider an example of a typed deductive system or, more
simply, a type system. A type system is comprised of type rules. Each rule has
zero or more clauses as premisses and the conclusion clause. Each clause is a type
assignment of the form I' - ¢ : T'. In Figure 1 we give an example of a basic type
system 7y. The term sort is usually used to denote an atomic type, while type is
a more general term. There are two reserved sorts Type and Prop, representing the
type of types and type of propositions (formulas) respectively. In the system 7y,

these sorts are treated as distinct entities, however, in part IV of our treatment



they are identified. Derivations in a type system are comprised of the successive

application of the type rules. An example of a derivation in 7 is:

X : Type - Prop : Type

X : TypeF X : Type X : Type - X — Prop : Type

X :Type,x: X Fx: X X :Type,@Q: X — Propk @ : X — Prop

X : Type,Q : X — Prop,z : X F Q(z) : Prop

X : Type,@Q : X — Prop,z: X F Q(z) — Q(x) : Prop

X : Type,@ : X — PropF (Va : X. Q(z) — Q(x)) : Prop

I'ET: Type (start) (axiom)
To:TrFao:T o T, X : Type - X : Type
Da:TiFt:Ty DFT— Ty Type (axiom)
FEMx:Ty.t): Ty — Th I' X : Propk X : Prop
I'¢1:Prop T'F ¢o: Prop I'E1Ty:Type T FT5: Type
FF¢1—>¢2:PFOP FI—T1—>T2:Type
'tf:Th—-T1T, TFHt: 1T} (axiom) (axiom)
Lk f(t): Ty ' L : Prop I' - Prop : Type
IFP:T—Prop TFt:T Tz:TF¢:Prop TFT:Type
'+ P(t) : Prop ' (Vz:T. ¢): Prop

Figure 1: Example of a Type System

3.2 Typed Signature of the First Order Logic

In part II we use the following syntax for first order logic. Let 3 = (S, F, P, C) be
a signature, where S = {s,...} is a set of sorts, F = {f1,...}, P = {p1,...} and

C = {cy,...} are sets of function, predicate, and constant symbols. Each symbol



has a type built out of the sorts in . Define a term t as follows:

t == x|c| f(t,...,t,) | if ¢ then t; else t; endif,

where x is a variable, and the symbols ¢ and f are from ¥, and ¢ in the conditional

operator is a formula. A formula ¢ is defined as follows:

¢ == true|false | p(ty,....tn) | t1 =t | G1V Do | 21 | P1 A o

if ¢y then ¢, else ¢, endif | 3z : s. 1| Vo : 5. ¢,

where p is a predicate from Y. The type-theoretic formalization of signature
appears in Figures 2 and 3. To check that a term or formula is well-typed, we only

need to apply the type system in Figure 3.

domains {Type, Prop} sorts of types and formulas respectively.
sorts s € {s1,...5..} ns = number of atomic types (sorts).
constants c € {cl, .. .cnc} n. = number of constants, each ¢ of sort s..
functions  f € {f1,... fu,} ny = number of function symbols,

k¢ = number of arguments of f,
(1,5 = type of i-th argument of f,
sy = return type of f.

predicates p € {~,p1,...Pn,} np = number of predicate symbols,
k, = number of arguments of p,
S(p) = type of i-th argument of p.

Figure 2: Signature for Many-Sorted First Order Logic

3.3 Background in Universal Algebra

Our notation for a typed function or a predicate symbol w in a signature > may

be facilitated as follows. We may write w : s;---s, — S, to denote that w takes n

10



T Type G E{Lmsd)

'k t; : S(f.9) (VZ S {1,...,kf})
Dk f(ty, .. try) t sy

Fl—gf)IPI’Op Pl—tl,tglsi (iE{l,...,nS})

(te{l,...,ns})

Tx:s;x:s;

-t S(p,i) (Vie{1,...,kp})

'+ p(tl, e tk:p) : Prop

I'+ ¢ : Prop

I' Fif ¢ then t; else ty endif : s;

N ¢7 ¢17¢2 : PI’Op
I' Fif ¢ then ¢; else ¢, endif : Prop

INx:siF¢:Prop (ie{l,...,ns})
'3z :s;. ¢: Prop

T'xz:s;+¢:Prop (te{l,...,ns})
I'-Vx:s;. ¢:Prop

I'=¢: Prop

I'¢1:Prop T'F ¢o: Prop

' @1V ¢y : Prop

(te{l,...,n})

I'Fc¢ s

I'¢1:Prop T'F ¢o: Prop

' o1 A ¢y : Prop

Ff‘tlisi Ff‘tQZSZ‘
FI—tlztgzProp

Tt true : Prop I" F false : Prop

Figure 3: Type System for Many-Sorted First Order Logic

arguments of sorts si,...,s, respectively, and returns a value of type s,. In case
w is a predicate, s,, = Prop. A particular model M of signature ¥ is called a -
algebra. It consists of the semantic interpretation M(s) and M(w) of each sort s
by a set, and each operation w in ¥ by a mapping. Our model M interprets each

WSyl Sk, — Sw DY a mapping
M(w) s M(S@w,1)) * - M(S(w k) = M(sw)-

M also interprets ground terms in Y. For each t : s, the semantics of the term ¢ in

the model M is [t]Jap € M(s). It is defined inductively as follows:

[w(ty, - e ) = Mw)([tadas - -5 Ttk Tam)

In case we deal with a nullary symbol w : s, we write: [w]y = M(w). Suppose

a context I' is declared. A variable assignment e¢ : ' — M is a function that

11



assigns to each x of sort s from I' a value a € M(s). An augmentation of a variable
assignment e is denoted by e(x < a), where 'z : s, and a € M(s). A notion of

homomorphisms is associated with »-algebras via the following definition.

Definition 3.1. Let My and My be two X-algebras, and let h : My — My be a
family of mappings {hs : My(s) — My(s) | s is a sort in X}, such that for any

signature symbol w : Sy 1) * S(wny) — Sw, the following holds:

hsw (./\/ll(w)(al, e &kw))) = MQ(’LU)(}ZS(M’I)((M), ey hs(w,kw)(&kw))
where each a; € Mq(S(w,)). Then h is a homomorphism from My to M.

Another algebraic notion is a congruence relation = induced by a homomorphism h.
For two elements a1, as € M(s), a1 =, ag iff hg(a;) = hs(az). This means that a;
and ay are in the same equivalence class of =, iff their h-images coincide. If h is both
surjective and injective, it is called an isomorphism, since in this case the inverse
map h~! also exists and is a homomorphism. Two Y-algebras are isomorphic, iff
there is an isomorphism between them. In conjunction with any congruence relation
=, for a Y-algebra M there is a notion of a quotient algebra M/ =¢. This algebra
operates on the equivalence classes of =g rather than on elements on M. For any

operation symbol w in X:

M/ =Q (w)([al]EQ7 R [akw]EQ) = [M(w)(alv SRR ak‘w)]EQ

where a; € M(s(,,)) and [a]=, is an equivalence class of =g. The quotient algebra

Q

M/ =g is well defined, namely, for all operation symbols w in ¥, and any a;, b; €

M (S(w,)) the following condition holds:

(Vie{1,... ky}. a;i =¢ b;) implies M(w)(aq,...,ar,) =g M(w)(by,..., bg,)

12



Theorem 3.2. Let My and My be two X-algebras, and let h : My — My be a

surjective homomorphism. Then the quotient algebra M/ =y, is isomorphic to M.

Proof. For a treatment of Y-algebras, congruence relations, and homomorphisms,
see reference [28]. The proof of this theorem appears in [28], page 52, Theorem

3.21. 0

4 Theory of Algebraic Data Types

4.1 Signature for the Theory of Algebraic Types

We formalize ADTs in the context of many-sorted equational logic (see [33] or [28]
among others). This is subsumed by the typed first order logic with equality. We
assume a many-sorted signature Y whose set of sorts consists of a distinguished sort
Prop for propositions, and p > 1 sorts 74, ..., 7, for the ADTs. We will denote by s,
possibly with subscripts, any sort in the signature other than Type, by 7 any sort
in {r,...,7,}.

The function symbols in our theory signature correspond to the constructors,
selectors, and testers of the set of ADTs under consideration. We assume for each
7 a set C; of m,; > 1 constructors of 7. We will denote constructors by the letter
C, possibly primed or with subscripts. We will write C' : sy ---s, — 7 to denote
that the constructor C' takes n > 0 arguments of respective sorts sq,...,s, and
returns a value of sort 7. Constructors with arity 0 are called nullary constructors
or constants. For each constructor C' : s;---s, — 7, we assume n corresponding
selector symbols denoted by S(Cl), ce Sé") with Sg) : T — s;, and a tester predicate

symbol denoted by isc of type 7 — Prop. We write S instead of Sg) when C' is

13



domains

base propositions
algebraic types

S(Cyi)

constructors

selectors
equality
testers

{Type, Prop}  (sorts of types and formulas respectively)
{true : Prop, false : Prop}

{7i : Type},

{CF s+ sk = THE

{Sg) DS — 8(C7j)}§§1, where C'is a constructor

{~ : 7, x71,— Prop}_,, and =: Prop x Prop — Prop
{isc : s¢ — Prop}, where C' is a constructor

number of algebraic types 7;

number of constructors of the type 7
1-th constructor of type 7

number of arguments of constructor ¢

selector of the j-th component from terms of constructor C'
type of the i-th argument of constructor C'
return type of constructor C'

Figure 4: Signature ¥ for the Theory of Algebraic Data Types

clear from context or not important.

In addition to these symbols, we also assume that the signature contains two

constants, true and false of sort Prop. As usual in many-sorted equational logic, we

also have p + 1 equality symbols (one for each sort mentioned above), all written as

Tt true : Prop I' - false : Prop
ie{l...p} ie{l...p}
I'F 7 Type ex:nkFx:7
Fl—ti:S(ai) 1e{l,...,kc} I'—t:sc jed{l,...;kc}
TF Cltr, i) 50 I E S () : sy
'tty:ny Thty:m  ie{l,...,p} I'Et:isg  sc=sc €{m,...,Tp}
'+ (tl %tg) : Prop F"iSC/(t) : Prop

Figure 5: Type System for the Theory of ADTs

14



4.2 Axiomatization by Equational Specification

Members of algebraic types are the structures over which the logical and programmic
branching can be implemented. Each declared algebraic type has a set of construc-
tors, based on which case analysis is performed. Each constructor carries a vector
of data items, each of its own algebraic type. In the following, assume an algebraic

type 7 is defined by this grammar:
T = {Cl X171 X172 XLkl ’ ’ Cn Xn,l Xn,2 thkn}?

where C; are constructors, and each X;; is the sort of the j-th argument of the
constructor C;. Let (x( ;) : X;;) and (vg ;) : X; ;). An element of type 7 is denoted

in the following way:
Ci(vi), Ve2)s - Uiik)), or equivalently, (Civy).

Here the vector of v-values v; is the data stored with the constructor C;. In case we

deal with variable placeholders, we denote this as follows:
Ci(x(i1y, T(i2), - T(k)), OF equivalently, (Cx;).
Substitution of values for the variables in an expression M is denoted:
M{v(@j)/x(m)}?;l, or equivalently, M{v;/x;}.

Our theory of ADTs also requires that all data types are well-founded. This will
be explained further in part III. Previous work on algebraic data types [50, 51]
uses first-order axiomatizations in an attempt to capture the main properties of a
data type and reason about it. We find it simpler and cleaner to use a semantic

approach instead, as is done in algebraic specification. A set of ADTs can be given
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a simple equational specification over a suitable signature. The intended model
for our theory can be formally, and uniquely, defined as the initial model of this
specification. Reasoning about a set of ADTs then amounts to reasoning about
formulas that are true in this particular initial model.

Given the signature X, the associated algebraic types are specified by the fol-
lowing set £ of axiom schemas for each ADT 7 in ¥ and distinct constructors
C:s1---s, = 7and C': s} ---s, — 7. These axioms are formulated to capture

the intended model of the theory of ADTs. As we shall see, this model is freely

generated by constructor terms.

Vg, ..., @y i5c(Clxy, ..., x,)) = true
Vo, ..., Ty 150 (Clxy, ..., 2,)) ~ false
Vi, ..., Tp. Sg)(C(xl, Ce ) ATy foralli=1,...,n
Vi, ..., Ty, S(Ci,)(C’(xl, ey Tp)) Rt foralli=1,...,n

Note the situation when the selector S(CZ,) is applied to the term constructed with C,
where C" # C. Our axiom specifies that in this case, the result is some designated
ground term ¢, of type s ;. Reference [35], sections 3.6.3 and 3.6.4 advocate a
similar approach to undefindedness. This is different from other treatments (such as
[22, 50, 51]) where the application of a selector to the wrong constructor is treated
as the identity function. The main reason for this difference is that the identity
function would not always be well-typed in many-sorted logic. In part II this feature
of our treatment is particularly relevant, as it will be necessary to extend the natural

partial model of an ADT to an arbitrarily chosen total model.
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5 Algebraic Types as Term Algebras

5.1 Term Algebras as Models

Assume that our theory of ADTs is specified using signature ¥. We can inductively
define the semantics [ [7(x) of terms in ¥ as the term algebra 7(X). We may
sometimes use 7 (X) to denote just the set of terms of the signature 3, instead of

their term algebra.

Definition 5.1. freely generated term algebra T (X)

[Clt, .tz = Clllre), - [relre)
156 Olzs) = 5 (7))
[isc(D)]7() = isc([tlr)

[truefz(s) = ‘true

[false] 7 (s = false

Now let € be the signature obtained from ¥ by removing selectors and testers. We
can also inductively define the semantics [ J7(q) of terms in ¥ as the term algebra
7 (£2). We may sometimes use 7 (£2) to denote just the set of terms of the signature

(), instead of their term algebra.

Definition 5.2. constructor generated term algebra T (2)

[Clty, .tk = Cltlr@, - [elr@)

1S9 ()] 7@y = if [tz = Clty, ..., tr,) then t; else ti,
lisc(t)]r @) = if [tlr@ = C(t1,...,tk.) then true else false
[true] (o) = true

[false] 7(q) = false

The following lemma clarifies the correctness of the definition of [ J7q:

Lemma 5.3. If [t]r@q) = C(t1,...,ty.) then each t; = [t;]1(0).
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Proof. This lemma can be proved by a standard inductive argument from Definition

5.2. 0

Informally stated, this lemma expresses the fact that the term-algebraic semantics
[ () is comprised of terms which are structurally made of constructor symbols.
This is in contrast with the term-algebraic semantics [ ]7(x) that preserves the
structure of terms. The following definition will clarify the precise relation between

these two term algebras.
Definition 5.4. Let h: T(X) — T (Q) be a family of maps hs for each sort s in X:
for each term t € T(X) of sort s: hs([t]7(z)) = [tlr )

Lemma 5.5. Mapping h from Definition 5.4 is a homomorphism from T (%) to
T7(Q).

Proof. This result can be shown by standard structural induction over the term

algebra 7 (3) using Lemma 5.3 and Definitions 5.1, 5.2. O

5.2 Standard Results from Universal Algebra

By standard results in universal algebra we know that £ admits an initial model
R. We refer the reader to [33] for a thorough treatment of initial models. For our
purposes, it will be enough to mention the following properties that R enjoys by

virtue of being an initial model.

Lemma 5.6. Where ~¢ is the equivalence relation on Y-terms induced by &, let

T (X) /¢ be the quotient of the term algebra T (X)) by ~¢.
1. For all ground X-terms ty,ts of the same type, t1 ~¢ ts iff R satisfies t, =~ ts.
2. R is isomorphic to T (X)/~¢.
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Proof. These are applications to R of standard results about initial models. See,

for instance Theorem 5.2.11 and Theorem 5.2.17 of [33]. O
Lemma 5.7. The model R is isomorphic to T ().

Proof. By Lemma 5.6(2) we can take R to coincide with 7 (¥)/~¢, whose elements
are the equivalence classes of ~¢ on the ground >-terms. We also know that A :
T(X) — T(Q) from Lemma 5.5 is surjective, since it behaves as an identity over
7(Q). Tt follows by Theorem 3.2, that 7 (X)/ =, is isomorphic to 7(€2). On the
other hand, it is easy to verify that =, and ~¢ are the same. Hence, 7 (X)/~¢ is

isomorphic to 7 (). O

The claim shows that:

(i) every ground X-term is equivalent in £ to a ground Q-term.

(i) no two distinct ground Q-terms belong to the same equivalence class.

We will call ground constructor terms the elements of the set 7(Q2) defined in the
previous lemma. Informally, the lemma means that R does in fact capture the set
of ADTs in question, as we can take the carrier of R to be the term algebra 7 (12).
This also shows that in R each data type 7 is generated using just its constructors,
and that distinct ground constructor terms of type 7 are distinct elements of the

data type.

5.3 Algebraic Types as Least Fixed Points

Let C : 27(® — 27() pe mapping over the subsets of the term algebra 7 (X%).

In particular, it maps a set of terms X into the set that contains all possible type-
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correct applications of constructors in 3 to the elements of X. Let us define the
mapping
d(X)=XC(X)

For example, ®(()) = B, the set of all nullary constructors in X. The following

lemma follows immediately from the definition:
Lemma 5.8. The following properties hold for the mapping ®:

o & is cumulative: X C $(X).
o & is monotone: if X CY then &(X) C ¢(Y).
e & is pointwise: ®(X) = Uycx ®(Y), where each Y is finite.

Lemma 5.9. ® is continuous: for a chain of sets Xqo C X; C X, C ...
o) = Jx)
i=0 i=0

Proof. First we prove the inclusion (C). Since every X; C [J:°, X;, then by monotonic-
ity:
o(X;) C o X))
i=0

for each ¢, and therefore:

U d(X;) C ‘b(U Xi)

Now we prove the opposite inclusion (2). For any finite Y C [J;2, X;, let k(Y") be
the least index, such that ¥ C Xjy). Since every Y is finite, it is subsumed by
some X;. Let K = {i € N'| i =k(Y) for some Y}. Then by Lemma 5.8, for finite

sets Y:

oJxy= U em=U UemclU U e clJew

YCcUs2y X EKYCX; 1=0YCXj;
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O

We now prove another lemma that will yield an alternative view of the intended
semantics of an ADT. Namely, the least fixed point of @ is exactly the set of terms

in the intended model of Y.

Lemma 5.10. Let ®°(X) = 0 and &(X) = ®&(P/(X)). Let Xo = U, (D).
Then Xo = ®(Xy) is the least fized point of P.

Proof. We first show that X is a fixed point of ®. By Lemma 5.9

e} o0

d(X,) = @(U o'(0) = Je@'®) =o' = Xo

=0 i=1

Now suppose that X; = ®(X;). Since () C X;, by monotonicity we have: ®(@)) C

®(X,) = X;. By successive applications: ®()) C ®/(X;) = X, for any index 1.

Therefore:
Xo=JoW cJo'(x1) =X,
i=1 i=1
Hence, the fixed point X is subsumed by any other fixed point X; of ®. O

The intended semantics of the signature X for the theory of ADTs is the term algebra
7(Q), where Q consists only of constructors. Testers and selectors are not part of
the term model as they are operational, that is, an invasive programmic action is
associated with them. We can infer from Lemma 5.10 that 7 () = [J;2, ®(0), where

®(X) = X UC(X), and:
CX)={teT(®) |t=Clty,... tr), ieX, Ot:7, CeC}

A result of the same semantic significance was claimed in Lemma 5.7.
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Part 11

Semantics of Partial Functions

6 Introduction and Related Work

This part is devoted to the formal treatment of partial functions and predicates.
Although it is generally agreed that a logic which can accommodate partial functions
is useful for a wide variety of applications, there is general disagreement on which
logic should be used. An overview of the different approaches can be found in [17, 24].
Of the approaches which take partiality seriously as opposed to attempting a work-
around, there are two main alternatives. The first allows terms to be undefined,
but requires that all formulas be either true or false. The unusual feature of this
approach is that a predicate applied to an undefined term is defined to be false.
Although this logic preserves some nice features of classical logic (the deduction
theorem, for instance), in a certain sense there is a loss of information because the
undefinedness does not propagate to formulas. For example, if we assume the term
1/0 is undefined, then the formula =P (1/0) will be valid.

The second approach is based on Kleene’s strong three-valued logic [25], and
allows both terms and formulas to be undefined. This approach is more conservative
in the sense that any formula which is valid in the second approach will be valid
in the first approach, but there are some formulas, such as =P(1/0), which may be
valid in the first approach but will be undefined in the second.

We prefer the second approach based on a principle of least surprise. That is,
a formula should be valid only when there is no disagreement on whether that is
a reasonable conclusion. This is particularly important in verification applications,

as the integrity of a system may be judged by whether a theorem about the system

22



is valid. Furthermore, it is our experience that any theorem which really should
be valid can be formulated in such a way that it is valid according to this second
approach.

A more pragmatic issue that must be dealt with is that most theorem-provers
are based on classical logic. Various approaches have been advocated for modifying
standard theorem-proving to accommodate logics with partial functions [23, 24, 29,
46]. However, we are interested in finding a method for supporting partiality without
modifying the theorem prover. One way to do this is by building over- and under-
approximations for the formula. This technique has been successfully applied for
three-valued model-checking [12, 21].

PVS (Prototype Verification System [42]) uses a completely different approach
which involves constructing and proving additional formulas called type correctness
conditions (TCCs). The validity of TCCs guarantees that all the relevant terms and
formulas are always defined. However, TCCs in PVS can yield surprising results.
For example, it is possible to have a formula of the form A — B with a valid TCC
whose contrapositive =B — —A has an invalid TCC.

We propose a technique for checking the validity of a formula in three-valued
logic by reducing the problem to checking two formulas in standard two-valued
logic. Similarly to PVS, we construct a TCC formula whose validity implies that
the original formula is always defined. After checking the TCC, we check the original
formula. Both of these checks can be done using standard two-valued logic. Note
that, unlike in PVS, our method is precise in the sense that if a TCC is invalid, the
validity of the original formula is indeed undefined in the three-valued semantics.

The following sections are organized as follows. Section 7 gives the syntax and
semantics for our three-valued logic. Section 8 gives two fundamental theorems

which justify the reduction to two-valued logic.
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7 Three-Valued Logic: Syntax and Semantics

The signature X that we are going use in part 11, and its type-theoretic formalization,
has been introduced in subsection 3.2.

It is important to distinguish the two versions of the if-then-else operator: the
one for terms, and the other for formulas. Also note that the if-then-else operators
are not expressible in terms of other operators or logical connectives in 3-valued
logic.!

For our purposes, we will assume that included with every signature ¥ is a set A
of domain formulas, one for each function and predicate symbol in . The domain
formula for a function symbol f is a X-formula with k free variables where k is the
arity of f and is denoted 0¢[z1, ..., xx]. The domain formula for a predicate symbol
p of arity k is defined similarly and is denoted 6,[z1,...,z;]. An instantiation of
a domain formula 0; with terms t;, ..., is written d¢[tq,. .., %] and denotes the
result of replacing each z; with ¢; in the domain formula 0¢[zy, ..., z].

Intuitively, the domain formula for f defines the set of points where f is defined.
Note that our approach assumes this set is always first-order definable. Fortunately,
for the practical cases we consider, this is always the case. In order to have an
unambiguous semantics, it is important that the domain formulas themselves always
be defined. One simple way to ensure this is to require that if s is a function or

predicate symbol appearing in a domain formula, then ds[xy, ..., z,] = true.

7.1 Three-valued semantics with partial functions

Given a signature X, a model is defined as in Section 3.3. Namely, it maps each sort

s in X into its carrier set M(s), and also gives an interpretation, which is a mapping

!The obvious 2-valued translations (¢g — ¢1) A (mdo — ¢2) and (¢o A ¢1) V (=g A ¢2) are
actually over- and under-approximations of the 3-valued operator if ¢y then ¢, else ¢2 endif.
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from constant symbols ¢ : s, function symbols f : s;---s, — s, and predicate
symbols p : s1---s, — Prop in ¥ to elements M(c) € M(s), partial functions
M(f) : M(s1) - M(s,) — M(s), and relations M(p) C M(s1) X -+ x M(s,),
respectively.

Given a model M and a variable assignment e which maps each variable = of
type s to an element of M(s), the value of an expression (a term or a formula) « is
denoted [a]re and is defined in Figure 1. The value of a term may be an element
of some M(s) or a distinguished value L; not in any M(s). The value of a formula
may be true, false, or 1L;. We will use L to represent both L, and L, since terms
and formulas are always syntactically separated from each other, and the particular
kind of L is always clear from the context.

A model is required to satisfy the following additional condition imposed by the

domain formulas A:

[0¢[x1, ... zk]Jme = true it M(f) is defined at ([z1]ume, ..., [ze]me).

We say that two expressions a and (3 are logically equivalent, and write o = (3

if [a]sme = [B]me for every model M and variable assignment e.

7.2 Semantics of if-then-else

Notice that the interpretation of the if-then-else operator (for terms) is undefined
if the condition is undefined, even if the other two children evaluate to the same
value. One reason for this choice of the semantics is simply that it turns out to be
practical in real applications. In real programs, if a partial function is applied to
an argument outside of its domain, the program may crash or raise an exception; in

other words, it results in an abnormal behavior. Therefore, detecting a possible L
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[elme = M(c), [x]me = e(x), [true]pme = true, [false]pme = false

[[f(tl,...,tn)]]Me =

[ if ¢ then t;

else t, endif | \e

[ if ¢ then ¢,

else ¢, endif | e

[61V do]me =

[~6]me =

[V :s. ¢Jme =

[Tz :s.p)pme =

tl Me [[t ]]Me)
Jame ;é Lfor alli € [1..n]
and [0¢t1, ..., tu]Jme = true;
1 otherw1se
J_, Me = J_
[t1] e, Me = true;
[ta] me, dme = false
J_, ]]Me = J_
{ [P1lme, if [@]ae = true;
[[qbg ME, [6]me = false.

M(p t1 Me [tn] ),
Me ;é Lfor alli € [1..n]

and olt1s - talme = true;
othervvlse
olme, if [ti]me # L and [t pme # L;
otherwise.

if [p1]me = true and [po] e = true;
if [p1]me = false or [pa] me = false;

otherwise.

, if o] me = true or [po] me = true;

if [p1]me = false and [po] me = false;

otherwise.

if [$lwe = false:

if [p]me = true;

if for all a € M(s): [p]me(x — a) = true;

, if for some a € M(s): [¢]me(x «— a) = false;

otherwise.

if for some a € M(s): [¢p]me(r «— a) = true;

, if for all a € M(s): [¢]me(z — a) = false;

otherwise.

Table 1: Three-valued Semantics
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value in the condition of an if-then-else provides the user with useful information,
namely, that the program may crash during execution under certain conditions. For

example, consider the following piece of C code:

int *p = malloc(sizeof(int));

int x = (xp > )7 y : z;

In this example, the if-then-else operator (which is (-)? -:-in C) will cause the
program to crash if p happens to be NULL, even if y = 2 in this particular program
state. Here *p is a partial function defined over non-null pointers to integers, and
returning an integer.

The logical if-then-else is defined similarly to the term if-then-else, so that De-
Morgan law for negation and the if-lifting properties for any predicate symbol p in

> are preserved:

—(if ¢ then ¢; else ¢, endif)

12

if ¢ then —¢; else —¢, endif

p(if ¢ then ¢, else t, endif) = if ¢ then p(t;) else p(t2) endif

7.3 Three-Valued Validity

The three-valued semantics can be extended to validity of formulas in the following
way. A formula is considered valid, if in all models M and for all variable assignments
e, [¢p]me = true. A formula is invalid if there is at least one such model M and one
such assignment e that [¢]ye = false. Otherwise (if the formula always evaluates
to either true or L) the validity is undefined. We denote the three-valued validity
as = ¢, which may hold, not hold, or be undefined.
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8 Reduction from Three-Valued to Two-Valued
Logic

Suppose we wish to determine the three-valued validity of some Y-formula ¢. Our
general strategy is first to compute a formula called a Type Correctness Condition
(TCC) which can be used to check whether ¢ can ever be undefined. If this check
succeeds, that is, ¢ is always defined, we can then check the original formula. Both of
these checks can be done using standard two-valued logic. To justify this claim, we
first introduce TCCs and then show how they can be used to determine three-valued

validity.

8.1 Type correctness conditions (TCCs).

A Type Correctness Condition for a formula ¢ of our three-valued logic is a formula
which evaluates to true iff ¢ is not undefined.

First, observe that if we have a term f(x), then by definition its TCC is simply
d¢[x]. We can generalize this to arbitrary terms or formulas quite easily. Table 2
gives a recursive definition of Dy, the TCC for an arbitrary formula ¢.

The TCC not only identifies whether or not the formula ¢ is defined, but it can
also be used to reduce the three-valued evaluation of ¢ to an evaluation in standard
two-valued logic with total models.

Suppose M is a model of X. Let S be equivalent to X except that all of its domain
formulas are true (we call such a signature a total signature and a corresponding
model a total model). Let M be a (total) model of & whose interpretation of
function and predicate symbols agrees with M wherever the domain formulas of M
are true (we call M an extension of M). Finally, let [[S]]i?e denote the evaluation of

an expression S in the model M using standard two-valued semantics. The following
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D, = true
D. = true

Df(tl ..... tn) = 5 tl,..., /\/\th

Dif 6 then t; else ts endit = Dg A (if ¢ then Dt1 else D, endif)
Dif 4 then ¢1 else ¢s endif = Dg A (if ¢ then Dy, else Dy, endif)

Opltr,. ..t /\/\Dt

Dtlth = Dn /\Dt2

A
=
g
L
3
=
If

D., = Dy
Dpings = (Dyy A =61) V (Dy, A =¢2) V (D, A Dy,)
Doivg, = (Do A d1) V (Dgy A d2) V (Dy, A Dy,)
Dyy.g = (3. Dy A=)V (Vz.Dy)
Day.g = (3x.Dy A @)V (Vx.Dy)

Table 2: Definition of TCCs for terms and formulas.

two theorems justify our use of TCCs.

8.2 Main Theorems

In the proofs of the theorems we use the following simplifying device: It is clear by
definition of the domain formulas [ | and d,[ | that for each function symbol f and
predicate symbol p we can introduce a new signature symbol (which we will also call
d¢ and d,,) such that for all terms t1,...t,, [0(t1,...,tn)]me = [0¢[t1, ..., tu]]me
and [0, (1, ..., tn)Jme = [0p[t1, - - -, tn]]Jame. These new symbols can be given their
natural interpretation in the models M and M , and in fact, by their totality,
M(35) = M(35) and M(5,) = M(3,)

For clarity, we also distinguish explicitly between two- or three-valued semantics

by using the superscript 2 or 3.

Theorem 8.1. Let S be any Y-term or formula, and let M denote an arbitrary
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extention of a X-model M to a total model over 5. Then:

[Ds]ige = true  implies  [S]5ge = [S]ie
Proof. (by structural induction on terms and formulas)
o S=c:[DJ%e = true, and [c]%e = M(c) = M(c) = [c}ye
e S=u: [[Dw]]i?e = true, and [[x]]i?e = e(z) = [z]34e

o S=f(ti,...,tn): Dg= N\, Dy Ng(t1,...,t,)

By assumption [Ds]%;e = true, so: [0;(t1,.. ., ta)]5;e = true and [D]

2
— e
M M

true, so by Induction Hypothesis [t;]%e = [t:]} e, for all i = L..n.

[0t ta)ue = M@ ([ta]qe, - - [talige) (8 is total)
= M) ()%, ... [t %e)
= [05(ts, - )] 5e

= true (x)
(a) By definition, we have:

[ft1, . ta)ue = if [0p(th, ... ta)]5qe = true

then M(f)([t:1]5ue, - - -, [ta]ise) else L

— M(f)([[tl]]i?e, e [[tn]]?ﬁe) (by *)

We also have by the standard definition of [ ]*:
(b) [f(ts,- ..ot e = M(F) ([, - Frnle)

Since [07(t1,...,tn)]2e = true, i.e. f is defined on these terms in both M

M

and ./T/l\ we have:
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—

M(f)([[tl]]%ea ] [[tn]]i//?e) = M(f)([[tl]]%ea ] [[tn]]%\e)

Therefore by (a) and (b), [f(t1,- .., ta)]3e = [f(t1, ... atn)]]iqe

o S =if ¢ thent, else t; endif : Dg =D, A if ¢ then D, else D,, endif

By assumption [Ds]}e = true, so:
(a) [if ¢ then Dy, else Dy, endif]%e = true

(b) [Dy]5;e = true, so by Induction Hypothesis, [¢]5;e = [¢]ie (2)
From (a): if [¢]%;e then [Dy,]3;e else [Dy,]% e = true.

Case I: [¢]? ¢ = true. Then [[Dtl]] *_e = true, and by Induction Hypothesis:

[ti]%e = [hle (3)

Then,

[if ¢ then t; else ¢, endif]]i?e = if [[¢]]i76 then [[tl]]iqe else [[tg]]iqe

= [[tl]]fqe (by assumption of Case I)

= [tlie (by (3))

On the other hand,

1, if [¢]34e =
[if ¢ then ¢, else t, endif]} e = [ti]5qe, if []3e = true
[[tg]]i,te, if [¢]3,e = false

if
= [t]34e (by (2) and by Case 1)

Case 1II: [[¢]]i7e = false is symmetric.
e S =if ¢ then ¢, else ¢, endif : Analogous to S = if ¢ then t; else t, endif.
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o S=p(ty,...,t,): Analogous to S = f(t1,...,t,).

o S=-¢: [Dyl%e=[Ds]5ze

By assumption, [[D¢]]i7e = true, so by the Induction Hypothesis, [[gb]]i?e =

[#]34€, and thus by definition of [ ]?:

[~¢l%e = not [¢] e = not [¢]3e = [-o]ie

e S=¢1AN¢p2: Dyng, = (D, A1) V (Dg, A ¢2) V (D, A Dgy,).
By assumption, either:
— Case 1: [Dy,]%;e = true and [¢1]%;e = false
— Case 2: [Dy,]%;e = true and [¢2]%;e = false
— Case 3: [Dy,]5;e = true and [Dy,]%;e = true
Case 1: by Induction Hypothesis, [[¢1]]i7e = [¢1]3,¢, therefore [¢1]3,e = false.
Thus, [¢1 A ¢o]e = false and [¢1 A ¢2]]fqe = false, so they are equal.
Case 2 is symmetric.

Case 3: by Induction Hypothesis, [[gbl]]iqe = [¢1]3€ and [[qbg]]iqe = [¢2]36,

so both are not 1. Therefore, by definition of [ ]* and [ ]*: [¢1 A ¢2]]3\7e =

[D1 A D]

o S=¢1Vdr: Dy, = (Dy, A1)V (Dg, N d2) V (Dy, ADg,).

By assumption, either:

— Case 1: [Dy,]1e = true and [¢:1] e = true
— Case 2: [Dy,]%;e = true and [¢2]%;e = true

— Case 3: [Dy,]5;e = true and [Dy,]%e = true

32



Case 1: by Induction Hypothesis, [[qﬁl]]fqe = [¢1]3¢e, therefore [¢1]3 e = true.

Thus, [¢1 V ¢a]ie = true and ¢ V ng]]iqe = true, so they are equal.
Case 2 is symmetric.

Case 3: by Induction Hypothesis, [¢1]5e = [¢1]ie and [¢2]%e = [d2]3se,

so both are not L. Therefore, by definition of [ J* and [ [*: [¢1 V ¢o]%e =
[61 V dalie
S=Vr:s.¢: Dg=(Fr:5Dy A=)V (Vr:5.Dy)

By assumption, either [3z : 5. Dy A =g e = true or [Va : 5. Dy]3e = true.

In the first case, there exists d € M(s) such that:
[['D(b]]i?e(x — d) = true and [[¢Hiq€($ — d) = false.
In this case [Vz : s.¢]3-e = false and by Indiction Hypothesis, [¢]i e(z

d) = false, so also [Vx : s. ¢]3 e = false, i.e.: [Vz : s. qﬁ]]fqe = [Vz : s. 93 €.
In the latter case, for all d € M(s): [[D¢]]i7e(x — d) = true, so by the
Induction Hypothesis, for all d € M(s): [¢]%e(z < d) = [¢]i,e(z — d).
Thus, by definition of [ 3, [Vz : s. gb]]fqe = [Vz : s. ¢34

S=3r:s5.¢: Dg=(Tr:5DyNp)V (Vx:5.Dy)

By assumption, either [Iz : s.Dy A qﬁ]]fae = true or [V : s. D(b]]fae = true. In

the first case, there exists d € M(s) such that:

[[D¢]]3\76(x — d) = true and [[gb]]%e(x — d) = true.

In this case [z : s.¢]%;e = true and by Indiction Hypothesis, [¢]3e(z —

d) = true, so also [3w : 5. @[3 e = true, e [Fz:s.¢]qe = [Fr: s 9 e
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In the latter case, for all d € M(s): [[D¢]]i76(x — d) = true, so by the

Induction Hypothesis, for all d € M(s): [¢]5e(z — d) = [¢]ie(z — d).

Thus, by definition of [ [?, [3z : 5. ¢]%-e = [B2 : 5. ¢] e

O

Theorem 8.2. Let S be any Y-term or formula, and let M denote an arbitrary

extention of a X-model M to a total model over . Then:
[Ds]3e = false  implies  [S]3e= L
Proof. (by structural induction on terms and formulas)
e S = ¢: Claim holds vacuously, since [[Dcﬂi?e = lrue
e S =z : Claim holds vacuously, since [[Dx]]i?e = true

o S=f(ti,...,tn): Dg= N\, Dy Ng(t1,...,t,)
By assumption [[DS]]%e = false, so:
— either: [[Dtk]]i?e = false for some k € {1,...,n}. Inthis case by Induction

Hypothesis [tx]3,¢ = false and by definition of [ [*: [f(t1, ..., t.)]3e =
L.

— or: [6¢(ts, - .. ,tn)]]fqe = false.

In this case also by definition of [ J*: [f(t1,...,t.)]3e = L.

o 5 =if ¢ then t, else t; endif : Dg =D, N if ¢ then D, else D,, endif

By assumption [[DS]]%e = false, so:

— either: [[D¢]]fqe = false. In this case by Induction Hypothesis [¢]3,e = L

and by definition of [ [*: [if ¢ then t; else ¢, endif]3e = L.
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— or: [Dy]%;e = true and [if ¢ then D, else Dy, endif]} e = false

Case 1: [¢]%;e = true. Then [Dy,]% e = false. By Induction Hypothesis:
[t:]34e = L. (1)

Also, since [¢]5;e = true and [Dy]3;e = true, by Theorem 8.1

[#]3€ = true. (2)

Therefore:

1, if [¢]3e= L
[if ¢ then t; else ¢, endif]]i,te = [[tl]]i"we, if [¢ i/te = true
1

Case 2, where [[¢]]i76 = false is symmetric.
S = if ¢ then ¢, else ¢, endif : Analogous to S = if ¢ then ¢, else t, endif.
S = P(ty,...,t,): Analogous to S = f(t1,...,t,).

S==¢: [Dy]Gge=[Del%e
By assumption, [[DA]%@ = false, so by the Induction Hypothesis, [¢]3e = L,

and thus by definition of [ 3, [-¢]3,e = L.

S=¢1 Npa: Dyings = (Dg, AN =¢1) V (Dyy A =¢2) V (Dy, A Dg,).

By assumption:

= (a) [Dy,)%;e = false or [¢1] e = true
— (b) [['D@]]'Qae = false or [[qbg]]i?e = true

= (¢) [Dy,] e = false or [Dy,]%e = false
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From (c), without loss of generality, say [[Dm]]i?e = false (other case is sym-

metric.) Then by Induction Hypothesis:

[¢1]0e = L (3)
From (b) we have:

— either: [Dy,]3ze = false. By Induction Hypothesis, [¢]3e = L.

Therefore, by (3): [é1 A ¢a]ie = L.

— or: [['D@]]i?e = true, and [[@]]3\76 = true. By Theorem 8.1, [¢2]}e =

true, so in this case also using (3): [¢1 A ¢o]3e = L.

o S=¢1Va: Dyvg, =Dy Ad1) V (Dy, A d2) V (Dy, A Dy,).
By assumption:
- (a) [[Dm]]i?e = false or [[gbl]]fqe = false
= (b) [Dy.] e = false or [¢2]%;e = false

— () [[Dm]]i?e = false or [[D@]]i?e = false

From (c), without loss of generality, say [[Dm]]i?e = false (other case is sym-

metric.) Then by Induction Hypothesis:

[f1034e = L (4)
From (b) we have:

— either: [[D@]]i?e = false. By Induction Hypothesis, [¢2]3e = L, There-

fore, using (4): [¢1 V @2} e = L.

— or: [Dy,]%e = true, and [¢2]%;e = false. By Theorem 8.1, [¢2]iye =

false, so in this case also using (4): [¢1 V ¢2]3e = L.
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e S=Vr:s5.¢: Dg=(Jr:5DyN~¢)V (Vr:s.D,) By assumption:
(a) [z : 5. Dy A —mb]]i?e = false
: 2
(b) [Va : 5. Dy] e = false.
From (b), there exists dy € M(s) such that: [[D¢]]i76(x — dy) = false, so by

Induction Hypothesis:

[¢le(x —do) = L (5)
From (a) for all d € M(s):

— either: [['D(b]]i?e(x — d) = false.
In this case, by Induction Hypothesis, [¢]3 e(x «+ d) = L.
— or: [Dy]ze(x — d) = true, and [¢]1e(x « d) = true.
Therefore, by Theorem 8.1 [¢]3, e(z «— d) = true.

In both cases, using (5) and definition of [ |* we obtain: [Vz : s. ¢]3e = L.

o S=3dr:5.¢: Dg=(Fr:5DyNp)V (Vx:5.Dy)

By assumption:
: 2
(a) [Fz : 5. Dy A ¢ 3ze = false
: 2
(b) [V : s. D¢]]Me = false.
From (b), there exists dy € M(s) such that: [[D¢]]i7e(x — dy) = false, so by

Induction Hypothesis:

[P]3qe(x — do) = L (6)
From (a) for all d € M(s):

— either: [Dy]%ze(x « d) = false.

In this case, by Induction Hypothesis, [¢]3e(x « d) = L.
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— or: [Dy]e(z — d) = true, and [¢]1e(x « d) = false.

Therefore, by Theorem 8.1 [¢]3,e(z — d) = false.
In both cases, using (6) and definition of [ |* we obtain: [3z : s. ¢]}e = L.
U

Another important property of D, is that if ¢ is represented as a DAG, then the
worst-case size of D, as a DAG is linear in the size of ¢. This point is discussed in

our publication [10].

8.3 Checking validity

Theorems 8.1 and 8.2 and the procedure for constructing D effectively provide an
algorithm for checking whether a formula is valid (true for all variable assignments)
in a (partial) model M. All we have to do is construct a decision procedure DP that
can determine whether the formula is valid in M , an arbitrary extension of M.
Suppose we want to determine whether ¢ is true in M. We first check Dy,

the TCC of ¢. If DP(Dy) is false, then [Dy] = false for some assignment e,

i?e
so [¢Jme = L by Theorem 8.2. Thus, ¢ is not valid in M. On the other hand,
if DP(Dy) is true, then [Dy]%.e = true for all e, so [¢]1e = [¢]me for all e by
Theorem 8.1. Thus, DP(¢) effectively determines the validity of ¢ in M.

This property is extremely useful from a practical implementation point of view,
as we can build a decision procedure for any convenient extension of M in which all
functions are total. Since evaluation and simplification are common steps in decision
procedures, this eliminates the need to handle partial functions as special cases, and
we can just evaluate or simplify them as we would any other function.

As a specific example, consider the model of arithmetic with division, where

division by zero is undefined. Decision procedures for arithmetic often require being
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able to put terms in a normal form. In particular, it is desirable to be able to evaluate
constant expressions to obtain constants. In the standard model where division is
a partial function, there is no correct way to evaluate 1/0, but if we extend that
model, say by defining division by 0 to be 0, then all constant expressions can easily
be evaluated. Our approach shows that a decision procedure with this additional
assumption can be used to decide validity in the model where division is a partial

function.
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Part II1
Deciding Theories of Algebraic

Data Types

9 Introduction and Related Work

The historically foundational decidability and quantifier elimination results for term
algebras can be found in [31]. In other early work, [26] addresses the problem of
satisfiability of one equation in a term algebra, modulo other equations. The appli-
cations and extension of the quantifier elimination procedure to term algebras with
queues is handled in [41]. Another contribution to solving satisfiability of equations
over term algebras is given in [47], which extends the language with a powerful
sub-term relation predicate. In [22] two dual axiomatizations of term algebras are
presented, one with constructors only, the other with selectors and testers only.

An often-cited reference for the quantifier-free case is the treatment by Oppen
in 1980 [37]. Oppen’s algorithm gives a detailed decision procedure for a single
data type with a single constructor. The algorithm is linear for conjunctions of
literals and NP-complete for arbitrary quantifier-free formulas. The case of multiple
constructors is not addressed. In [36], Nelson and Oppen show that for a simple
list data type with two constructors, satisfiability of conjunctions of literals is NP-
complete. Shostak gives an algorithm for a simple theory of lists without null in
[43].

More recently, several papers [27, 50, 51] explore decision procedures for a
single algebraic data type. These papers focus on ambitious schemes for quantifier

elimination and combinations with other theories rather than the question of a
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simple and efficient algorithm for the quantifier-free case. One possible extension of
Oppen’s algorithm to the case of multiple constructors is discussed briefly in [50].
A comparison of our algorithm with that of [50] is made in Section 12.

Finally, a recent approach based on first-order reasoning with the superposition
calculus is described in [11]. This work shows how a decision procedure for an
inductive data type with a single constructor can be automatically inferred from
the first-order axioms, even though the axiomatization is infinite. While the al-
gorithm as given is worst-case exponential, it has the advantage of being easily
implementable (any existing superposition-based theorem prover can be used to im-
plement the strategy). However, as far as the decision procedure is concerned, our
focus is on generality and efficiency rather than immediacy of implementation. In
our publications [6, 7] we also examine how to combine algebraic types with other

arbtrary non-algebraic sorts within this decision procedure.

9.1 Type Correctness Conditions

For reasons explained in Section 4.2, we assume that associated with every selector
S(Ci) : 7 — s is a distinguished ground term t, of sort s containing no selectors
(or testers). The necessity of having these distinguished designated ground terms
is closely linked with the theory of Part II. Intuitively, a selector Sg) T — S s
interpreted as a partial function, since its return value is undefined when applied to
atermt = C’(...), even if ¢ is of type 7. For that reason, in the model R, its return
value is forced to be equal to t% of type s, so that we can proceed as though the
intended model is total. However, as indicated in Section 8, to reduce the validity
checking to the scenario without undefined values, we need to employ the technique
of TCCs. Table 3 shows what TCCs are associated with specific terms or formulas

in the theory of ADTs.
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D(x) = true
D(ti~t2) = D(t1) AD(t2)
D(isc(t)) = D(t)

D(C(t1,..-,tn)) = Ny D(t)
DSY(1) = D(t) Nisc(t)

Table 3: Type Correctness Conditions for the Theory of ADTs

9.2 Contributions of this Work

There are three main contributions of this work over earlier work on the topic. First,
our setting is more general: we allow mutually recursive algebraic types, each with
multiple constructors, selectors, and testers, and we use the more general setting of
many-sorted logic. The rationale for a many-sorted approach is that it more closely
corresponds to potential applications such as analysis of programming languages.
In particular, the well-sortedness requirements rule out many syntactical constructs
that would not make sense in practice.

The second contribution is in presentation. We present the theory itself in terms
of an initial model rather than axiomatically as is often done. Also, the presentation
of the decision procedure is given as abstract rewrite rules, making it more flexible
and easier to analyze than if it were given imperatively.

Finally, as described in Section 12, the flexibility provided by the abstract al-
gorithm allows us to describe a new strategy with significantly improved practical

efficiency.

Our procedure requires one additional constraint on the set of ADTs: It must
be well-founded. A sort s is well-founded iff there exist ground (i.e., variable-free)
Y-terms of sort s. Informally, each sort must contain terms that do not denote cyclic

or otherwise infinite data types. In some cases, it will be necessary to distinguish
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between finite and infinite sorts and constructors:
e A sort s is finite iff there are only finitely many ground Y-terms of sort s;
e a constructor C'is finite if it is nullary or if all of its argument sorts are finite.

As we will see, consistent with the above terminology, our semantics will interpret

finite, resp. infinite, 7-sorts indeed as finite, resp. infinite, sets.

Subsequent sections build on the background that has been presented in Sections
4.1,4.2,5.1, 5.2. Recall that we denote by 7 (X) the set of (well-sorted) ground terms
of signature X or, equivalently, the many-sorted term algebra over that signature.
Also, let R be defined as in subsection 5.2. In Section 10, we present our decision
procedure as a set of abstract rules. The correctness of the algorithm is shown in
Section 11. In Section 12, we discuss the efficiency of the algorithm and show, in

particular, that it can be exponentially more efficient than previous naive algorithms.

Acknowledgement. Part III has been developed based on our joint work with

Clark Barrett and Cesare Tinelli.

10 The Decision Procedure

In this section, we present a decision procedure for the satisfiability of sets of -
literals over R. Before giving a formal description of the algorithm, which is quite

technical, we start with an informal overview based on examples.

10.1 Overview and Examples

Our procedure builds on the algorithm by Oppen [37] for a single type with a single

constructor. Let us first look at how Oppen’s procedure works on a simple example.
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z cons(x,y) W
/N /N
X y car(w) cdr(w)

Figure 6: Term graph for Example 10.1

Example 10.1. Consider the list data type without the null constructor® and the

following set of literals: {cons(x,y) =~ z, car(w) =~ z, cdr(w) ~ y,w % z}.

Oppen’s procedure works as follows: first, a graph is constructed that relates terms
according to their meaning in the intended model. The graph for Example 10.1
is shown in Figure 6. Notice that cons(z,y) is a parent of x and y and car(w)
and cdr(w) are children of w. The Oppen algorithm next computes the equivalence
relation on nodes of the graph induced by the set of all equations. It then proceeds
by performing an upwards (congruence) and downwards (unification) closure on the
graph and then checking for cycles or for a violation of disequalities. A cycle occurs if
there exists a sequence of nodes beginning and ending with the same node such that
adjacent nodes are either distinct nodes in the same equivalence class or are adjacent
in the graph.® For Example 10.1, upwards closure implies that w =~ cons(z,y). But
since we also have cons(z,y) ~ z, this contradicts the disequality w % z, indicating
that the set of literals is unsatisfiable.

An alternative algorithm for the case of a single constructor is to introduce new
terms and variables to replace variables that are inside of selectors. For Exam-
ple 10.1, we would introduce w = cons(s,t) where s,t are new variables. Now,

by substituting and collapsing applications of selectors to constructors, we get

2Note that this data type is not well-founded. Indeed, because Oppen only considers data types
with a single constructor, there is no base case for terms (unless the constructor has arity 0), so
his semantics are over models with infinite terms. In contrast, we choose to disallow models with
infinite terms while allowing multiple constructors, a combination that we feel is more intuitive
and corresponds better to actual uses of ADT's.

3A simple example of a cycle is: cons(z,y) ~ .
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null

cons(X,y) w

/N /N

X y car(w) cdr(w)
/ N\

car(y) cdr(y)

Figure 7: Term graph for Example 10.2

{cons(z,y) =~ z,w =~ cons(s,t),r =~ s,t ~ y,w % z}. This approach, advocated
in [43], only requires downwards closure.

Unfortunately, if a data type has more than one constructor, things are not quite
as simple. In particular, the simple approach of replacing variables with constructor
terms does not work because one cannot establish a priori which constructor should

be used to build the value denoted by a given variable.

Example 10.2. Consider again the list data type, this time with both the cons and

the null constructor, and the following set of literals: {cons(x,y) ~ w, cdr(w) =~

cdr(y), y % null}.

The graph for Example 10.2 is shown in Figure 7. Observe that the new graph has
nodes for both children of w and y, even though these terms do not all appear in
the given set of literals. For the sake of simplicity, we follow Oppen in requiring
that every node with at least one child has a complete set of children.

A simple extension of Oppen’s algorithm for the case of multiple constructors is
proposed in [50]. The idea is to first guess a type completion, that is, a labeling of
every variable by a constructor, which is meant to constrain a variable to take only

values built with the associated constructor. Once all variables are labeled by a
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single constructor, the Oppen algorithm can be used to determine if the constraints
can be satisfied under that labeling.

Unfortunately, the type completion guess can be very expensive in practice.
In Example 10.2, there are 7 terms that are not constructor terms and thus could
potentially have been constructed using either constructor. A naive type completion
guess would require 27 cases. However, most of these cases need not be considered.
In fact, we only need to consider which constructor is used to construct the value
of y. If y is constructed with null, then this contradicts the disequality y % null.
On the other hand, if y is constructed with cons, then downward closure requires
y ~ cdr(w) =~ cdr(y), creating a cycle.

Our presentation combines ideas from previous work as well as introducing some
new ones. There is a set of upward and downward closure rules to mimic Oppen’s
algorithm. The idea of a type completion is replaced by a set of labeling rules that
can be used to refine the set of possible constructors for each term (in particular,
this allows us to delay guessing as long as possible). And the notion of introducing
constructors and eliminating selectors is captured by a set of selector rules. In
addition to the presentation, one of our key contributions is to provide precise side-
conditions for when case splitting is necessary as opposed to when it can be delayed.
The results given in Section 12 show that with the right strategy, significant gains
in efficiency can be obtained.

We describe our procedure formally in the following, as a set of derivation rules.
We build on and adopt the style of similar rules for abstract congruence closure [2]

and syntactic unification [32].
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10.2 Definitions and Notation

In the following, we will consider well-sorted formulas over the signature > above and
an infinite set X of implicitly existential variables. To distinguish these variables,
which can occur in formulas given to the decision procedure described below, from
other internal variables used by the decision procedure, we will sometimes call the
elements of X input variables.

Given a set I' of literals over ¥ and variables from X, we wish to determine the
satisfiability of I" in the algebra R.* That is, we wish to determine whether there
exists a variable assignment «, a mapping of input variables to ground terms, such
that applying a to I" results in a set of ground literals all of which are true in R. We
will assume for simplicity, and with no loss of generality, that the only occurrences
of terms of sort Prop are in atoms of the form isc(t) & true, which we will write just
as isc(t).

Following [2], for each sort 7 we will make use of the sets V, of abstraction
variables of sort 7; abstraction variables are disjoint from input variables (variables
in I") and function as equivalence class representatives for the terms in I'. We assume
an arbitrary, but fixed, well-founded ordering > on the abstraction variables that is
total on variables of the same sort. We denote the set of all variables (both input
and abstraction) in I' as Var(I'). Recall that for each sort 7 the set C, denotes the
set of 7's constructors. We will write sort(t) to denote the sort of the term t.

The rules make use of three additional constructs that are not in the language
of ¥: —, —, and Inst. The symbol — is used to represent oriented equations. Its
left-hand side is a Y-term ¢ and its right-hand side is an abstraction variable v. The

symbol — denotes labelings of abstraction variables with sets of constructor symbols.

4In both theory and practice, the satisfiability of arbitrary quantifier-free formulas can be easily
determined given a decision procedure for a set of literals. Using the fact that a universal formula
Vxp(x) is true in a model exactly when —p(x) is unsatisfiable in the model, this also provides a
decision procedure for universal formulas.

47



It is used to keep track of possible constructors for instantiating a 7 variable. Finally,
the Inst construct is used to track applications of the Instantiate 2 rule given below.
It is needed to ensure termination by preventing multiple applications of the rule.
It is a unary predicate that is applied only to abstraction variables.

Let 3¢ denote the set of all constant symbols in ¥, including nullary constructors.
We will denote by A the set of all possible literals over ¥ and input variables X.
Note that this does not include oriented equations (¢ — v), labeling pairs (v — L),
or applications of Inst. In contrast, we will denote by E multisets of literals of
A, oriented equations, and labeling pairs, and applications of Inst. To simplify
the presentation, we will consistently use the following meta-variables: ¢, d denote
constants (elements of X°) or input variables from X; wu,v,w denote abstraction
variables; t denotes a flat term—i.e., a term all of whose proper sub-terms are
abstraction variables—or a label set, depending on the context. u, v denote possibly
empty sequences of abstraction variables; and u — v is shorthand for the set of
oriented equations resulting from pairing corresponding elements from u and v and
orienting them so that the left hand variable is greater than the right hand variable
according to . Finally, v >t denotes any of v = ¢, t = v, v & t, t £ v, or v t.
To streamline the notation, we will sometimes denote function application simply
by juxtaposition.

Each rule consists of a premise and one or more conclusions. Each premise is
made up of a multiset of literals from A, oriented equations, labeling pairs, and ap-
plications of Inst. Conclusions are either similar multisets or L, where L represents
a trivially unsatisfiable formula. As we show later, the soundness of our rule-based
procedure depends on the fact that the premise F of a rule is satisfied in R by a
valuation of Var(FE) iff one of the conclusions E’ of the rule is satisfied in R by an

extension of that valuation.

48



10.3 The derivation rules

Our decision procedure consists of the following derivation rules on multisets F.

Abstraction rules

plc], E eN c:T,
Abstract 1 H if P
c— v, v—Cy, plv], E v fresh from V;
plCul, E
Abstract 2 if pe A, C eC,v fresh from V.,

Cu—v, pol, v—{C}, E

p[S& ), E pEA,
Abstract 3 Sg)u%vl,...,sgl)u%vn, plokl, it C:isy--v8, =T,
vy —=CqpyonoyUy—Cy B each v; fresh from Vi,

The abstraction or flattening rules assign a new abstraction variable to every
sub-term in the original set of literals. Each rule contains a literal of the form plt| in
the premise and p[v] in the conclusion. The meaning of this notation is that p[t] is
some literal containing the term ¢ and p[v] is the literal obtained by replacing every
occurrence of ¢ in p[t] with the abstraction variable v. Abstraction variables are used
as place-holders or equivalence class representatives for the sub-terms they replace.
While we would not expect a practical implementation to actually introduce these
variables, it greatly simplifies the presentation of the remaining rules.

The Abstract 1 rule replaces input variables or constants. Abstract 2 replaces
constructor terms, and Abstract 3 replaces selector terms. Notice that in each
case, a labeling pair for the introduced variables is also created. This corresponds
to labeling each sub-term with the set of possible constructors with which it could

have been constructed. Also notice that in the Abstract 3 rule, whenever a selector
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is applied, we effectively introduce all possible applications of selectors associated
with the same constructor. This simplifies the later selector rules and corresponds
to the step in the Oppen algorithm which ensures that in the term graph, any node

with children has a complete set of children.

Literal level rules

u~uv, FE iscv, K
Orient ——— if u»>w Remove 1
u—v, E v~ {C}, E
vgov, E —iscv, K
Inconsistent ———— Remove 2
L V= Csort(v) \ {0}7 E

The simple literal level rules are mostly self-explanatory. The Orient rule is
used to replace an equation between abstraction variables (which every equation
eventually becomes after applying the abstraction rules) with an oriented equa-
tion. Oriented equations are used in the remaining rules below. The Inconsistent
rule detects violations of the reflexivity of equality. The Remove rules remove
applications of testers and replace them with labeling pairs that impose the same

constraints.

Upward (i.e., congruence) closure rules

uit, u— v, K fuuv - w, u — v, B
Simplify 1 Simplify 2
vt u— v, K fuov - w, u — v, K

t—u,t—v, E
Superpose if u»w

u—uv, t—uv E
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t—v,v—ow, E

Compose
t—w, v—w, B

These rules are modeled after similar rules for abstract congruence closure in
[2]. The Simplify and Compose rules essentially provide a way to replace any
abstraction variable with a smaller (according to =) one if the two are constrained
to be equal. Note that the symbol f in the Simplify 2 rule refers to an arbitrary
function symbol from Y. The Superpose rule merges two equivalence classes if
they contain the same term. Congruence closure is achieved by these rules because
if two terms are congruent, then after repeated applications of the first set of rules,
they will become syntactically identical. Then the Superpose rule will merge their

two equivalence classes.

Downward (i.e., unification) closure rules

Cu—v, Cv—ou E

Decompose
Cu—-v,u—v, E

ChUnuvy — Up_1, ..., Couguave — u1, Cruguivy — u, E ]
Cycle if n>1

L

The main downward closure rule is the Decompose rule: whenever two terms
with the same constructor are in the same equivalence class, their arguments must
be equal. Recall that u — v is shorthand for the set of oriented equations resulting
from pairing corresponding elements from u and v and orienting them so that the
left hand variable is greater than the right hand variable according to . The Cycle
rule detects an inconsistency when a constructor term would have to be equivalent

to one of its sub-terms.

ol



Selector rules

S(l)u—>u1,...,5(n)u—>u,ul—> C}, E C:51"8, — T,
Instantiate 1 © © i 1S if ! "
Cuy--up, —u, u— {C}, E n>1

C finite constructor,

u— {C}, E
C:81 8, —T,
Instantiate 2 Cuy--up — u, u— {C}, Inst(u), if
Inst(u) € E,
Uy —Cspy ooy Up—Cs, B

u; fresh from Vi,

Cuy---u, — u, Sg)u—w), E

Collapse 1
Cuy-uy, —»u, uyy~v, K
Sg)u—w;, u— L, B
Collapse 2 if C¢L

tiC ~v,u— L E

Rule Instantiate 1 is used to eliminate selectors by replacing the argument of
the selectors with a new term constructed using the appropriate constructor. Only
terms that have selectors applied to them can be instantiated and then only once
they are uniquely labeled. Notice that all of the selectors applied to the term are
eliminated at the same time. This is why the entire set of selectors is introduced in
the Abstract 3 rule.

For completeness, a term labeled with a finite constructor must be instantiated
even if no selectors are applied to that term. This is accomplished by rule Instan-
tiate 2. The side conditions are similar to those in Instantiate 1, except that
this rule only applies to terms labeled with finite constructors. The Inst predicate
ensures that the rule is applied at most once for each such term.

The Collapse rules eliminate selectors when the result of their application can
be determined. In Collapse 1, a selector S(Cf) is applied to a term constructed with

constructor C. In this case, the selector expression is replaced by the appropriate
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argument of the constructed term. In Collapse 2, a selector Sg) is applied to a
term which must have been constructed with a constructor other than C. In this

case, the designated term ¢, for the selector replaces the selector expression.

Labeling rules

vis Ly, v Ly, B vi— 0, B
Refine Empty — if v:7
vi— LN Ly, E 1

S(Cf)u—WJ, u—{C}UL, E

Split 1 4 , it L#0
S(Cl)u—>v,ur—>{0},E Sg)u—>v,u»—>L,E
ur— {C}UL, FE L #0,
Split 2 e i L7
u—{C}, E u— L, E {C} U L all finite constructors

The Refine rule simply combines labeling constraints that may arise from differ-
ent sources for the same abstraction variable. Empty enforces the constraint that
every 7-term must be constructed by some constructor. The splitting rules are used
to refine the set of possible constructors for a term and are the only rules that cause
branching. If a term labeled with only finite constructors cannot be eliminated in
some other way, Split 2 must be applied until it is labeled with a single constructor.
For other terms, the Split 1 rule only needs to be applied to distinguish the case
of a selector being applied to the “right” constructor from a selector being applied
to the “wrong” constructor. On either branch, one of the Collapse rules will apply

immediately. We discuss this further in Section 12, below.
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null — v; vy — {null} Vs — U4
T — Vg vy — {cons, null} vg — U7
Y — U3 vg — {cons, null} v3 % g
cons(vg,v3) — vy vy > {cons}

w — v vs — {cons, null}

car(vs) — vg ve — {cons, null}

cdr(vs) — vy vy — {cons, null}

car(vs) — vg vg — {cons, null}

cdr(vs) — v vy — {cons, null}

Figure 8: Example 10.2 after Abstraction and Orient

10.4 An Example Using the Rules

Let us revisit Example 10.2 and see how the rules work on this example. Recall that
we have the following set of literals: {cons(x,y) = w, cdr(w) =~ cdr(y),y % null}.
After applying the Abstraction and Orient rules, we have the set of literals shown
in Figure 8. Next, the Simplify and Compose rules can be used to replace all
occurrences in the first two columns of v; and vy with v, and v; respectively. Then,
Refine can be used to eliminate two of the labeling pairs. Notice that after replacing
vs with vy, vy can be instantiated (the side conditions of Instantiate 1 are satisfied).
The resulting set of literals is shown in Figure 9. At this point, there are two cons
terms equivalent to v4, so the Decompose rule applies, yielding two new oriented
equations: vg — vy and v; — w3. These can again be used together with the
congruence rules and Refine to simplify the other literals. The resulting set is
shown in Figure 10.

At this point, the only rule that can be applied is the Split 1 rule. And only
vy satisfies the necessary condition of having a selector applied to it. There are
two cases. Consider first the case where v3 — {cons}. In this case, Instantiate 1
applies, yielding cons(vs,v3) — vz which yields L by the Cycle rule. In the other
case, we have v — {null}. This time, since null is a finite constructor, we can apply

Instantiate 2 to get null — v3. The Superpose rule then gives v3 — v;. This can
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cons(vg, v7) — vy
car(vs) — vg

vy — {cons, null}
vg — {cons, null}

null — v; vy — {null} Vs — U4
T — Vg vy — {cons, null} vg — U7
Y — U3 vg — {cons, null} v3 % g
cons(vg,v3) — vy vy > {cons}

w — vy ve +— { cons, null}

cdr(vs) — vy

Figure 9: Figure 8 after congruence rules, Refine, and Instantiate 1

null — vy vy — {null} Vs — Uy
T — Uy vy +— {cons, null} Vg — Us
Y — Us vg — {cons, null} v3 % Uy

cons(vg,v3) — vy vy — {cons}
car(vs) — vg vg — {cons, null}
cdr(vs) — v

Vg — V2

V7 — Vs

Figure 10: Figure 9 after Decompose and congruence rules

be used together with v3 % v, to deduce L (via the Simplify 1 and Inconsistent

rules).

11 Correctness

The satisfiability in R of a set ' of X-literals with variables in X can be checked by
applying exhaustively to I' the derivation rules in the previous section. This set of
rules is very flexible in that the rules can be applied in any order and still yield a
decision procedure for the satisfiability in R. No specific rule application strategy
is needed to achieve termination, soundness or completeness. We formalize this in
the following in terms of a suitable notion of derivation for these rules.

A derivation tree (for a set T" of 3-literals with variables in X) is a finite tree with

root I' such that for each internal node E of the tree, its children are the conclusions
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of some rule whose premise is E. A refutation tree (for I') is a derivation tree all of
whose leaves are L. We say that a node in a derivation tree is (ir)reducible if (n)one
of the derivation rules applies to it. A derivation is a sequence of derivation trees
starting with the single-node tree containing I', where each tree is derived from the
previous one by the application of a rule to one of its leaves. A refutation is a finite
derivation ending with a refutation tree.

For a multiset F of literals, a variable assignment « is a mapping from Var(FE)
into the elements of R that is well-sorted (i.e., sort(z) = sort(a(x)) for every
x € Var(FE)). If « is a variable assignment, then we denote by @ the homomorphic
extension of o that maps arbitrary terms into elements of R. We say that « satisfies
s ~ t iff @(s) equals @(t).

For convenience, we extend the notion of satisfiability and well-sortedness to
the extra-logical constructs. The oriented equation ¢ — v is well-sorted iff ¢t and v
have the same sort. Furthermore, « satisfies t — v in R iff «a satisfies the equation
t =~ v in R. The expression v — L, labeling a variable v of sort s with the set L
of constructor symbols, is considered to be well-sorted if L C C,. The valuation «
satisfies a labeling pair v +— L in R if « satisfies the formula isc(v) ~ true for some
C € L. An application of Inst is always well-sorted and satisfied by every variable

assignment. We start with a lemma that gives a couple of useful invariants.

Lemma 11.1. Let Ey, E1, ..., be a branch on a derivation tree. Then the following

holds for all v > 0.
1. If Ey is well-sorted, then for all i, E; is well-sorted.
2. For allu — v € E;, we have u > v.

Proof. A simple examination of each of the rules confirms that these invariants are

maintained. O
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Before proving termination, we need the following additional notation. For each
constructor C' € ¥, let |C| denote 0 if C' is infinite and otherwise denote the size of
the (finite) set containing all ground constructor terms whose top symbol is C', and

all of their sub-terms.
Proposition 11.2 (Termination). Every derivation is finite.

Proof. Given a derivation tree, let Fy, F1,... be any branch of the tree that does
not end with L. It is enough to show that the branch can be mapped to a strictly
descending sequence in a well-founded ordering. The ordering >; we will use is a
lexicographic ordering over tuples of the form (s,t, S, T, M, A,n) where s, t, T, and
n are natural numbers, S is a multiset of naturals, M is a multiset of symbols from
3 and variables from X, and A is a multiset of abstraction variables. The ordering

> is the one induced by the well-founded orderings >, >, >, >, O, >mn, > where

> is the usual ordering of the natural numbers,

> is the multiset ordering induced by >,

T is the multiset ordering induced by some arbitrary well-founded ordering

of the set X U X, and

>m 1s the multiset ordering induced by the given ordering > over the abstrac-

tion variables.

The descending sequence (s;,t;,S;, T;, M;, A;,n;) for ¢ = 0,1,... is defined as fol-
lows. Recall that X-literals do not include oriented equations, labeling pairs, or

applications of Inst.
e s; is the number of selector symbols in the »-literals of Ej;

e t; is total number of selector symbols appearing in Ej;;
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e S; is the multiset consisting of the sizes of the Y-literals of E;, where by size we
mean the number of occurrences of symbols from ¥ (including &) and input

variables, but not of abstraction variables;

e T; is the sum of all |v|; for all abstraction variables v € Var(E;) that do not
appear as an argument to Inst in E; where, for each v, [v|; = > ., |C| and

L; is the union of all label sets for v in E;;

e M, is the multiset of occurrences of symbols from 3 and input variables from

X in Y-literals or oriented equations of Fj;
e A, is the multiset of all the occurrences of abstraction variables in F;;

e n,; is the number of label occurrences in Ej;, that is, occurrences of the con-

structor symbols in labeling pairs of E;.

We show that for all consecutive nodes FE;, F;; in the branch:
(Si,th Si, T, Mi>Aiani) ~1 (Si+1,tz’+1, Si+1aTi+1>Mi+1>Ai+1>ni+l)-
The proof is by cases, depending on the rule used to derive E;,; from FEj.

1. The cases corresponding to the rules Inconsistent, Cycle, and Empty do

not apply since they all have conclusion L.

2. Suppose one of the rules Abstract 1, Abstract 2, Orient, Remove 1,
or Remove 2 was applied. Each of these rules leaves s; and t; unchanged
while removing at least one Y-symbol or input variable from a literal (without

changing the other literals). In each of these cases, S; >, Sit1.

3. With Abstract 3, the number of selector symbols appearing in literals is

reduced by one, so s; > s;41.
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4. With all the congruence closure rules except for Superpose when the term ¢
in the rule is not an abstraction variable, the only change is the replacement
of an abstraction variable by another abstraction variable which is smaller by
Lemma 11.1(2). Thus, s;, t;, S;, T;, and M; remain the same, while A; >,
A;v1. In the case where Superpose is applied and t is not an abstraction
variable, t must contain a symbol from > U X. If ¢ contains a selector, then
s; = 8i11 and t; > t; 1. Otherwise, M; O, M; ;1 (it is easy to see that s;, t;,

S;, and T; remain the same in this case).

5. The Decompose rule does not change the values of s;, t;, S;, or T;. However,

it does eliminate one occurrence of a constructor symbol. Hence, M; 1, M.

6. Now consider the selector rules. With Instantiate 1, since the constructor C'
in the rule has positive arity (i.e., n > 1) then s; = s;41 and t; > t;1;. With

Instantiate 2, s;, t; and 5; are unchanged but
Tigr = (T = [uls) + ) lugliya -
k=1

It is not difficult to see that |u|; > >~} [uk|it1. Thus, T; > T;4y.

7. With the collapse rules, exactly one selector symbol is eliminated from (a

non-literal Of) Ei> SO S; = 841 and t; > ti+1.5

8. Finally, consider the labeling rules. The Refine rule eliminates an occurrence
of an abstraction variable. Hence certainly A; >, A;y1. All the preceding
components of the tuple are unchanged with the possible exception of T; which
may get smaller when L; # Ls. The split rules both produce two conclusions,

each of which has fewer constructors appearing in labels than in the premise.

5Note that s; = si+1 with Collapse 2 because, by definition, ti'c is a ground term with no
selectors.
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Furthermore, this is the only change, so T; either decreases or is unchanged,

n; > n;4+1 and everything else is unchanged.

The soundness of the decision procedure is based on the following result.

Lemma 11.3. The premise E of a derivation rule is satisfied in R by a valuation o
of Var(E) iff one of the conclusions E' of the rule is satisfied in R by an extension

of a to Var(E').

Proof. Again, the proof is by cases.

(Abstraction rules) The if direction is immediate. For the other direction, for
Abstract 1, suppose that the premise is satisfied by ain R. We extend « by setting
v to the value of ¢ under R, a. Consider the labeling pair v +— Cy in the conclusion.
When v is of sort 7, it is satisfied as a consequence of the first axiom (schema) in R’s
specification and the fact that a(v) is a constructor term by Lemma 5.7. With this
observation, it is clear that the extended variable assignment satisfies the conclusion.
For Abstract 2, a similar argument shows that an extended variable assignment
which assigns v to the value of C'u under R, a must satisfy the conclusion. For
Abstract 3, the argument is again similar, but this time we must extend « to map
each v; to the value of Sg) u under R, a.

(Literal level rules) The case of Orient and Inconsistent is obvious. For Re-
move 1 the claim follows by definition of satisfaction for labeling pairs. For Re-
move 2 we rely on the fact that R, « satisfies is¢ v exactly when it satisfies v — {C'},
for any C'. This follows from Lemma 5.7 and the first and second axiom schemas.

(Upward closure rules) The claim follows from basic properties of equality.

(Downward closure rules) The result follows from Lemma 5.7 and basic properties

of the term algebra 7 ().

60



(Selector rules) In case of Instantiate 1 and 2 the claims follow from the de-
finition of satisfaction for labeling pairs, the Inst predicate, the first three axiom
schemas, and Lemma 5.7. For Collapse 1 the result follows by the third axiom
schema; for Collapse 2 by the fourth schema, Lemma 5.7 and the definition of
satisfaction for labeling pairs.

(Labeling rules) The claim follows by simple Boolean reasoning and the definition

of satisfaction for labeling pairs. O

Proposition 11.4 (Soundness). If a set Ey has a refutation tree, then it is unsat-

isfiable in R.
Proof. By structural induction on refutation trees and the previous lemma. O

To prove completeness we will rely on the next three lemmas. First we need a couple
of definitions. If F is a multiset of literals, we write ~g for the equivalence relation
induced by oriented equations in E. We also define lblsg(u) as the intersection of

all label sets L where v — L appears in E for some v ~g u.

Lemma 11.5. Suppose E is a node in a derivation tree and that E contains an
oriented equation of the form Sg) u — v for some C (of arity n), u, v, and i, where
1 <1< n. We will call this an oriented selector equation. Then at least one of the

following s also true:

(i) E also contains an oriented equation of the form C'w — v’ for some w and

u where ' ~g u.

(ii) C & Iblsg(u)

(iii) There exist uy,...,u, and v, ..., v, such that for each 1 < k < n, Sgc) up —

v, € E and vy, ~g u.
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Proof. The proof is by induction on derivation trees. The base case is trivial since
the root of a derivation tree has no oriented equations. For the inductive case, we
consider each of the rules. First note that if a rule does not introduce, change, or
delete any oriented selector equations and furthermore does not delete or change any
oriented equations of the form C'w — u/, then the property is trivially preserved.
This covers the following rules: Abstract 1, Abstract 2, the literal level rules,
Simplify 1, Cycle, Instantiate 2, and the labeling rules. We now consider the
others:

Abstract 3. This rule introduces new oriented selector equations. For these, it is
easy to see that condition (iii) is satisfied. It is also easy to see that the property is
preserved for any other oriented selector equations.

Simplify 2. This rule may change an oriented selector equation from Sg) U — v
to Sg) u' — v when u — u’. However, in this case, we have u ~p ', and it follows
that the property is preserved.

Superpose. If we have two oriented selector equations: Sg) u — v and Sg) u— v,
with v = v/, then the first of these may be eliminated by the Superpose rule.
If the eliminated oriented selector equation was needed to fulfill condition (iii) for
some other oriented selector equation in the premise, then we must ensure that the
property still holds in the conclusion. However, notice that Sg) u — v" may be used
instead and so the property holds.

Compose. Suppose Sg) u — v is rewritten to Sg) u — v'. It is easy to see that the
property holds for the new oriented selector equation for the same reasons as it did
for the old. Also, if the old oriented selector equation was used to fulfill condition
(iii) for some other oriented selector equation, then the new one does so as well.
Decompose. This rule may eliminate an oriented equation of the form C'w — o/

which might affect condition (i) for some oriented selector equation. However, it
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only does so when there exists another oriented equation of the form C'v — u’ that
is not eliminated. This can be used to satisfy condition (i) instead.

Instantiate 1. This rule eliminates oriented selector equations which could affect
condition (iii) for some other oriented selector equation. However, it also introduces
an oriented equation of the form C'w — u, so condition (i) will now apply to such
oriented selector equations.

Collapse 1. This rule eliminates an oriented selector equation which could affect
condition (iii) for some other oriented selector equation. However, it is easy to see
that because we have an oriented equation of the form C'w — w, condition (i) must
apply to such oriented selector equations.

Collapse 2. This rule eliminates an oriented selector equation which could affect
condition (iii) for some other oriented selector equation. However, it is easy to
see that because C' ¢ Iblsg(u), condition (ii) must apply to such oriented selector

equations. 0

Lemma 11.6. No irreducible leaf E in a derivation tree contains occurrences of

selector symbols.

Proof. The claim is trivially true if £ = {L}, so assume that £ # {L}. Since
E is irreducible, by the rule Abstract 3 and Lemma 11.1(1), every occurrence of
a selector in E must be in an oriented equation of the form Sg) u — v, for some
constructor C' : s;--+s, — 7 and an abstraction variable u of sort 7. So assume
that Sg) u— v € E. By Lemma 11.5, we know that one of three conditions applies.
The first case is that condition (i) holds: E also contains an oriented equation of
the form C'w — v’ for some w and u’ where v/ ~p u. Since E is irreducible, we
must have that ' = u, but then Collapse 1 applies, contradicting the irreducibility
of E. The second case is (ii): C & Ilblsgp(u). Again, because E is irreducible, this

means that £ contains u — L and C ¢ L. Thus, Collapse 2 applies, again a
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contradiction. Finally, the third case is (iii): there exist uy,...,u, and vy,..., v,
such that for each 1 < k < n, Sgc) ur — v, € B and uy ~g u. Again, because F
is irreducible, we must have that u, = u for each k. Also, since (ii) does not apply
and Split 1 cannot be applied, F must contain u +— {C}. But this means that

Instantiate 1 applies, again yielding a contradiction.

O

Lemma 11.7. Every irreducible leaf E other than { L} in a derivation tree is sat-

isfiable in R.

Proof. We build a valuation a of Var(FE) that satisfies F in R. To start, let

V = {v|t—wv e E for some t}

T, = {t|t—veFE}forallveV

Observe that the sets T,, and T, are disjoint for all distinct v and v, otherwise F
would contain two equations of the form ¢t — u and ¢ — v, and so would be reducible
by Superpose. Furthermore, for all v € V| T, contains at most one non-variable
term. To see that, recalling that E contains no occurrences of selector symbols
by Lemma 11.6, assume that T, contains a term of the form C'u. Again by well-
sortedness, it is enough to argue that T, contains no additional terms of the form
C’u’ of the same sort as v’s. But such terms cannot be in T,,. If C' = C” then
Decompose applies. If C' # C’, notice that whenever an oriented equation of the
form C'u — v is introduced, we also have v — {C'}. Since label sets never grow, at
some point we have to have had both v — {C} and v — {C"}. Since Refine must
have been applied to these two labeling pairs, ' must now contain v — () and is
thus reducible by Empty.

Now consider the relation < over V defined as follows:
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u < v iff ¥ contains an equation of the form C uuu’ — v.

By the Cycle rule and the assumptions on F, the finite relation < is acyclic and
hence well founded. We can define a valuation o of V into R® by well founded
induction on <.

Let {v1,...,v,} be the set of all the <-minimal elements of V' such that for
i=1,...,n, ¢, — v; € E with ¢; a constant symbol (a nullary constructor). For
i =1,...,n we define a(v;) = ¢;. Now let {v,11,...,0,4x} be the remaining <-
minimal elements of V. If v; is of some sort 7, we know by a previous observation
that v; — L € E. Note that by the Empty and the Split rules, C' € L for some non-
nullary C. Moreover, C' must be an infinite constructor, or otherwise an equation
of the form C'u — v, would be in F by Instantiate 2, making v, non-<-minimal.
We then define a(vg) = C'ty - - - t,,, where C' is some infinite constructor in L of arity
m >0 and C'ty---t,, is some term in 7 () \ {a(v1), ..., a(Vptr-1)}-

We are now left with defining a(v) for all non-minimal v € V. If v is non-
minimal, then there must be an equation of the form C'u; ---u; — v in E for some
constructor C'. Furthermore, &k > 1 (otherwise v would be minimal) and u; < v for
alli =1,..., k. We then define a(v) = C a(uy) - - - a(uy).

We now show by induction on < that the valuation « just defined is an injection
of V into 7 (£2). Let u,v be two distinct elements of V' of the same sort.

If uw and v are both <-minimal in the set {v1, ..., v,} defined earlier, then a(u) #
a(v) because the sets Ty, ..., T,, are mutually disjoint. If one (or both) of them is
in {vy11,..., Uk} then a(u) # a(v) by construction.

If u, say, is not <-minimal, then both u and v must be of some sort 7. It
follows that a(u), a(v) are terms of the form C a(uy)---a(u,), C'a(vy) -+ a(vy),

respectively, with n,n’ > 1. Now, if C' # C’, then a(u) and «(v) are trivially distinct

6Whose universe, recall, is the term algebra 7 (12).
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terms. If C' = C’, then n = n’; however, u; # v; for some ¢ otherwise C' uy - - - u, — u
and C'uy - --u, — v would be in E and Superpose would apply. If u; and v; are
distinct then by induction a(u;) and a(v;) are distinct, therefore a(u) and a(v) are
distinct as well.

Now we can extend « to the whole Var(E) by defining it for the remaining (input
or abstraction) variables of E. Each such variable z occurs in an equation of the
form x — v in E. Hence we define a(x) = a(v). For later reference, let o’ be the
homomorphic extension of « to the set of ¥-terms over Var(E).

The valuation « satisfies every element e of E. If e has the form u % v with
u, v distinct, then « satisfies e for being injective over the abstraction variables of
E. If e has the form ¢ — v, then « satisfies e because a(v) = o/(t) by construction.
If e has the form v — L where v has sort 7 consider the following two cases. If
Cuy---up — v € E for some Cuq---uy then it is not difficult to show that L
must be {C}. But then a(v) = Ca(uy)---a(ug) by construction. If there is no
Cuy---up — v € E, then a(v) is defined as some term C't; - - -t where C' € L. In
both cases, it is then immediate that « satisfies v +— L.

To conclude the proof it is enough to observe that, for being irreducible, E can

only contain elements of the forms listed above. O

Proposition 11.8 (Completeness). If a set Ey is unsatisfiable in R, then it has a

refutation.

Proof. We prove the contrapositive of the proposition. Assume that Ej, has no
refutations. By Proposition 11.2; there is a derivation tree for £y with an irreducible
leaf F # {1}. By Lemma 11.7, F is satisfiable in R. It follows by a repeated

application of Lemma 11.3 that Ej is satisfiable in R as well. O
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12 Strategies and Efficiency

It is not difficult to see that the problem of determining the satisfiability of an
arbitrary set of literals is NP-complete. A subset of the problem (a simple case with
two constructors) was shown to be NP-hard in [36]. To see that it is in NP, we note
that given a type com