
Automatic Deduction for Theories of

Algebraic Data Types

by

Igor A. Chikanian

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May 2011

Clark Barrett



Abstract

In this thesis we present formal logical systems, concerned with reasoning about

algebraic data types.

The first formal system is based on the quantifier-free calculus (outermost univer-

sally quantified). This calculus is comprised of state change rules, and computations

are performed by successive applications of these rules. Thereby, our calculus gives

rise to an abstract decision procedure. This decision procedure determines if a given

formula involving algebraic type members is valid. It is shown that this calculus

is sound and complete. We also examine how this system performs practically and

give experimental results. Our main contribution, as compared to previous work on

this subject, is a new and more efficient decision procedure for checking satisfiability

of the universal fragment within the theory of algebraic data types.

The second formal system, called Term Builder, is the deductive system based on

higher order type theory, which subsumes second order and higher order logics. The

main purpose of this calculus is to formulate and prove theorems about algebraic

or other arbitrary user-defined types. Term Builder supports proof objects and is

both, an interactive theorem prover, and verifier. We describe the built-in deductive

capabilities of Term Builder and show its consistency. The logic represented by our

prover is intuitionistic. Naturally, it is also incomplete and undecidable, but its

expressive power is much higher than that of the first formal system. Among our

achievements in building this theorem prover is an elegant and intuitive GUI for

building proofs. Also, a new feature from the foundational viewpoint is that, in

contrast with other approaches, we have uniqueness-of-types property, which is not

modulo beta-conversion.

ii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

I Introductory Background 1

1 High Level Overview 1

2 The Concept of an Algebraic Data Type 5

3 Type Systems and Deductive Systems 7

3.1 The Concept of a Type System . . . . . . . . . . . . . . . . . . . . . 7

3.2 Typed Signature of the First Order Logic . . . . . . . . . . . . . . . . 9

3.3 Background in Universal Algebra . . . . . . . . . . . . . . . . . . . . 10

4 Theory of Algebraic Data Types 13

4.1 Signature for the Theory of Algebraic Types . . . . . . . . . . . . . . 13

4.2 Axiomatization by Equational Specification . . . . . . . . . . . . . . 15

5 Algebraic Types as Term Algebras 17

5.1 Term Algebras as Models . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2 Standard Results from Universal Algebra . . . . . . . . . . . . . . . . 18

5.3 Algebraic Types as Least Fixed Points . . . . . . . . . . . . . . . . . 19

II Semantics of Partial Functions 22

iii



6 Introduction and Related Work 22

7 Three-Valued Logic: Syntax and Semantics 24

7.1 Three-valued semantics with partial functions . . . . . . . . . . . . . 24

7.2 Semantics of if-then-else . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.3 Three-Valued Validity . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8 Reduction from Three-Valued to Two-Valued Logic 28

8.1 Type correctness conditions (TCCs). . . . . . . . . . . . . . . . . . . 28

8.2 Main Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

8.3 Checking validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

III Deciding Theories of Algebraic Data Types 40

9 Introduction and Related Work 40

9.1 Type Correctness Conditions . . . . . . . . . . . . . . . . . . . . . . . 41

9.2 Contributions of this Work . . . . . . . . . . . . . . . . . . . . . . . . 42

10 The Decision Procedure 43

10.1 Overview and Examples . . . . . . . . . . . . . . . . . . . . . . . . . 43

10.2 Definitions and Notation . . . . . . . . . . . . . . . . . . . . . . . . . 47

10.3 The derivation rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

10.4 An Example Using the Rules . . . . . . . . . . . . . . . . . . . . . . . 54

11 Correctness 55

12 Strategies and Efficiency 67

12.1 Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

iv



12.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

IV Theorem Prover over Algebraic Data Structures 71

13 Introduction and Motivation 71

14 Theoretic Background 74

14.1 Preliminary Considerations . . . . . . . . . . . . . . . . . . . . . . . . 74

14.2 Overview of Dependent Type Theory . . . . . . . . . . . . . . . . . . 76

14.3 Dependent Types in the Systems of the Lambda Cube . . . . . . . . 78

14.3.1 Simply Typed Lambda Calculus (λ→) . . . . . . . . . . . . . . 78

14.3.2 System F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

14.3.3 Second Order Dependent Type Theory (λP2) . . . . . . . . . 80

14.3.4 Calculus of Constructions CC . . . . . . . . . . . . . . . . . . 80

14.4 Calculus of Algebraic Constructions . . . . . . . . . . . . . . . . . . . 81

14.4.1 The Need for Dependent Case Analysis . . . . . . . . . . . . . 81

14.4.2 Adaptation of the Calculus of Inductive Constructions . . . . 82

15 Type System of Term Builder 84

15.1 High Level Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

15.2 Well Founded Recursion and Induction . . . . . . . . . . . . . . . . . 85

15.3 Dependent Typing of the Conditional Operator . . . . . . . . . . . . 86

15.4 Polymorphic Equality Predicate . . . . . . . . . . . . . . . . . . . . . 87

15.4.1 Conversion Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 87

15.4.2 Rule for Polymorphic Equality . . . . . . . . . . . . . . . . . . 88

15.4.3 Beta Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . 88

v



15.4.4 Conditional Expression Reduction . . . . . . . . . . . . . . . . 89

15.4.5 Leibniz Equality and Equation Elimination Rule . . . . . . . . 90

16 Soundness 90

16.1 Proof Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

16.2 Translations between Term Builder and CIC . . . . . . . . . . . . 91

16.2.1 Reflection of Term Builder in CIC . . . . . . . . . . . . . . 92

16.2.2 Soundness Theorem . . . . . . . . . . . . . . . . . . . . . . . . 97

V Using the Theorem Prover 98

17 User Interface of the Main Proof Window 98

18 Overview of Prover Commands 100

19 Example of a Proof Session 105

VI Concluding Remarks 119

References 121

vi



List of Figures

1 Example of a Type System . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Signature for Many-Sorted First Order Logic . . . . . . . . . . . . . . 10

3 Type System for Many-Sorted First Order Logic . . . . . . . . . . . . 11

4 Signature Σ for the Theory of Algebraic Data Types . . . . . . . . . 14

5 Type System for the Theory of ADTs . . . . . . . . . . . . . . . . . . 14

6 Term graph for Example 10.1 . . . . . . . . . . . . . . . . . . . . . . 44

7 Term graph for Example 10.2 . . . . . . . . . . . . . . . . . . . . . . 45

8 Example 10.2 after Abstraction and Orient . . . . . . . . . . . . . 54

9 Figure 8 after congruence rules, Refine, and Instantiate 1 . . . . . 55

10 Figure 9 after Decompose and congruence rules . . . . . . . . . . . 55

11 Term graph for Example 12.1 . . . . . . . . . . . . . . . . . . . . . . 69

12 Modus Ponens as β-reduction . . . . . . . . . . . . . . . . . . . . . . 76

13 Relevant Fragment of the Calculus of Inductive Constructions . . . . 83

14 Complete Set of Proof Rules of Term Builder . . . . . . . . . . . . 91

15 Case Splitting Tree of the Proof . . . . . . . . . . . . . . . . . . . . . 105

vii



List of Tables

1 Three-valued Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Definition of TCCs for terms and formulas. . . . . . . . . . . . . . . . 29

3 Type Correctness Conditions for the Theory of ADTs . . . . . . . . . 42

4 Greedy vs. Lazy Splitting . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Features of Type Systems . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Translation of {⊥,¬,∨,∧,→, ∀, ∃} into {∀, Type} . . . . . . . . . . . 81

7 Encoding of Term Builder in CIC . . . . . . . . . . . . . . . . . . 92

8 Appearance of the Main Proof Window . . . . . . . . . . . . . . . . . 99

9 User Defined Context . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

viii



Part I

Introductory Background

1 High Level Overview

The focus of this dissertation is the algebraic data types. We propose and describe

the automatic and interactive deductive systems associated with reasoning about

algebraic data types, their members, and functions operating on them. This in-

troductory background has the following purpose: (i) to give a preview of what is

presented in the next parts, and (ii) to highlight and explain the shared formal com-

ponents that are used throughout the whole document. From the very beginning it

will be useful to frame our entire work in terms of logical signatures and associated

typed deductive systems.

The Objectives of this Thesis can be summarized as follows. For the fully

automatic system, our goal is composed of the following sub-goals:

• to carry out the construction in many-sorted logic, for multi-constructor

types

• to allow for arbitrary well-founded mutual recursion between the alge-

braic data types

• to present the decision procedure abstractly and delegate the con-

cretization to the implementation phase

• to allow for customized strategies within the framework that can yield

high practical performance

1



In the case of an interactive system, our motivations are as follows:

• to build a point-and-click user interface that is easy to learn and use

• to implement the entire system based on the Curry-Howard Isomor-

phism

• to adapt the underlying type system and allow for the absence of the

conversion rule

The whole document is comprised of four main parts and two additional parts. Be-

low we give a general overview of each part. The related work is described within

the context of the respective parts. Following this introductory section, we give an

example of an elementary type system as a tool for deduction, and provide an intro-

ductory setting for reasoning about algebraic data structures and their semantics.

In order to provide motivation for part II, we note that, in general, application of

functions in the theory of algebraic types must sometimes be undefined. Therefore,

an adequate theory to that effect requires dealing with partial functions.

Part II: Semantics of Partial Functions. Part II proposes a typed formalism

of the first order logic with partial functions, and gives the method of handling the

semantics of partial functions. Most approaches to automated deduction assume

a mathematical formalism in which functions are total, even though partial func-

tions occur naturally in many applications. Furthermore, although there have been

various proposals for logics of partial functions, there is no consensus on which is

“the right” logic to use for verification applications. In part II we propose using

a three-valued Kleene logic, where partial functions return the “undefined” value

when applied outside of their domains. The particular semantics are chosen accord-

ing to the principle of least surprise to the user; if there is disagreement among

2



the various approaches on what the value of the formula should be, its evaluation

is undefined. We show that the problem of checking validity in the three-valued

logic can be reduced to checking validity in a standard two-valued logic. The typed

formalism for part II is shown in Figures 2 and 3.

Part III: Deciding Theories of Algebraic Data Types. Algebraic data types

are commonly used in programming. In particular, functional languages support

such structures explicitly. The same notion is also a convenient abstraction for

common data types such as records and linked lists or trees used in more conventional

programming languages. The ability to reason automatically and efficiently about

these data structures provides an important tool for the analysis and verification of

programs.

Part III describes an abstract decision procedure for satisfiability of the quantifier-

free formulas in the theory of algebraic data types relative to the intended model

of that theory. In the past, decision procedures have been proposed for various

theories of algebraic data types, some focused on the universal fragment, and some

focused on handling arbitrary quantifiers. Because of the complexity of the full

theory, previous work on the full theory has not focused on strategies for practical

implementation. However, even for the universal fragment, previous work has been

limited in several significant ways. In part III, we present a general and practical

algorithm for the universal fragment. The algorithm is presented declaratively as

a set of abstract rules which we show to be terminating, sound, and complete. We

show how other algorithms can be realized as strategies within our general frame-

work, and we propose a new strategy and give experimental results indicating that

it performs well in practice. The typed signature for the theory of algebraic types

3



is shown in Figures 4 and 5.

Equality Predicates. A distinctive feature of our treatment is the usage of the

equality predicate. We accept the notion of equality as a built-in primitive in each

of our formalisms. This is especially uncommon in the context of part IV. The

equality predicates in the formal systems that we study are denoted by ≈, while

the informal equality in the meta language of discourse is denoted by = as usual. A

particular usage of equality = is when the two sides are syntactically identical. In

this case we use the equivalence symbol ≡.

Part IV: Deductive Reasoning about Algebraic Data Structures. A de-

ductive approach to verifying assertions about algebraic structures becomes nec-

essary when the set of formulas, valid in the intended model of the theory is un-

decidable. In particular, this happens in second order logic. Part IV presents a

concept theorem prover, called Term Builder. We have developed it to support

reasoning about both interpreted and uninterpreted functions and predicates over

algebraic types. Term Builder is not limited to reasoning in an algebraic setting,

and can be also used for interactive proofs in theories that admit a type-theoretic

representation. The deductive system of Term Builder is based on dependent type

theory, which subsumes standard higher order logic. Traditionally, explicit equality

predicates are not necessarily supported in pure type theory. As a consequence, the

uniqueness-of-types property must sometimes be sacrificed due to the introduction

of the “conversion rule”. We show how to preserve uniqueness of types by replacing

the conversion rule by explicit support of equality.

4



Part V: Using the Theorem Prover. This part describes the user interface

of the prover. It explains the relationship between the prover commands and the

type rules that are used to build the proof objects. In addition, it goes through an

example of a proof session.

2 The Concept of an Algebraic Data Type

In this section we will give a general idea about the concept of an algebraic data

type. This includes a short preview of how they are declared and used. We base

this exposition on several commonly known examples. In what follows, the term

“algebraic data type” may be abbreviated as ADT.

Perhaps the best-known example of a simple algebraic data type is the list type

used in LISP. Lists are either the null list or are constructed from other lists using

the constructor cons. This constructor takes two arguments and returns the result

of prepending its first argument to the list in its second argument. To access the

elements of a list, a pair of selectors is provided: car returns the first element of a

list and cdr returns the rest of the list. Another simple algebraic data type is natural

numbers with zero and successor. Natural numbers and lists can be captured by the

following declarations. Note that the elements of lists are also taken to be lists:

nat ::= succ(pred : nat) | zero;

list ::= cons(car : list, cdr : list) | null;

The type nat has two constructors: zero, which takes no arguments; and succ, which

5



takes a single argument of type nat and has the corresponding selector pred. The

primary use of ADTs is the traversal by recursive functions, which may apply and

remove constructors. For example, the addition of natural numbers is defined by

recursion over the second operand:

(+) = λx : nat. λy : nat. if (y ≈ zero) then x else succ(x + pred(y)) endif ;

It will be shown in section 5.3 that another formalization of ADTs may be carried

out in Set Theory. In particular, in the following notation, µ is the set-theoretic

least fixed point operator, while succ and cons are set transformers:

nat ::= µN. succ(N) ∪ {zero};

list ::= µL. cons(L, L) ∪ {null};

More generally, we are interested in any set of (possibly mutually recursive) algebraic

data types, each of which is built with one or more constructors. Each constructor

has selectors that can be used to retrieve the original arguments as well as a tester

which indicates whether a given term was constructed using that constructor. Con-

sider the following mutually recursive example. The list type is as before, except

that we now specify that the elements of the list are of type tree, and not list. The

tree type in turn has two constructors: node, which takes an argument of type list

and has the corresponding selector children, and leaf, which takes an argument of

type nat and has the corresponding selector data:

nat := succ(pred : nat) | zero;

list := cons(car : tree, cdr : list) | null;

tree := node(children : list) | leaf(data : nat);

6



The testers for this set of data types are is succ, is zero, is cons, is null, is node,

and is leaf. Propositions about a set of inductive data types can be captured in a

sorted first-order language which closely resembles the structure of the data types

themselves in that it has function symbols for each constructor and selector, and a

predicate symbol for each tester. For instance, propositions that we would expect

to be true for the example above include the following:

1. ∀x : nat. succ(x) 6≈ zero,

2. ∀x : list. x ≈ null ∨ is cons(x), and

3. ∀x : tree. is leaf(x)→ (data(x) ≈ zero ∨ is succ(data(x))).

In part III of the thesis we construct a procedure for deciding such formulas. We

focus on satisfiability of a set of literals, which (through well-known reductions) can

be used to decide the validity of universal formulas.

3 Type Systems and Deductive Systems

3.1 The Concept of a Type System

Here we shall state our notational conventions used throughout parts I – V. For

instance, t(x) denotes an expression t with a possible occurence of the free vari-

able x. As usual, FV (t) denotes the set of free variables in t. Expression t{a/x}

corresponds to t after substituting a for variable x. When we write t{a} instead,

we implicitly mean the same substitution when there is only one free variable in

t. Furthermore, t1 ≡ t2 denotes syntactic identity of expressions t1, t2. This is, of

course, a much stronger property than the equality predicate (≈A), which we have

7



given here instantiated with A as the domain of individuals. Subexpression (a : A)

is commonly used to indicate that a has type A. Superscript type annotations, like

aA, are useful when trying to infer the type of a subexpression. Statements of the

form ∀x : A. B express that for any a of type A, the proposition B{a/x} holds.

By Γ we usually mean a context, which is a sequence of variable declarations of the

form {x : X, y : Y, z : Z, . . .}. An empty context is denoted by ∅. More formally,

BNF for contexts: Γ ::= ∅ | Γ, x : A

Type Judgements: Γ ⊢ a : A, which means that a is of type A in context Γ

An important requirement for contexts is that a declared variable, (for exam-

ple y), may only occur freely in the types to the right of it (in Z in this case,

but not in X or Y ). With this in mind, our context Γ, in general, looks like

{x : X, y : Y (x), z : Z(x, y), . . .}. This will be needed to support formation of

dependent types in part IV.

It will be useful to consider an example of a typed deductive system or, more

simply, a type system. A type system is comprised of type rules. Each rule has

zero or more clauses as premisses and the conclusion clause. Each clause is a type

assignment of the form Γ ⊢ t : T . In Figure 1 we give an example of a basic type

system T0. The term sort is usually used to denote an atomic type, while type is

a more general term. There are two reserved sorts Type and Prop, representing the

type of types and type of propositions (formulas) respectively. In the system T0,

these sorts are treated as distinct entities, however, in part IV of our treatment

8



they are identified. Derivations in a type system are comprised of the successive

application of the type rules. An example of a derivation in T0 is:

X : Type ⊢ X : Type

X : Type, x : X ⊢ x : X

X : Type ⊢ Prop : Type

X : Type ⊢ X → Prop : Type

X : Type, Q : X → Prop ⊢ Q : X → Prop

X : Type, Q : X → Prop, x : X ⊢ Q(x) : Prop

X : Type, Q : X → Prop, x : X ⊢ Q(x)→ Q(x) : Prop

X : Type, Q : X → Prop ⊢ (∀x : X. Q(x)→ Q(x)) : Prop

Γ ⊢ T : Type

Γ, x : T ⊢ x : T
(start)

(axiom)

Γ,X : Type ⊢ X : Type

Γ, x : T1 ⊢ t : T2 Γ ⊢ T1 → T2 : Type

Γ ⊢ (λx : T1. t) : T1 → T2

(axiom)

Γ,X : Prop ⊢ X : Prop

Γ ⊢ φ1 : Prop Γ ⊢ φ2 : Prop

Γ ⊢ φ1 → φ2 : Prop

Γ ⊢ T1 : Type Γ ⊢ T2 : Type

Γ ⊢ T1 → T2 : Type

Γ ⊢ f : T1 → T2 Γ ⊢ t : T1

Γ ⊢ f(t) : T2

(axiom)

Γ ⊢ ⊥ : Prop

(axiom)

Γ ⊢ Prop : Type

Γ ⊢ P : T → Prop Γ ⊢ t : T

Γ ⊢ P (t) : Prop

Γ, x : T ⊢ φ : Prop Γ ⊢ T : Type

Γ ⊢ (∀x : T. φ) : Prop

Figure 1: Example of a Type System

3.2 Typed Signature of the First Order Logic

In part II we use the following syntax for first order logic. Let Σ = (S, F, P, C) be

a signature, where S = {s1, . . .} is a set of sorts, F = {f1, . . .}, P = {p1, . . .} and

C = {c1, . . .} are sets of function, predicate, and constant symbols. Each symbol

9



has a type built out of the sorts in Σ. Define a term t as follows:

t ::= x | c | f(t1, . . . , tn) | if φ then t1 else t2 endif ,

where x is a variable, and the symbols c and f are from Σ, and φ in the conditional

operator is a formula. A formula φ is defined as follows:

φ ::= true | false | p(t1, . . . , tn) | t1 ≈ t2 | φ1 ∨ φ2 | ¬φ1 | φ1 ∧ φ2

if φ0 then φ1 else φ2 endif | ∃x : s. φ1| ∀x : s. φ1,

where p is a predicate from Σ. The type-theoretic formalization of signature Σ

appears in Figures 2 and 3. To check that a term or formula is well-typed, we only

need to apply the type system in Figure 3.

domains {Type, Prop} sorts of types and formulas respectively.
sorts s ∈ {s1, . . . sns

} ns = number of atomic types (sorts).
constants c ∈ {c1, . . . cnc

} nc = number of constants, each c of sort sc.
functions f ∈ {f1, . . . fnf

} nf = number of function symbols,
kf = number of arguments of f ,
s(f,i) = type of i-th argument of f ,
sf = return type of f .

predicates p ∈ {≈s, p1, . . . pnp
} np = number of predicate symbols,

kp = number of arguments of p,
s(p,i) = type of i-th argument of p.

Figure 2: Signature for Many-Sorted First Order Logic

3.3 Background in Universal Algebra

Our notation for a typed function or a predicate symbol w in a signature Σ may

be facilitated as follows. We may write w : s1 · · · sn → sw to denote that w takes n

10



Γ ⊢ si : Type
(i ∈ {1, . . . , ns})

Γ, x : si ⊢ x : si
(i ∈ {1, . . . , ns})

Γ ⊢ ti : s(f,i) (∀i ∈ {1, . . . , kf})

Γ ⊢ f(t1, . . . tkf
) : sf

Γ ⊢ ti : s(p,i) (∀i ∈ {1, . . . , kp})

Γ ⊢ p(t1, . . . tkp
) : Prop

Γ ⊢ φ : Prop Γ ⊢ t1, t2 : si (i ∈ {1, . . . , ns})

Γ ⊢ if φ then t1 else t2 endif : si

Γ ⊢ φ : Prop

Γ ⊢ ¬φ : Prop

Γ ⊢ φ, φ1, φ2 : Prop

Γ ⊢ if φ then φ1 else φ2 endif : Prop

Γ ⊢ φ1 : Prop Γ ⊢ φ2 : Prop

Γ ⊢ φ1 ∨ φ2 : Prop

Γ, x : si ⊢ φ : Prop (i ∈ {1, . . . , ns})

Γ ⊢ ∃x : si. φ : Prop

(i ∈ {1, . . . , nc})

Γ ⊢ ci : sci

Γ, x : si ⊢ φ : Prop (i ∈ {1, . . . , ns})

Γ ⊢ ∀x : si. φ : Prop

Γ ⊢ φ1 : Prop Γ ⊢ φ2 : Prop

Γ ⊢ φ1 ∧ φ2 : Prop

Γ ⊢ true : Prop Γ ⊢ false : Prop

Γ ⊢ t1 : si Γ ⊢ t2 : si

Γ ⊢ t1 ≈ t2 : Prop

Figure 3: Type System for Many-Sorted First Order Logic

arguments of sorts s1, . . . , sn respectively, and returns a value of type sw. In case

w is a predicate, sw ≡ Prop. A particular model M of signature Σ is called a Σ-

algebra. It consists of the semantic interpretation M(s) and M(w) of each sort s

by a set, and each operation w in Σ by a mapping. Our model M interprets each

w : sw,1 · · · sw,kw
→ sw by a mapping

M(w) :M(s(w,1)) · · ·M(s(w,kw))→M(sw).

M also interprets ground terms in Σ. For each t : s, the semantics of the term t in

the modelM is [[t]]M ∈ M(s). It is defined inductively as follows:

[[w(t1, . . . , tkw
)]]M =M(w)([[t1]]M, . . . , [[tkw

]]M).

In case we deal with a nullary symbol w : sw, we write: [[w]]M = M(w). Suppose

a context Γ is declared. A variable assignment e : Γ → M is a function that

11



assigns to each x of sort s from Γ a value a ∈M(s). An augmentation of a variable

assignment e is denoted by e(x ← a), where Γ ⊢ x : s, and a ∈ M(s). A notion of

homomorphisms is associated with Σ-algebras via the following definition.

Definition 3.1. Let M1 and M2 be two Σ-algebras, and let h : M1 → M2 be a

family of mappings {hs : M1(s) → M2(s) | s is a sort in Σ}, such that for any

signature symbol w : s(w,1) · · · s(w,nw) → sw, the following holds:

hsw
(M1(w)(a1, . . . akw

))) =M2(w)(hs(w,1)
(a1), . . . , hs(w,kw)

(akw
))

where each ai ∈ M1(s(w,i)). Then h is a homomorphism from M1 to M2.

Another algebraic notion is a congruence relation ≡h induced by a homomorphism h.

For two elements a1, a2 ∈ M1(s), a1 ≡h a2 iff hs(a1) = hs(a2). This means that a1

and a2 are in the same equivalence class of ≡h iff their h-images coincide. If h is both

surjective and injective, it is called an isomorphism, since in this case the inverse

map h−1 also exists and is a homomorphism. Two Σ-algebras are isomorphic, iff

there is an isomorphism between them. In conjunction with any congruence relation

≡Q for a Σ-algebraM there is a notion of a quotient algebraM/ ≡Q. This algebra

operates on the equivalence classes of ≡Q rather than on elements on M. For any

operation symbol w in Σ:

M/ ≡Q (w)([a1]≡Q
, . . . , [akw

]≡Q
) = [M(w)(a1, . . . , akw

)]≡Q

where ai ∈M(s(w,i)) and [a]≡Q
is an equivalence class of ≡Q. The quotient algebra

M/ ≡Q is well defined, namely, for all operation symbols w in Σ, and any ai, bi ∈

M(s(w,i)) the following condition holds:

(∀i ∈ {1, . . . , kw}. ai ≡Q bi) implies M(w)(a1, . . . , akw
) ≡Q M(w)(b1, . . . , bkw

)

12



Theorem 3.2. Let M1 and M2 be two Σ-algebras, and let h : M1 → M2 be a

surjective homomorphism. Then the quotient algebraM1/ ≡h is isomorphic toM2.

Proof. For a treatment of Σ-algebras, congruence relations, and homomorphisms,

see reference [28]. The proof of this theorem appears in [28], page 52, Theorem

3.21.

4 Theory of Algebraic Data Types

4.1 Signature for the Theory of Algebraic Types

We formalize ADTs in the context of many-sorted equational logic (see [33] or [28]

among others). This is subsumed by the typed first order logic with equality. We

assume a many-sorted signature Σ whose set of sorts consists of a distinguished sort

Prop for propositions, and p ≥ 1 sorts τ1, . . . , τp for the ADTs. We will denote by s,

possibly with subscripts, any sort in the signature other than Type, by τ any sort

in {τ1, . . . , τp}.

The function symbols in our theory signature correspond to the constructors,

selectors, and testers of the set of ADTs under consideration. We assume for each

τ a set Cτ of mτ ≥ 1 constructors of τ . We will denote constructors by the letter

C, possibly primed or with subscripts. We will write C : s1 · · · sn → τ to denote

that the constructor C takes n ≥ 0 arguments of respective sorts s1, . . . , sn and

returns a value of sort τ . Constructors with arity 0 are called nullary constructors

or constants. For each constructor C : s1 · · · sn → τ , we assume n corresponding

selector symbols denoted by S
(1)
C , . . . , S

(n)
C with S

(i)
C : τ → si, and a tester predicate

symbol denoted by isC of type τ → Prop. We write S(i) instead of S
(i)
C when C is

13



domains {Type, Prop} (sorts of types and formulas respectively)
base propositions {true : Prop, false : Prop}

algebraic types {τi : Type}pi=1

constructors {Ci
τ : s(Ci

τ ,1) · · · s(Ci
τ ,k

Ci
τ
) → τ}mτ

i=1

selectors {S(j)
C : sC → s(C,j)}

kC

j=1, where C is a constructor
equality {≈ : τi × τi → Prop}pi=1, and ≈: Prop× Prop→ Prop
testers {isC : sC → Prop}, where C is a constructor

p number of algebraic types τi

mτ number of constructors of the type τ
Ci

τ i-th constructor of type τ
kC number of arguments of constructor C

S
(j)
C selector of the j-th component from terms of constructor C

s(C,i) type of the i-th argument of constructor C
sC return type of constructor C

Figure 4: Signature Σ for the Theory of Algebraic Data Types

clear from context or not important.

In addition to these symbols, we also assume that the signature contains two

constants, true and false of sort Prop. As usual in many-sorted equational logic, we

also have p + 1 equality symbols (one for each sort mentioned above), all written as

≈.

Γ ⊢ true : Prop Γ ⊢ false : Prop

i ∈ {1 . . . p}

Γ ⊢ τi : Type

i ∈ {1 . . . p}

Γ, x : τi ⊢ x : τi

Γ ⊢ ti : s(C,i) i ∈ {1, . . . , kC}

Γ ⊢ C(t1, . . . tkC
) : sC

Γ ⊢ t : sC j ∈ {1, . . . , kC}

Γ ⊢ S
(j)
C (t) : s(C,j)

Γ ⊢ t1 : τi Γ ⊢ t2 : τi i ∈ {1, . . . , p}

Γ ⊢ (t1 ≈ t2) : Prop

Γ ⊢ t : sC sC = sC′ ∈ {τ1, . . . , τp}

Γ ⊢ isC′(t) : Prop

Figure 5: Type System for the Theory of ADTs

14



4.2 Axiomatization by Equational Specification

Members of algebraic types are the structures over which the logical and programmic

branching can be implemented. Each declared algebraic type has a set of construc-

tors, based on which case analysis is performed. Each constructor carries a vector

of data items, each of its own algebraic type. In the following, assume an algebraic

type τ is defined by this grammar:

τ ::= {C1 X1,1 X1,2 ... X1,k1 | ... | Cn Xn,1 Xn,2 ... Xn,kn
};

where Ci are constructors, and each Xi,j is the sort of the j-th argument of the

constructor Ci. Let (x(i,j) : Xi,j) and (v(i,j) : Xi,j). An element of type τ is denoted

in the following way:

Ci(v(i,1), v(i,2), ... v(i,ki)), or equivalently, (Civi).

Here the vector of v-values vi is the data stored with the constructor Ci. In case we

deal with variable placeholders, we denote this as follows:

Ci(x(i,1), x(i,2), ... x(i,ki)), or equivalently, (Cixi).

Substitution of values for the variables in an expression M is denoted:

M{v(i,j)/x(i,j)}
ki

j=1, or equivalently, M{vi/xi}.

Our theory of ADTs also requires that all data types are well-founded. This will

be explained further in part III. Previous work on algebraic data types [50, 51]

uses first-order axiomatizations in an attempt to capture the main properties of a

data type and reason about it. We find it simpler and cleaner to use a semantic

approach instead, as is done in algebraic specification. A set of ADTs can be given

15



a simple equational specification over a suitable signature. The intended model

for our theory can be formally, and uniquely, defined as the initial model of this

specification. Reasoning about a set of ADTs then amounts to reasoning about

formulas that are true in this particular initial model.

Given the signature Σ, the associated algebraic types are specified by the fol-

lowing set E of axiom schemas for each ADT τ in Σ and distinct constructors

C : s1 · · · sn → τ and C ′ : s′1 · · · s
′
n′ → τ . These axioms are formulated to capture

the intended model of the theory of ADTs. As we shall see, this model is freely

generated by constructor terms.

∀x1, . . . , xn. isC(C(x1, . . . , xn)) ≈ true

∀x1, . . . , xn. isC′(C(x1, . . . , xn)) ≈ false

∀x1, . . . , xn. S
(i)
C (C(x1, . . . , xn)) ≈ xi for all i = 1, . . . , n

∀x1, . . . , xn. S
(i)
C′ (C(x1, . . . , xn)) ≈ tiC′ for all i = 1, . . . , n′

Note the situation when the selector S
(i)
C′ is applied to the term constructed with C,

where C ′ 6= C. Our axiom specifies that in this case, the result is some designated

ground term tiC′ of type s(C′,i). Reference [35], sections 3.6.3 and 3.6.4 advocate a

similar approach to undefindedness. This is different from other treatments (such as

[22, 50, 51]) where the application of a selector to the wrong constructor is treated

as the identity function. The main reason for this difference is that the identity

function would not always be well-typed in many-sorted logic. In part II this feature

of our treatment is particularly relevant, as it will be necessary to extend the natural

partial model of an ADT to an arbitrarily chosen total model.

16



5 Algebraic Types as Term Algebras

5.1 Term Algebras as Models

Assume that our theory of ADTs is specified using signature Σ. We can inductively

define the semantics [[ ]]T (Σ) of terms in Σ as the term algebra T (Σ). We may

sometimes use T (Σ) to denote just the set of terms of the signature Σ, instead of

their term algebra.

Definition 5.1. freely generated term algebra T (Σ)

[[C(t1, . . . , tkC
)]]T (Σ) = C([[t1]]T (Σ), . . . [[tkC

]]T (Σ))

[[S
(i)
C (t)]]T (Σ) = S

(i)
C ([[t]]T (Σ))

[[isC(t)]]T (Σ) = isC([[t]]T (Σ))

[[true]]T (Σ) = true

[[false]]T (Σ) = false

Now let Ω be the signature obtained from Σ by removing selectors and testers. We

can also inductively define the semantics [[ ]]T (Ω) of terms in Σ as the term algebra

T (Ω). We may sometimes use T (Ω) to denote just the set of terms of the signature

Ω, instead of their term algebra.

Definition 5.2. constructor generated term algebra T (Ω)

[[C(t1, . . . , tkC
)]]T (Ω) = C([[t1]]T (Ω), . . . [[tkC

]]T (Ω))

[[S
(i)
C (t)]]T (Ω) = if [[t]]T (Ω) = C(t1, . . . , tkC

) then ti else tiC

[[isC(t)]]T (Ω) = if [[t]]T (Ω) = C(t1, . . . , tkC
) then true else false

[[true]]T (Ω) = true

[[false]]T (Ω) = false

The following lemma clarifies the correctness of the definition of [[ ]]T (Ω):

Lemma 5.3. If [[t]]T (Ω) = C(t1, . . . , tkC
) then each ti ≡ [[ti]]T (Ω).

17



Proof. This lemma can be proved by a standard inductive argument from Definition

5.2.

Informally stated, this lemma expresses the fact that the term-algebraic semantics

[[ ]]T (Ω) is comprised of terms which are structurally made of constructor symbols.

This is in contrast with the term-algebraic semantics [[ ]]T (Σ) that preserves the

structure of terms. The following definition will clarify the precise relation between

these two term algebras.

Definition 5.4. Let h : T (Σ)→ T (Ω) be a family of maps hs for each sort s in Σ:

for each term t ∈ T (Σ) of sort s: hs([[t]]T (Σ)) = [[t]]T (Ω)

Lemma 5.5. Mapping h from Definition 5.4 is a homomorphism from T (Σ) to

T (Ω).

Proof. This result can be shown by standard structural induction over the term

algebra T (Σ) using Lemma 5.3 and Definitions 5.1, 5.2.

5.2 Standard Results from Universal Algebra

By standard results in universal algebra we know that E admits an initial model

R. We refer the reader to [33] for a thorough treatment of initial models. For our

purposes, it will be enough to mention the following properties that R enjoys by

virtue of being an initial model.

Lemma 5.6. Where ≈E is the equivalence relation on Σ-terms induced by E , let

T (Σ)/≈E be the quotient of the term algebra T (Σ) by ≈E .

1. For all ground Σ-terms t1, t2 of the same type, t1 ≈E t2 iff R satisfies t1 ≈ t2.

2. R is isomorphic to T (Σ)/≈E .

18



Proof. These are applications to R of standard results about initial models. See,

for instance Theorem 5.2.11 and Theorem 5.2.17 of [33].

Lemma 5.7. The model R is isomorphic to T (Ω).

Proof. By Lemma 5.6(2) we can take R to coincide with T (Σ)/≈E , whose elements

are the equivalence classes of ≈E on the ground Σ-terms. We also know that h :

T (Σ) → T (Ω) from Lemma 5.5 is surjective, since it behaves as an identity over

T (Ω). It follows by Theorem 3.2, that T (Σ)/ ≡h is isomorphic to T (Ω). On the

other hand, it is easy to verify that ≡h and ≈E are the same. Hence, T (Σ)/≈E is

isomorphic to T (Ω).

The claim shows that:

(i) every ground Σ-term is equivalent in E to a ground Ω-term.

(ii) no two distinct ground Ω-terms belong to the same equivalence class.

We will call ground constructor terms the elements of the set T (Ω) defined in the

previous lemma. Informally, the lemma means that R does in fact capture the set

of ADTs in question, as we can take the carrier of R to be the term algebra T (Ω).

This also shows that in R each data type τ is generated using just its constructors,

and that distinct ground constructor terms of type τ are distinct elements of the

data type.

5.3 Algebraic Types as Least Fixed Points

Let C̃ : 2T (Σ) → 2T (Σ) be a mapping over the subsets of the term algebra T (Σ).

In particular, it maps a set of terms X into the set that contains all possible type-

19



correct applications of constructors in Σ to the elements of X. Let us define the

mapping

Φ(X) = X
⋃

C̃(X)

For example, Φ(∅) = B, the set of all nullary constructors in Σ. The following

lemma follows immediately from the definition:

Lemma 5.8. The following properties hold for the mapping Φ:

• Φ is cumulative: X ⊆ Φ(X).

• Φ is monotone: if X ⊆ Y then Φ(X) ⊆ Φ(Y ).

• Φ is pointwise: Φ(X) =
⋃

Y ⊆X Φ(Y ), where each Y is finite.

Lemma 5.9. Φ is continuous: for a chain of sets X0 ⊆ X1 ⊆ X2 ⊆ . . .

∞⋃

i=0

Φ(Xi) = Φ(

∞⋃

i=0

Xi)

Proof. First we prove the inclusion (⊆). Since every Xi ⊆
⋃∞

i=0 Xi, then by monotonic-

ity:

Φ(Xi) ⊆ Φ(

∞⋃

i=0

Xi)

for each i, and therefore:
∞⋃

i=0

Φ(Xi) ⊆ Φ(
∞⋃

i=0

Xi)

Now we prove the opposite inclusion (⊇). For any finite Y ⊂
⋃∞

i=0 Xi, let k(Y ) be

the least index, such that Y ⊂ Xk(Y ). Since every Y is finite, it is subsumed by

some Xi. Let K = {i ∈ N | i = k(Y ) for some Y }. Then by Lemma 5.8, for finite

sets Y :

Φ(
∞⋃

i=0

Xi) =
⋃

Y ⊂
S

∞

i=0 Xi

Φ(Y ) =
⋃

i∈K

⋃

Y ⊂Xi

Φ(Y ) ⊆
∞⋃

i=0

⋃

Y ⊂Xi

Φ(Y ) ⊆
∞⋃

i=0

Φ(Xi)

20



We now prove another lemma that will yield an alternative view of the intended

semantics of an ADT. Namely, the least fixed point of Φ is exactly the set of terms

in the intended model of Σ.

Lemma 5.10. Let Φ0(X) = ∅ and Φi+1(X) = Φ(Φi(X)). Let X0 =
⋃∞

i=0 Φi(∅).

Then X0 = Φ(X0) is the least fixed point of Φ.

Proof. We first show that X0 is a fixed point of Φ. By Lemma 5.9

Φ(X0) = Φ(
∞⋃

i=0

Φi(∅)) =
∞⋃

i=0

Φ(Φi(∅)) =
∞⋃

i=1

Φi(∅) = X0

Now suppose that X1 = Φ(X1). Since ∅ ⊆ X1, by monotonicity we have: Φ(∅) ⊆

Φ(X1) = X1. By successive applications: Φi(∅) ⊆ Φi(X1) = X1 for any index i.

Therefore:

X0 =

∞⋃

i=1

Φi(∅) ⊆
∞⋃

i=1

Φi(X1) = X1

Hence, the fixed point X0 is subsumed by any other fixed point X1 of Φ.

The intended semantics of the signature Σ for the theory of ADTs is the term algebra

T (Ω), where Ω consists only of constructors. Testers and selectors are not part of

the term model as they are operational, that is, an invasive programmic action is

associated with them. We can infer from Lemma 5.10 that T (Ω) =
⋃∞

i=0 Φ(∅), where

Φ(X) = X ∪ C̃(X), and:

C̃(X) = {t ∈ T (Σ) | t = C(t1, . . . , tkC
), ti ∈ X, ∅ ⊢ t : τ, C ∈ Cτ}

A result of the same semantic significance was claimed in Lemma 5.7.

21



Part II

Semantics of Partial Functions

6 Introduction and Related Work

This part is devoted to the formal treatment of partial functions and predicates.

Although it is generally agreed that a logic which can accommodate partial functions

is useful for a wide variety of applications, there is general disagreement on which

logic should be used. An overview of the different approaches can be found in [17, 24].

Of the approaches which take partiality seriously as opposed to attempting a work-

around, there are two main alternatives. The first allows terms to be undefined,

but requires that all formulas be either true or false. The unusual feature of this

approach is that a predicate applied to an undefined term is defined to be false.

Although this logic preserves some nice features of classical logic (the deduction

theorem, for instance), in a certain sense there is a loss of information because the

undefinedness does not propagate to formulas. For example, if we assume the term

1/0 is undefined, then the formula ¬P (1/0) will be valid.

The second approach is based on Kleene’s strong three-valued logic [25], and

allows both terms and formulas to be undefined. This approach is more conservative

in the sense that any formula which is valid in the second approach will be valid

in the first approach, but there are some formulas, such as ¬P (1/0), which may be

valid in the first approach but will be undefined in the second.

We prefer the second approach based on a principle of least surprise. That is,

a formula should be valid only when there is no disagreement on whether that is

a reasonable conclusion. This is particularly important in verification applications,

as the integrity of a system may be judged by whether a theorem about the system

22



is valid. Furthermore, it is our experience that any theorem which really should

be valid can be formulated in such a way that it is valid according to this second

approach.

A more pragmatic issue that must be dealt with is that most theorem-provers

are based on classical logic. Various approaches have been advocated for modifying

standard theorem-proving to accommodate logics with partial functions [23, 24, 29,

46]. However, we are interested in finding a method for supporting partiality without

modifying the theorem prover. One way to do this is by building over- and under-

approximations for the formula. This technique has been successfully applied for

three-valued model-checking [12, 21].

PVS (Prototype Verification System [42]) uses a completely different approach

which involves constructing and proving additional formulas called type correctness

conditions (TCCs). The validity of TCCs guarantees that all the relevant terms and

formulas are always defined. However, TCCs in PVS can yield surprising results.

For example, it is possible to have a formula of the form A→ B with a valid TCC

whose contrapositive ¬B → ¬A has an invalid TCC.

We propose a technique for checking the validity of a formula in three-valued

logic by reducing the problem to checking two formulas in standard two-valued

logic. Similarly to PVS, we construct a TCC formula whose validity implies that

the original formula is always defined. After checking the TCC, we check the original

formula. Both of these checks can be done using standard two-valued logic. Note

that, unlike in PVS, our method is precise in the sense that if a TCC is invalid, the

validity of the original formula is indeed undefined in the three-valued semantics.

The following sections are organized as follows. Section 7 gives the syntax and

semantics for our three-valued logic. Section 8 gives two fundamental theorems

which justify the reduction to two-valued logic.

23



7 Three-Valued Logic: Syntax and Semantics

The signature Σ that we are going use in part II, and its type-theoretic formalization,

has been introduced in subsection 3.2.

It is important to distinguish the two versions of the if-then-else operator: the

one for terms, and the other for formulas. Also note that the if-then-else operators

are not expressible in terms of other operators or logical connectives in 3-valued

logic.1

For our purposes, we will assume that included with every signature Σ is a set ∆

of domain formulas, one for each function and predicate symbol in Σ. The domain

formula for a function symbol f is a Σ-formula with k free variables where k is the

arity of f and is denoted δf [x1, . . . , xk]. The domain formula for a predicate symbol

p of arity k is defined similarly and is denoted δp[x1, . . . , xk]. An instantiation of

a domain formula δf with terms t1, . . . , tk is written δf [t1, . . . , tk] and denotes the

result of replacing each xi with ti in the domain formula δf [x1, . . . , xk].

Intuitively, the domain formula for f defines the set of points where f is defined.

Note that our approach assumes this set is always first-order definable. Fortunately,

for the practical cases we consider, this is always the case. In order to have an

unambiguous semantics, it is important that the domain formulas themselves always

be defined. One simple way to ensure this is to require that if s is a function or

predicate symbol appearing in a domain formula, then δs[x1, . . . , xn] = true.

7.1 Three-valued semantics with partial functions

Given a signature Σ, a model is defined as in Section 3.3. Namely, it maps each sort

s in Σ into its carrier setM(s), and also gives an interpretation, which is a mapping

1The obvious 2-valued translations (φ0 → φ1) ∧ (¬φ0 → φ2) and (φ0 ∧ φ1) ∨ (¬φ0 ∧ φ2) are
actually over- and under-approximations of the 3-valued operator if φ0 then φ1 else φ2 endif .

24



from constant symbols c : s, function symbols f : s1 · · · sn → s, and predicate

symbols p : s1 · · · sn → Prop in Σ to elements M(c) ∈ M(s), partial functions

M(f) : M(s1) · · ·M(sn) → M(s), and relations M(p) ⊆ M(s1) × · · · × M(sn),

respectively.

Given a model M and a variable assignment e which maps each variable x of

type s to an element ofM(s), the value of an expression (a term or a formula) α is

denoted [[α]]Me and is defined in Figure 1. The value of a term may be an element

of someM(s) or a distinguished value ⊥t not in anyM(s). The value of a formula

may be true, false, or ⊥φ. We will use ⊥ to represent both ⊥t and ⊥φ since terms

and formulas are always syntactically separated from each other, and the particular

kind of ⊥ is always clear from the context.

A model is required to satisfy the following additional condition imposed by the

domain formulas ∆:

[[δf [x1, . . . , xk]]]Me = true iff M(f) is defined at ([[x1]]Me, . . . , [[xk]]Me).

We say that two expressions α and β are logically equivalent, and write α ≅ β

if [[α]]Me = [[β]]Me for every modelM and variable assignment e.

7.2 Semantics of if-then-else

Notice that the interpretation of the if-then-else operator (for terms) is undefined

if the condition is undefined, even if the other two children evaluate to the same

value. One reason for this choice of the semantics is simply that it turns out to be

practical in real applications. In real programs, if a partial function is applied to

an argument outside of its domain, the program may crash or raise an exception; in

other words, it results in an abnormal behavior. Therefore, detecting a possible ⊥

25



[[c]]Me =M(c), [[x]]Me = e(x), [[true]]Me = true, [[false]]Me = false

[[f(t1, . . . , tn)]]Me =





M(f)([[t1]]Me, . . . , [[tn]]Me),
if [[ti]]Me 6= ⊥ for all i ∈ [1..n]
and [[δf [t1, . . . , tn]]]Me = true;

⊥ otherwise.
[[ if φ then t1

else t2 endif ]]Me =





⊥, if [[φ]]Me = ⊥;
[[t1]]Me, if [[φ]]Me = true;
[[t2]]Me, if [[φ]]Me = false.

[[ if φ then φ1

else φ2 endif ]]Me =





⊥, if [[φ]]Me = ⊥;
[[φ1]]Me, if [[φ]]Me = true;
[[φ2]]Me, if [[φ]]Me = false.

[[p(t1, . . . , tn)]]Me =





M(p)([[t1]]Me, . . . , [[tn]]Me),
if [[ti]]Me 6= ⊥ for all i ∈ [1..n]
and [[δp[t1, . . . , tn]]]Me = true;

⊥ otherwise.

[[t1 ≈ t2]]Me =

{
[[t1]]Me = [[t2]]Me, if [[t1]]Me 6= ⊥ and [[t2]]Me 6= ⊥;
⊥ otherwise.

[[φ1 ∧ φ2]]Me =





true, if [[φ1]]Me = true and [[φ2]]Me = true;
false if [[φ1]]Me = false or [[φ2]]Me = false;
⊥ otherwise.

[[φ1 ∨ φ2]]Me =





true, if [[φ1]]Me = true or [[φ2]]Me = true;
false if [[φ1]]Me = false and [[φ2]]Me = false;
⊥ otherwise.

[[¬φ]]Me =





true, if [[φ]]Me = false;
false if [[φ]]Me = true ;
⊥ if [[φ]]Me = ⊥.

[[∀x : s. φ]]Me =





true, if for all a ∈M(s): [[φ]]Me(x← a) = true;
false, if for some a ∈M(s): [[φ]]Me(x← a) = false;
⊥ otherwise.

[[∃x : s. φ]]Me =





true, if for some a ∈M(s): [[φ]]Me(x← a) = true;
false, if for all a ∈M(s): [[φ]]Me(x← a) = false;
⊥ otherwise.

Table 1: Three-valued Semantics

26



value in the condition of an if-then-else provides the user with useful information,

namely, that the program may crash during execution under certain conditions. For

example, consider the following piece of C code:

int *p = malloc(sizeof(int));

int x = (*p > 0)? y : z;

In this example, the if-then-else operator (which is (·)? ·:· in C) will cause the

program to crash if p happens to be NULL, even if y = z in this particular program

state. Here *p is a partial function defined over non-null pointers to integers, and

returning an integer.

The logical if-then-else is defined similarly to the term if-then-else, so that De-

Morgan law for negation and the if-lifting properties for any predicate symbol p in

Σ are preserved:

¬(if φ then φ1 else φ2 endif) ≅ if φ then ¬φ1 else ¬φ2 endif

p(if φ then t1 else t2 endif) ≅ if φ then p(t1) else p(t2) endif

7.3 Three-Valued Validity

The three-valued semantics can be extended to validity of formulas in the following

way. A formula is considered valid, if in all modelsM and for all variable assignments

e, [[φ]]Me = true. A formula is invalid if there is at least one such modelM and one

such assignment e that [[φ]]Me = false. Otherwise (if the formula always evaluates

to either true or ⊥) the validity is undefined. We denote the three-valued validity

as |= φ, which may hold, not hold, or be undefined.

27



8 Reduction from Three-Valued to Two-Valued

Logic

Suppose we wish to determine the three-valued validity of some Σ-formula φ. Our

general strategy is first to compute a formula called a Type Correctness Condition

(TCC) which can be used to check whether φ can ever be undefined. If this check

succeeds, that is, φ is always defined, we can then check the original formula. Both of

these checks can be done using standard two-valued logic. To justify this claim, we

first introduce TCCs and then show how they can be used to determine three-valued

validity.

8.1 Type correctness conditions (TCCs).

A Type Correctness Condition for a formula φ of our three-valued logic is a formula

which evaluates to true iff φ is not undefined.

First, observe that if we have a term f(x), then by definition its TCC is simply

δf [x]. We can generalize this to arbitrary terms or formulas quite easily. Table 2

gives a recursive definition of Dφ, the TCC for an arbitrary formula φ.

The TCC not only identifies whether or not the formula φ is defined, but it can

also be used to reduce the three-valued evaluation of φ to an evaluation in standard

two-valued logic with total models.

SupposeM is a model of Σ. Let Σ̂ be equivalent to Σ except that all of its domain

formulas are true (we call such a signature a total signature and a corresponding

model a total model). Let M̂ be a (total) model of Σ̂ whose interpretation of

function and predicate symbols agrees withM wherever the domain formulas ofM

are true (we call M̂ an extension ofM). Finally, let [[S]]2
Me denote the evaluation of

an expression S in the model M̂ using standard two-valued semantics. The following

28



Dx ≡ true

Dc ≡ true

Df(t1,...,tn) ≡ δf [t1, . . . , tn] ∧
n∧

i=1

Dti

Dif φ then t1 else t2 endif ≡ Dφ ∧ (if φ then Dt1 else Dt2 endif )

Dif φ then φ1 else φ2 endif ≡ Dφ ∧ (if φ then Dφ1 else Dφ2 endif )

Dp(t1,...,tn) ≡ δp[t1, . . . , tn] ∧
n∧

i=1

Dti

Dt1≈t2 ≡ Dt1 ∧ Dt2

D¬φ ≡ Dφ

Dφ1∧φ2 ≡ (Dφ1 ∧ ¬φ1) ∨ (Dφ2 ∧ ¬φ2) ∨ (Dφ1 ∧ Dφ2)

Dφ1∨φ2 ≡ (Dφ1 ∧ φ1) ∨ (Dφ2 ∧ φ2) ∨ (Dφ1 ∧ Dφ2)

D∀x. φ ≡ (∃x.Dφ ∧ ¬φ) ∨ (∀x.Dφ)

D∃x. φ ≡ (∃x.Dφ ∧ φ) ∨ (∀x.Dφ)

Table 2: Definition of TCCs for terms and formulas.

two theorems justify our use of TCCs.

8.2 Main Theorems

In the proofs of the theorems we use the following simplifying device: It is clear by

definition of the domain formulas δf [ ] and δp[ ] that for each function symbol f and

predicate symbol p we can introduce a new signature symbol (which we will also call

δf and δp,) such that for all terms t1, . . . tn, [[δf (t1, . . . , tn)]]Me = [[δf [t1, . . . , tn]]]Me

and [[δp(t1, . . . , tn)]]Me = [[δp[t1, . . . , tn]]]Me. These new symbols can be given their

natural interpretation in the models M and M̂, and in fact, by their totality,

M(δf) = M̂(δf) andM(δp) = M̂(δp)

For clarity, we also distinguish explicitly between two- or three-valued semantics

by using the superscript 2 or 3.

Theorem 8.1. Let S be any Σ-term or formula, and let M̂ denote an arbitrary

29



extention of a Σ-model M to a total model over Σ̂. Then:

[[DS ]]2
Me = true implies [[S]]2
Me = [[S]]3Me

Proof. (by structural induction on terms and formulas)

• S = c : [[Dc]]
2
Me = true, and [[c]]2
Me = M̂(c) =M(c) = [[c]]3Me

• S = x : [[Dx]]
2
Me = true, and [[x]]2
Me = e(x) = [[x]]3Me

• S = f(t1, . . . , tn) : DS =
∧n

i=1Dti ∧ δf (t1, . . . , tn)

By assumption [[DS]]2
Me = true, so: [[δf (t1, . . . , tn)]]2
Me = true and [[Dti ]]
2
Me =

true, so by Induction Hypothesis [[ti]]
2
Me = [[ti]]

3
Me, for all i = 1..n.

[[δf (t1, . . . , tn)]]3Me = M(δf)([[t1]]
3
Me, . . . , [[tn]]3Me) (δf is total)

= M̂(δf)([[t1]]
2
Me, . . . , [[tn]]2
Me)

= [[δf (t1, . . . , tn)]]2
Me

= true (∗)

(a) By definition, we have:

[[f(t1, . . . , tn)]]3Me = if [[δf (t1, . . . , tn)]]3Me = true

thenM(f)([[t1]]
3
Me, . . . , [[tn]]3Me) else ⊥

= M(f)([[t1]]
2
Me, . . . , [[tn]]2
Me) (by ∗)

We also have by the standard definition of [[ ]]2:

(b) [[f(t1, . . . , tn)]]2
Me = M̂(f)([[t1]]
2
Me, . . . , [[tn]]2
Me)

Since [[δf (t1, . . . , tn)]]2
Me = true, i.e. f is defined on these terms in both M

and M̂ we have:

30



M̂(f)([[t1]]
2
Me, . . . , [[tn]]2
Me) =M(f)([[t1]]

2
Me, . . . , [[tn]]2
Me)

Therefore by (a) and (b), [[f(t1, . . . , tn)]]3Me = [[f(t1, . . . , tn)]]2
Me

• S = if φ then t1 else t2 endif : DS = Dφ ∧ if φ then Dt1 else Dt2 endif

By assumption [[DS]]2
Me = true, so:

(a) [[if φ then Dt1 else Dt2 endif ]]2
Me = true

(b) [[Dφ]]2
Me = true, so by Induction Hypothesis, [[φ]]2
Me = [[φ]]3Me (2)

From (a): if [[φ]]2
Me then [[Dt1 ]]
2
Me else [[Dt2 ]]

2
Me = true.

Case I: [[φ]]2
Me = true. Then [[Dt1 ]]
2
Me = true, and by Induction Hypothesis:

[[t1]]
2
Me = [[t1]]

3
Me (3)

Then,

[[if φ then t1 else t2 endif ]]2
Me = if [[φ]]2
Me then [[t1]]
2
Me else [[t2]]

2
Me

= [[t1]]
2
Me (by assumption of Case I)

= [[t1]]
3
Me (by (3))

On the other hand,

[[if φ then t1 else t2 endif ]]3Me =





⊥, if [[φ]]3Me = ⊥

[[t1]]
3
Me, if [[φ]]3Me = true

[[t2]]
3
Me, if [[φ]]3Me = false

= [[t1]]
3
Me (by (2) and by Case I)

Case II: [[φ]]2
Me = false is symmetric.

• S = if φ then φ1 else φ2 endif : Analogous to S = if φ then t1 else t2 endif .

31



• S = p(t1, . . . , tn): Analogous to S = f(t1, . . . , tn).

• S = ¬φ : [[D¬φ]]2
Me = [[Dφ]]
2
Me

By assumption, [[Dφ]]2
Me = true, so by the Induction Hypothesis, [[φ]]2
Me =

[[φ]]3Me, and thus by definition of [[ ]]3:

[[¬φ]]2
Me = not [[φ]]2
Me = not [[φ]]3Me = [[¬φ]]3Me

• S = φ1 ∧ φ2 : Dφ1∧φ2 = (Dφ1 ∧ ¬φ1) ∨ (Dφ2 ∧ ¬φ2) ∨ (Dφ1 ∧ Dφ2).

By assumption, either:

– Case 1: [[Dφ1 ]]
2
Me = true and [[φ1]]

2
Me = false

– Case 2: [[Dφ2 ]]
2
Me = true and [[φ2]]

2
Me = false

– Case 3: [[Dφ1 ]]
2
Me = true and [[Dφ2 ]]

2
Me = true

Case 1: by Induction Hypothesis, [[φ1]]
2
Me = [[φ1]]

3
Me, therefore [[φ1]]

3
Me = false.

Thus, [[φ1 ∧ φ2]]
3
Me = false and [[φ1 ∧ φ2]]

2
Me = false, so they are equal.

Case 2 is symmetric.

Case 3: by Induction Hypothesis, [[φ1]]
2
Me = [[φ1]]

3
Me and [[φ2]]

2
Me = [[φ2]]
3
Me,

so both are not ⊥. Therefore, by definition of [[ ]]2 and [[ ]]3: [[φ1 ∧ φ2]]
2
Me =

[[φ1 ∧ φ2]]
3
Me

• S = φ1 ∨ φ2 : Dφ1∨φ2 = (Dφ1 ∧ φ1) ∨ (Dφ2 ∧ φ2) ∨ (Dφ1 ∧ Dφ2).

By assumption, either:

– Case 1: [[Dφ1 ]]
2
Me = true and [[φ1]]

2
Me = true

– Case 2: [[Dφ2 ]]
2
Me = true and [[φ2]]

2
Me = true

– Case 3: [[Dφ1 ]]
2
Me = true and [[Dφ2 ]]

2
Me = true

32



Case 1: by Induction Hypothesis, [[φ1]]
2
Me = [[φ1]]

3
Me, therefore [[φ1]]

3
Me = true.

Thus, [[φ1 ∨ φ2]]
3
Me = true and [[φ1 ∨ φ2]]

2
Me = true, so they are equal.

Case 2 is symmetric.

Case 3: by Induction Hypothesis, [[φ1]]
2
Me = [[φ1]]

3
Me and [[φ2]]

2
Me = [[φ2]]
3
Me,

so both are not ⊥. Therefore, by definition of [[ ]]2 and [[ ]]3: [[φ1 ∨ φ2]]
2
Me =

[[φ1 ∨ φ2]]
3
Me

• S = ∀x : s. φ : DS = (∃x : s.Dφ ∧ ¬φ) ∨ (∀x : s.Dφ)

By assumption, either [[∃x : s.Dφ ∧ ¬φ]]2
Me = true or [[∀x : s.Dφ]]
2
Me = true.

In the first case, there exists d ∈ M(s) such that:

[[Dφ]]
2
Me(x← d) = true and [[φ]]2
Me(x← d) = false.

In this case [[∀x : s. φ]]2
Me = false and by Indiction Hypothesis, [[φ]]3Me(x ←

d) = false, so also [[∀x : s. φ]]3Me = false, i.e.: [[∀x : s. φ]]2
Me = [[∀x : s. φ]]3Me.

In the latter case, for all d ∈ M(s): [[Dφ]]2
Me(x ← d) = true, so by the

Induction Hypothesis, for all d ∈M(s): [[φ]]2
Me(x← d) = [[φ]]3Me(x← d).

Thus, by definition of [[ ]]3, [[∀x : s. φ]]2
Me = [[∀x : s. φ]]3Me

• S = ∃x : s. φ : DS = (∃x : s.Dφ ∧ φ) ∨ (∀x : s.Dφ)

By assumption, either [[∃x : s.Dφ ∧ φ]]2
Me = true or [[∀x : s.Dφ]]
2
Me = true. In

the first case, there exists d ∈M(s) such that:

[[Dφ]]2
Me(x← d) = true and [[φ]]2
Me(x← d) = true.

In this case [[∃x : s. φ]]2
Me = true and by Indiction Hypothesis, [[φ]]3Me(x ←

d) = true, so also [[∃x : s. φ]]3Me = true, i.e.: [[∃x : s. φ]]2
Me = [[∃x : s. φ]]3Me.

33



In the latter case, for all d ∈ M(s): [[Dφ]]2
Me(x ← d) = true, so by the

Induction Hypothesis, for all d ∈M(s): [[φ]]2
Me(x← d) = [[φ]]3Me(x← d).

Thus, by definition of [[ ]]3, [[∃x : s. φ]]2
Me = [[∃x : s. φ]]3Me.

Theorem 8.2. Let S be any Σ-term or formula, and let M̂ denote an arbitrary

extention of a Σ-model M to a total model over Σ̂. Then:

[[DS]]2
Me = false implies [[S]]3Me = ⊥

Proof. (by structural induction on terms and formulas)

• S = c : Claim holds vacuously, since [[Dc]]
2
Me = true

• S = x : Claim holds vacuously, since [[Dx]]
2
Me = true

• S = f(t1, . . . , tn) : DS =
∧n

i=1Dti ∧ δf (t1, . . . , tn)

By assumption [[DS]]2
Me = false, so:

– either : [[Dtk ]]
2
Me = false for some k ∈ {1, . . . , n}. In this case by Induction

Hypothesis [[tk]]
3
Me = false and by definition of [[ ]]3: [[f(t1, . . . , tn)]]3Me =

⊥.

– or : [[δf (t1, . . . , tn)]]2
Me = false.

In this case also by definition of [[ ]]3: [[f(t1, . . . , tn)]]3Me = ⊥.

• S = if φ then t1 else t2 endif : DS = Dφ ∧ if φ then Dt1 else Dt2 endif

By assumption [[DS]]2
Me = false, so:

– either : [[Dφ]]2
Me = false. In this case by Induction Hypothesis [[φ]]3Me = ⊥

and by definition of [[ ]]3: [[if φ then t1 else t2 endif ]]3Me = ⊥.

34



– or : [[Dφ]]
2
Me = true and [[if φ then Dt1 else Dt2 endif ]]2
Me = false

Case 1: [[φ]]2
Me = true. Then [[Dt1 ]]
2
Me = false. By Induction Hypothesis:

[[t1]]
3
Me = ⊥. (1)

Also, since [[φ]]2
Me = true and [[Dφ]]2
Me = true, by Theorem 8.1

[[φ]]3Me = true. (2)

Therefore:

[[if φ then t1 else t2 endif ]]3Me =






⊥, if [[φ]]3Me = ⊥

[[t1]]
3
Me, if [[φ]]3Me = true

[[t2]]
3
Me, if [[φ]]3Me = false

= ⊥ (by (1) and (2))

Case 2, where [[φ]]2
Me = false is symmetric.

• S = if φ then φ1 else φ2 endif : Analogous to S = if φ then t1 else t2 endif .

• S = P (t1, . . . , tn): Analogous to S = f(t1, . . . , tn).

• S = ¬φ : [[D¬φ]]2
Me = [[Dφ]]
2
Me

By assumption, [[Dφ]]2
Me = false, so by the Induction Hypothesis, [[φ]]3Me = ⊥,

and thus by definition of [[ ]]3, [[¬φ]]3Me = ⊥.

• S = φ1 ∧ φ2 : Dφ1∧φ2 = (Dφ1 ∧ ¬φ1) ∨ (Dφ2 ∧ ¬φ2) ∨ (Dφ1 ∧ Dφ2).

By assumption:

– (a) [[Dφ1 ]]
2
Me = false or [[φ1]]

2
Me = true

– (b) [[Dφ2 ]]
2
Me = false or [[φ2]]

2
Me = true

– (c) [[Dφ1 ]]
2
Me = false or [[Dφ2 ]]

2
Me = false

35



From (c), without loss of generality, say [[Dφ1 ]]
2
Me = false (other case is sym-

metric.) Then by Induction Hypothesis:

[[φ1]]
3
Me = ⊥ (3)

From (b) we have:

– either : [[Dφ2 ]]
2
Me = false. By Induction Hypothesis, [[φ2]]

3
Me = ⊥.

Therefore, by (3): [[φ1 ∧ φ2]]
3
Me = ⊥.

– or : [[Dφ2 ]]
2
Me = true, and [[φ2]]

2
Me = true. By Theorem 8.1, [[φ2]]
3
Me =

true , so in this case also using (3): [[φ1 ∧ φ2]]
3
Me = ⊥.

• S = φ1 ∨ φ2 : Dφ1∨φ2 = (Dφ1 ∧ φ1) ∨ (Dφ2 ∧ φ2) ∨ (Dφ1 ∧ Dφ2).

By assumption:

– (a) [[Dφ1 ]]
2
Me = false or [[φ1]]

2
Me = false

– (b) [[Dφ2 ]]
2
Me = false or [[φ2]]

2
Me = false

– (c) [[Dφ1 ]]
2
Me = false or [[Dφ2 ]]

2
Me = false

From (c), without loss of generality, say [[Dφ1 ]]
2
Me = false (other case is sym-

metric.) Then by Induction Hypothesis:

[[φ1]]
3
Me = ⊥ (4)

From (b) we have:

– either : [[Dφ2 ]]
2
Me = false. By Induction Hypothesis, [[φ2]]

3
Me = ⊥, There-

fore, using (4): [[φ1 ∨ φ2]]
3
Me = ⊥.

– or : [[Dφ2 ]]
2
Me = true, and [[φ2]]

2
Me = false. By Theorem 8.1, [[φ2]]
3
Me =

false, so in this case also using (4): [[φ1 ∨ φ2]]
3
Me = ⊥.

36



• S = ∀x : s. φ : DS = (∃x : s.Dφ ∧ ¬φ) ∨ (∀x : s.Dφ) By assumption:

(a) [[∃x : s.Dφ ∧ ¬φ]]2
Me = false

(b) [[∀x : s.Dφ]]
2
Me = false.

From (b), there exists d0 ∈ M(s) such that: [[Dφ]]2
Me(x ← d0) = false, so by

Induction Hypothesis:

[[φ]]3Me(x← d0) = ⊥ (5)

From (a) for all d ∈M(s):

– either : [[Dφ]]
2
Me(x← d) = false.

In this case, by Induction Hypothesis, [[φ]]3Me(x← d) = ⊥.

– or : [[Dφ]]
2
Me(x← d) = true, and [[φ]]2
Me(x← d) = true.

Therefore, by Theorem 8.1 [[φ]]3Me(x← d) = true.

In both cases, using (5) and definition of [[ ]]3 we obtain: [[∀x : s. φ]]3Me = ⊥.

• S = ∃x : s. φ : DS = (∃x : s.Dφ ∧ φ) ∨ (∀x : s.Dφ)

By assumption:

(a) [[∃x : s.Dφ ∧ φ]]2
Me = false

(b) [[∀x : s.Dφ]]
2
Me = false.

From (b), there exists d0 ∈ M(s) such that: [[Dφ]]2
Me(x ← d0) = false, so by

Induction Hypothesis:

[[φ]]3Me(x← d0) = ⊥ (6)

From (a) for all d ∈M(s):

– either : [[Dφ]]
2
Me(x← d) = false.

In this case, by Induction Hypothesis, [[φ]]3Me(x← d) = ⊥.

37



– or : [[Dφ]]
2
Me(x← d) = true, and [[φ]]2
Me(x← d) = false.

Therefore, by Theorem 8.1 [[φ]]3Me(x← d) = false.

In both cases, using (6) and definition of [[ ]]3 we obtain: [[∃x : s. φ]]3Me = ⊥.

Another important property of Dφ is that if φ is represented as a DAG, then the

worst-case size of Dφ as a DAG is linear in the size of φ. This point is discussed in

our publication [10].

8.3 Checking validity

Theorems 8.1 and 8.2 and the procedure for constructing Dφ effectively provide an

algorithm for checking whether a formula is valid (true for all variable assignments)

in a (partial) modelM. All we have to do is construct a decision procedure DP that

can determine whether the formula is valid in M̂, an arbitrary extension ofM.

Suppose we want to determine whether φ is true in M. We first check Dφ,

the TCC of φ. If DP(Dφ) is false, then [[Dφ]]2
Me = false for some assignment e,

so [[φ]]Me = ⊥ by Theorem 8.2. Thus, φ is not valid in M. On the other hand,

if DP(Dφ) is true, then [[Dφ]]2
Me = true for all e, so [[φ]]2
Me = [[φ]]Me for all e by

Theorem 8.1. Thus, DP(φ) effectively determines the validity of φ inM.

This property is extremely useful from a practical implementation point of view,

as we can build a decision procedure for any convenient extension ofM in which all

functions are total. Since evaluation and simplification are common steps in decision

procedures, this eliminates the need to handle partial functions as special cases, and

we can just evaluate or simplify them as we would any other function.

As a specific example, consider the model of arithmetic with division, where

division by zero is undefined. Decision procedures for arithmetic often require being

38



able to put terms in a normal form. In particular, it is desirable to be able to evaluate

constant expressions to obtain constants. In the standard model where division is

a partial function, there is no correct way to evaluate 1/0, but if we extend that

model, say by defining division by 0 to be 0, then all constant expressions can easily

be evaluated. Our approach shows that a decision procedure with this additional

assumption can be used to decide validity in the model where division is a partial

function.

39



Part III

Deciding Theories of Algebraic

Data Types

9 Introduction and Related Work

The historically foundational decidability and quantifier elimination results for term

algebras can be found in [31]. In other early work, [26] addresses the problem of

satisfiability of one equation in a term algebra, modulo other equations. The appli-

cations and extension of the quantifier elimination procedure to term algebras with

queues is handled in [41]. Another contribution to solving satisfiability of equations

over term algebras is given in [47], which extends the language with a powerful

sub-term relation predicate. In [22] two dual axiomatizations of term algebras are

presented, one with constructors only, the other with selectors and testers only.

An often-cited reference for the quantifier-free case is the treatment by Oppen

in 1980 [37]. Oppen’s algorithm gives a detailed decision procedure for a single

data type with a single constructor. The algorithm is linear for conjunctions of

literals and NP-complete for arbitrary quantifier-free formulas. The case of multiple

constructors is not addressed. In [36], Nelson and Oppen show that for a simple

list data type with two constructors, satisfiability of conjunctions of literals is NP-

complete. Shostak gives an algorithm for a simple theory of lists without null in

[43].

More recently, several papers [27, 50, 51] explore decision procedures for a

single algebraic data type. These papers focus on ambitious schemes for quantifier

elimination and combinations with other theories rather than the question of a

40



simple and efficient algorithm for the quantifier-free case. One possible extension of

Oppen’s algorithm to the case of multiple constructors is discussed briefly in [50].

A comparison of our algorithm with that of [50] is made in Section 12.

Finally, a recent approach based on first-order reasoning with the superposition

calculus is described in [11]. This work shows how a decision procedure for an

inductive data type with a single constructor can be automatically inferred from

the first-order axioms, even though the axiomatization is infinite. While the al-

gorithm as given is worst-case exponential, it has the advantage of being easily

implementable (any existing superposition-based theorem prover can be used to im-

plement the strategy). However, as far as the decision procedure is concerned, our

focus is on generality and efficiency rather than immediacy of implementation. In

our publications [6, 7] we also examine how to combine algebraic types with other

arbtrary non-algebraic sorts within this decision procedure.

9.1 Type Correctness Conditions

For reasons explained in Section 4.2, we assume that associated with every selector

S
(i)
C : τ → s is a distinguished ground term tiC of sort s containing no selectors

(or testers). The necessity of having these distinguished designated ground terms

is closely linked with the theory of Part II. Intuitively, a selector S
(i)
C : τ → s is

interpreted as a partial function, since its return value is undefined when applied to

a term t = C ′(. . .), even if t is of type τ . For that reason, in the model R, its return

value is forced to be equal to tiC of type s, so that we can proceed as though the

intended model is total. However, as indicated in Section 8, to reduce the validity

checking to the scenario without undefined values, we need to employ the technique

of TCCs. Table 3 shows what TCCs are associated with specific terms or formulas

in the theory of ADTs.

41



D(x) ≡ true
D(t1 ≈ t2) ≡ D(t1) ∧ D(t2)
D(isC(t)) ≡ D(t)

D(C(t1, . . . , tn)) ≡
∧n

i=1D(ti)

D(S
(i)
C (t)) ≡ D(t) ∧ isC(t)

Table 3: Type Correctness Conditions for the Theory of ADTs

9.2 Contributions of this Work

There are three main contributions of this work over earlier work on the topic. First,

our setting is more general: we allow mutually recursive algebraic types, each with

multiple constructors, selectors, and testers, and we use the more general setting of

many-sorted logic. The rationale for a many-sorted approach is that it more closely

corresponds to potential applications such as analysis of programming languages.

In particular, the well-sortedness requirements rule out many syntactical constructs

that would not make sense in practice.

The second contribution is in presentation. We present the theory itself in terms

of an initial model rather than axiomatically as is often done. Also, the presentation

of the decision procedure is given as abstract rewrite rules, making it more flexible

and easier to analyze than if it were given imperatively.

Finally, as described in Section 12, the flexibility provided by the abstract al-

gorithm allows us to describe a new strategy with significantly improved practical

efficiency.

Our procedure requires one additional constraint on the set of ADTs: It must

be well-founded. A sort s is well-founded iff there exist ground (i.e., variable-free)

Σ-terms of sort s. Informally, each sort must contain terms that do not denote cyclic

or otherwise infinite data types. In some cases, it will be necessary to distinguish

42



between finite and infinite sorts and constructors:

• A sort s is finite iff there are only finitely many ground Σ-terms of sort s;

• a constructor C is finite if it is nullary or if all of its argument sorts are finite.

As we will see, consistent with the above terminology, our semantics will interpret

finite, resp. infinite, τ -sorts indeed as finite, resp. infinite, sets.

Subsequent sections build on the background that has been presented in Sections

4.1, 4.2, 5.1, 5.2. Recall that we denote by T (Σ) the set of (well-sorted) ground terms

of signature Σ or, equivalently, the many-sorted term algebra over that signature.

Also, let R be defined as in subsection 5.2. In Section 10, we present our decision

procedure as a set of abstract rules. The correctness of the algorithm is shown in

Section 11. In Section 12, we discuss the efficiency of the algorithm and show, in

particular, that it can be exponentially more efficient than previous naive algorithms.

Acknowledgement. Part III has been developed based on our joint work with

Clark Barrett and Cesare Tinelli.

10 The Decision Procedure

In this section, we present a decision procedure for the satisfiability of sets of Σ-

literals over R. Before giving a formal description of the algorithm, which is quite

technical, we start with an informal overview based on examples.

10.1 Overview and Examples

Our procedure builds on the algorithm by Oppen [37] for a single type with a single

constructor. Let us first look at how Oppen’s procedure works on a simple example.

43



w

cdr(w)car(w)x y

cons(x,y)z

Figure 6: Term graph for Example 10.1

Example 10.1. Consider the list data type without the null constructor2 and the

following set of literals: {cons(x, y) ≈ z, car(w) ≈ x, cdr(w) ≈ y, w 6≈ z}.

Oppen’s procedure works as follows: first, a graph is constructed that relates terms

according to their meaning in the intended model. The graph for Example 10.1

is shown in Figure 6. Notice that cons(x, y) is a parent of x and y and car(w)

and cdr(w) are children of w. The Oppen algorithm next computes the equivalence

relation on nodes of the graph induced by the set of all equations. It then proceeds

by performing an upwards (congruence) and downwards (unification) closure on the

graph and then checking for cycles or for a violation of disequalities. A cycle occurs if

there exists a sequence of nodes beginning and ending with the same node such that

adjacent nodes are either distinct nodes in the same equivalence class or are adjacent

in the graph.3 For Example 10.1, upwards closure implies that w ≈ cons(x, y). But

since we also have cons(x, y) ≈ z, this contradicts the disequality w 6≈ z, indicating

that the set of literals is unsatisfiable.

An alternative algorithm for the case of a single constructor is to introduce new

terms and variables to replace variables that are inside of selectors. For Exam-

ple 10.1, we would introduce w ≈ cons(s, t) where s, t are new variables. Now,

by substituting and collapsing applications of selectors to constructors, we get

2Note that this data type is not well-founded. Indeed, because Oppen only considers data types
with a single constructor, there is no base case for terms (unless the constructor has arity 0), so
his semantics are over models with infinite terms. In contrast, we choose to disallow models with
infinite terms while allowing multiple constructors, a combination that we feel is more intuitive
and corresponds better to actual uses of ADTs.

3A simple example of a cycle is: cons(x, y) ≈ y.

44



w

cdr(w)car(w)x y

cons(x,y)

car(y) cdr(y)

null

Figure 7: Term graph for Example 10.2

{cons(x, y) ≈ z, w ≈ cons(s, t), x ≈ s, t ≈ y, w 6≈ z}. This approach, advocated

in [43], only requires downwards closure.

Unfortunately, if a data type has more than one constructor, things are not quite

as simple. In particular, the simple approach of replacing variables with constructor

terms does not work because one cannot establish a priori which constructor should

be used to build the value denoted by a given variable.

Example 10.2. Consider again the list data type, this time with both the cons and

the null constructor, and the following set of literals: {cons(x, y) ≈ w, cdr(w) ≈

cdr(y), y 6≈ null}.

The graph for Example 10.2 is shown in Figure 7. Observe that the new graph has

nodes for both children of w and y, even though these terms do not all appear in

the given set of literals. For the sake of simplicity, we follow Oppen in requiring

that every node with at least one child has a complete set of children.

A simple extension of Oppen’s algorithm for the case of multiple constructors is

proposed in [50]. The idea is to first guess a type completion, that is, a labeling of

every variable by a constructor, which is meant to constrain a variable to take only

values built with the associated constructor. Once all variables are labeled by a

45



single constructor, the Oppen algorithm can be used to determine if the constraints

can be satisfied under that labeling.

Unfortunately, the type completion guess can be very expensive in practice.

In Example 10.2, there are 7 terms that are not constructor terms and thus could

potentially have been constructed using either constructor. A naive type completion

guess would require 27 cases. However, most of these cases need not be considered.

In fact, we only need to consider which constructor is used to construct the value

of y. If y is constructed with null, then this contradicts the disequality y 6≈ null.

On the other hand, if y is constructed with cons, then downward closure requires

y ≈ cdr(w) ≈ cdr(y), creating a cycle.

Our presentation combines ideas from previous work as well as introducing some

new ones. There is a set of upward and downward closure rules to mimic Oppen’s

algorithm. The idea of a type completion is replaced by a set of labeling rules that

can be used to refine the set of possible constructors for each term (in particular,

this allows us to delay guessing as long as possible). And the notion of introducing

constructors and eliminating selectors is captured by a set of selector rules. In

addition to the presentation, one of our key contributions is to provide precise side-

conditions for when case splitting is necessary as opposed to when it can be delayed.

The results given in Section 12 show that with the right strategy, significant gains

in efficiency can be obtained.

We describe our procedure formally in the following, as a set of derivation rules.

We build on and adopt the style of similar rules for abstract congruence closure [2]

and syntactic unification [32].

46



10.2 Definitions and Notation

In the following, we will consider well-sorted formulas over the signature Σ above and

an infinite set X of implicitly existential variables. To distinguish these variables,

which can occur in formulas given to the decision procedure described below, from

other internal variables used by the decision procedure, we will sometimes call the

elements of X input variables.

Given a set Γ of literals over Σ and variables from X, we wish to determine the

satisfiability of Γ in the algebra R.4 That is, we wish to determine whether there

exists a variable assignment α, a mapping of input variables to ground terms, such

that applying α to Γ results in a set of ground literals all of which are true in R. We

will assume for simplicity, and with no loss of generality, that the only occurrences

of terms of sort Prop are in atoms of the form isC(t) ≈ true, which we will write just

as isC(t).

Following [2], for each sort τ we will make use of the sets Vτ of abstraction

variables of sort τ ; abstraction variables are disjoint from input variables (variables

in Γ) and function as equivalence class representatives for the terms in Γ. We assume

an arbitrary, but fixed, well-founded ordering ≻ on the abstraction variables that is

total on variables of the same sort. We denote the set of all variables (both input

and abstraction) in Γ as Var(Γ). Recall that for each sort τ the set Cτ denotes the

set of τ ’s constructors. We will write sort(t) to denote the sort of the term t.

The rules make use of three additional constructs that are not in the language

of Σ: →, 7→, and Inst. The symbol → is used to represent oriented equations. Its

left-hand side is a Σ-term t and its right-hand side is an abstraction variable v. The

symbol 7→ denotes labelings of abstraction variables with sets of constructor symbols.

4In both theory and practice, the satisfiability of arbitrary quantifier-free formulas can be easily
determined given a decision procedure for a set of literals. Using the fact that a universal formula
∀xϕ(x) is true in a model exactly when ¬ϕ(x) is unsatisfiable in the model, this also provides a
decision procedure for universal formulas.

47



It is used to keep track of possible constructors for instantiating a τ variable. Finally,

the Inst construct is used to track applications of the Instantiate 2 rule given below.

It is needed to ensure termination by preventing multiple applications of the rule.

It is a unary predicate that is applied only to abstraction variables.

Let ΣC denote the set of all constant symbols in Σ, including nullary constructors.

We will denote by Λ the set of all possible literals over Σ and input variables X.

Note that this does not include oriented equations (t→ v), labeling pairs (v 7→ L),

or applications of Inst. In contrast, we will denote by E multisets of literals of

Λ, oriented equations, and labeling pairs, and applications of Inst. To simplify

the presentation, we will consistently use the following meta-variables: c, d denote

constants (elements of ΣC) or input variables from X; u, v, w denote abstraction

variables; t denotes a flat term—i.e., a term all of whose proper sub-terms are

abstraction variables—or a label set, depending on the context. u,v denote possibly

empty sequences of abstraction variables; and u → v is shorthand for the set of

oriented equations resulting from pairing corresponding elements from u and v and

orienting them so that the left hand variable is greater than the right hand variable

according to ≻. Finally, v ⊲⊳ t denotes any of v ≈ t, t ≈ v, v 6≈ t, t 6≈ v, or v 7→ t.

To streamline the notation, we will sometimes denote function application simply

by juxtaposition.

Each rule consists of a premise and one or more conclusions. Each premise is

made up of a multiset of literals from Λ, oriented equations, labeling pairs, and ap-

plications of Inst. Conclusions are either similar multisets or ⊥, where ⊥ represents

a trivially unsatisfiable formula. As we show later, the soundness of our rule-based

procedure depends on the fact that the premise E of a rule is satisfied in R by a

valuation of Var(E) iff one of the conclusions E ′ of the rule is satisfied in R by an

extension of that valuation.

48



10.3 The derivation rules

Our decision procedure consists of the following derivation rules on multisets E.

Abstraction rules

Abstract 1
p[c], E

c→ v, v 7→ Cτ , p[v], E
if

p ∈ Λ, c : τ,

v fresh from Vτ

Abstract 2
p[C u], E

C u→ v, p[v], v 7→ {C}, E
if p ∈ Λ, C ∈ Cτ v fresh from Vτ

Abstract 3

p[S
(k)
C u], E

S
(1)
C u→ v1, . . . , S

(n)
C u→ vn, p[vk],

v1 7→ Cs1 , . . . , vn 7→ Csn
, E

if

p ∈ Λ,

C : s1 · · · sn → τ,

each vi fresh fromVsi

The abstraction or flattening rules assign a new abstraction variable to every

sub-term in the original set of literals. Each rule contains a literal of the form p[t] in

the premise and p[v] in the conclusion. The meaning of this notation is that p[t] is

some literal containing the term t and p[v] is the literal obtained by replacing every

occurrence of t in p[t] with the abstraction variable v. Abstraction variables are used

as place-holders or equivalence class representatives for the sub-terms they replace.

While we would not expect a practical implementation to actually introduce these

variables, it greatly simplifies the presentation of the remaining rules.

The Abstract 1 rule replaces input variables or constants. Abstract 2 replaces

constructor terms, and Abstract 3 replaces selector terms. Notice that in each

case, a labeling pair for the introduced variables is also created. This corresponds

to labeling each sub-term with the set of possible constructors with which it could

have been constructed. Also notice that in the Abstract 3 rule, whenever a selector

49



is applied, we effectively introduce all possible applications of selectors associated

with the same constructor. This simplifies the later selector rules and corresponds

to the step in the Oppen algorithm which ensures that in the term graph, any node

with children has a complete set of children.

Literal level rules

Orient
u ≈ v, E

u→ v, E
if u ≻ v

Inconsistent
v 6≈ v, E

⊥

Remove 1
isC v, E

v 7→ {C}, E

Remove 2
¬isC v, E

v 7→ Csort(v) \ {C}, E

The simple literal level rules are mostly self-explanatory. The Orient rule is

used to replace an equation between abstraction variables (which every equation

eventually becomes after applying the abstraction rules) with an oriented equa-

tion. Oriented equations are used in the remaining rules below. The Inconsistent

rule detects violations of the reflexivity of equality. The Remove rules remove

applications of testers and replace them with labeling pairs that impose the same

constraints.

Upward (i.e., congruence) closure rules

Simplify 1
u ⊲⊳ t, u→ v, E

v ⊲⊳ t, u→ v, E
Simplify 2

fuuv→ w, u→ v, E

fuvv→ w, u→ v, E

Superpose
t→ u, t→ v, E

u→ v, t→ v, E
if u ≻ v

50



Compose
t→ v, v → w, E

t→ w, v → w, E

These rules are modeled after similar rules for abstract congruence closure in

[2]. The Simplify and Compose rules essentially provide a way to replace any

abstraction variable with a smaller (according to ≻) one if the two are constrained

to be equal. Note that the symbol f in the Simplify 2 rule refers to an arbitrary

function symbol from Σ. The Superpose rule merges two equivalence classes if

they contain the same term. Congruence closure is achieved by these rules because

if two terms are congruent, then after repeated applications of the first set of rules,

they will become syntactically identical. Then the Superpose rule will merge their

two equivalence classes.

Downward (i.e., unification) closure rules

Decompose
C u→ v, C v→ v, E

C u→ v, u→ v, E

Cycle
Cn unuvn → un−1, . . . , C2 u2u2v2 → u1, C1 u1u1v1 → u, E

⊥
if n ≥ 1

The main downward closure rule is the Decompose rule: whenever two terms

with the same constructor are in the same equivalence class, their arguments must

be equal. Recall that u→ v is shorthand for the set of oriented equations resulting

from pairing corresponding elements from u and v and orienting them so that the

left hand variable is greater than the right hand variable according to ≻. The Cycle

rule detects an inconsistency when a constructor term would have to be equivalent

to one of its sub-terms.

51



Selector rules

Instantiate 1
S

(1)
C u→ u1, . . . , S

(n)
C u→ un, u 7→ {C}, E

C u1 · · · un → u, u 7→ {C}, E
if

C : s1 · · · sn → τ,

n ≥ 1

Instantiate 2

u 7→ {C}, E

C u1 · · · un → u, u 7→ {C}, Inst(u),

u1 7→ Cs1, . . . , un 7→ Csn , E

if

C finite constructor,

C : s1 · · · sn → τ,

Inst(u) 6∈ E,

ui fresh from Vsi

Collapse 1
C u1 · · ·un → u, S

(i)
C u→ v, E

C u1 · · ·un → u, ui ≈ v, E

Collapse 2
S

(i)
C u→ v, u 7→ L, E

tiC ≈ v, u 7→ L, E
if C /∈ L

Rule Instantiate 1 is used to eliminate selectors by replacing the argument of

the selectors with a new term constructed using the appropriate constructor. Only

terms that have selectors applied to them can be instantiated and then only once

they are uniquely labeled. Notice that all of the selectors applied to the term are

eliminated at the same time. This is why the entire set of selectors is introduced in

the Abstract 3 rule.

For completeness, a term labeled with a finite constructor must be instantiated

even if no selectors are applied to that term. This is accomplished by rule Instan-

tiate 2. The side conditions are similar to those in Instantiate 1, except that

this rule only applies to terms labeled with finite constructors. The Inst predicate

ensures that the rule is applied at most once for each such term.

The Collapse rules eliminate selectors when the result of their application can

be determined. In Collapse 1, a selector S
(i)
C is applied to a term constructed with

constructor C. In this case, the selector expression is replaced by the appropriate

52



argument of the constructed term. In Collapse 2, a selector S
(i)
C is applied to a

term which must have been constructed with a constructor other than C. In this

case, the designated term tiC for the selector replaces the selector expression.

Labeling rules

Refine
v 7→ L1, v 7→ L2, E

v 7→ L1 ∩ L2, E
Empty

v 7→ ∅, E

⊥
if v : τ

Split 1
S

(i)
C u→ v, u 7→ {C} ∪ L, E

S
(i)
C u→ v, u 7→ {C}, E S

(i)
C u→ v, u 7→ L, E

if L 6= ∅

Split 2
u 7→ {C} ∪ L, E

u 7→ {C}, E u 7→ L, E
if

L 6= ∅,

{C} ∪ L all finite constructors

The Refine rule simply combines labeling constraints that may arise from differ-

ent sources for the same abstraction variable. Empty enforces the constraint that

every τ -term must be constructed by some constructor. The splitting rules are used

to refine the set of possible constructors for a term and are the only rules that cause

branching. If a term labeled with only finite constructors cannot be eliminated in

some other way, Split 2 must be applied until it is labeled with a single constructor.

For other terms, the Split 1 rule only needs to be applied to distinguish the case

of a selector being applied to the “right” constructor from a selector being applied

to the “wrong” constructor. On either branch, one of the Collapse rules will apply

immediately. We discuss this further in Section 12, below.

53



null→ v1 v1 7→ {null} v5 → v4

x→ v2 v2 7→ {cons, null} v9 → v7

y → v3 v3 7→ {cons, null} v3 6≈ v1

cons(v2, v3)→ v4 v4 7→ {cons}
w → v5 v5 7→ {cons, null}
car(v5)→ v6 v6 7→ {cons, null}
cdr(v5)→ v7 v7 7→ {cons, null}
car(v3)→ v8 v8 7→ {cons, null}
cdr(v3)→ v9 v9 7→ {cons, null}

Figure 8: Example 10.2 after Abstraction and Orient

10.4 An Example Using the Rules

Let us revisit Example 10.2 and see how the rules work on this example. Recall that

we have the following set of literals: {cons(x, y) ≈ w, cdr(w) ≈ cdr(y), y 6≈ null}.

After applying the Abstraction and Orient rules, we have the set of literals shown

in Figure 8. Next, the Simplify and Compose rules can be used to replace all

occurrences in the first two columns of v5 and v9 with v4 and v7 respectively. Then,

Refine can be used to eliminate two of the labeling pairs. Notice that after replacing

v5 with v4, v4 can be instantiated (the side conditions of Instantiate 1 are satisfied).

The resulting set of literals is shown in Figure 9. At this point, there are two cons

terms equivalent to v4, so the Decompose rule applies, yielding two new oriented

equations: v6 → v2 and v7 → v3. These can again be used together with the

congruence rules and Refine to simplify the other literals. The resulting set is

shown in Figure 10.

At this point, the only rule that can be applied is the Split 1 rule. And only

v3 satisfies the necessary condition of having a selector applied to it. There are

two cases. Consider first the case where v3 7→ {cons}. In this case, Instantiate 1

applies, yielding cons(v8, v3) → v3 which yields ⊥ by the Cycle rule. In the other

case, we have v3 7→ {null}. This time, since null is a finite constructor, we can apply

Instantiate 2 to get null→ v3. The Superpose rule then gives v3 → v1. This can

54



null→ v1 v1 7→ {null} v5 → v4

x→ v2 v2 7→ {cons, null} v9 → v7

y → v3 v3 7→ {cons, null} v3 6≈ v1

cons(v2, v3)→ v4 v4 7→ {cons}
w → v4 v6 7→ {cons, null}
cons(v6, v7)→ v4 v7 7→ {cons, null}
car(v3)→ v8 v8 7→ {cons, null}
cdr(v3)→ v7

Figure 9: Figure 8 after congruence rules, Refine, and Instantiate 1

null→ v1 v1 7→ {null} v5 → v4

x→ v2 v2 7→ {cons, null} v9 → v3

y → v3 v3 7→ {cons, null} v3 6≈ v1

cons(v2, v3)→ v4 v4 7→ {cons}
car(v3)→ v8 v8 7→ {cons, null}
cdr(v3)→ v3

v6 → v2

v7 → v3

Figure 10: Figure 9 after Decompose and congruence rules

be used together with v3 6≈ v1 to deduce ⊥ (via the Simplify 1 and Inconsistent

rules).

11 Correctness

The satisfiability in R of a set Γ of Σ-literals with variables in X can be checked by

applying exhaustively to Γ the derivation rules in the previous section. This set of

rules is very flexible in that the rules can be applied in any order and still yield a

decision procedure for the satisfiability in R. No specific rule application strategy

is needed to achieve termination, soundness or completeness. We formalize this in

the following in terms of a suitable notion of derivation for these rules.

A derivation tree (for a set Γ of Σ-literals with variables in X) is a finite tree with

root Γ such that for each internal node E of the tree, its children are the conclusions

55



of some rule whose premise is E. A refutation tree (for Γ) is a derivation tree all of

whose leaves are ⊥. We say that a node in a derivation tree is (ir)reducible if (n)one

of the derivation rules applies to it. A derivation is a sequence of derivation trees

starting with the single-node tree containing Γ, where each tree is derived from the

previous one by the application of a rule to one of its leaves. A refutation is a finite

derivation ending with a refutation tree.

For a multiset E of literals, a variable assignment α is a mapping from Var(E)

into the elements of R that is well-sorted (i.e., sort(x) = sort(α(x)) for every

x ∈ Var(E)). If α is a variable assignment, then we denote by α the homomorphic

extension of α that maps arbitrary terms into elements of R. We say that α satisfies

s ≈ t iff α(s) equals α(t).

For convenience, we extend the notion of satisfiability and well-sortedness to

the extra-logical constructs. The oriented equation t → v is well-sorted iff t and v

have the same sort. Furthermore, α satisfies t→ v in R iff α satisfies the equation

t ≈ v in R. The expression v 7→ L, labeling a variable v of sort s with the set L

of constructor symbols, is considered to be well-sorted if L ⊆ Cs. The valuation α

satisfies a labeling pair v 7→ L in R if α satisfies the formula isC(v) ≈ true for some

C ∈ L. An application of Inst is always well-sorted and satisfied by every variable

assignment. We start with a lemma that gives a couple of useful invariants.

Lemma 11.1. Let E0, E1, . . . , be a branch on a derivation tree. Then the following

holds for all i ≥ 0.

1. If E0 is well-sorted, then for all i, Ei is well-sorted.

2. For all u→ v ∈ Ei, we have u ≻ v.

Proof. A simple examination of each of the rules confirms that these invariants are

maintained.

56



Before proving termination, we need the following additional notation. For each

constructor C ∈ Σ, let |C| denote 0 if C is infinite and otherwise denote the size of

the (finite) set containing all ground constructor terms whose top symbol is C, and

all of their sub-terms.

Proposition 11.2 (Termination). Every derivation is finite.

Proof. Given a derivation tree, let E0, E1, . . . be any branch of the tree that does

not end with ⊥. It is enough to show that the branch can be mapped to a strictly

descending sequence in a well-founded ordering. The ordering ≻l we will use is a

lexicographic ordering over tuples of the form (s, t, S, T, M, A, n) where s, t, T , and

n are natural numbers, S is a multiset of naturals, M is a multiset of symbols from

Σ and variables from X, and A is a multiset of abstraction variables. The ordering

≻l is the one induced by the well-founded orderings >, >, >m, >, ⊐m,≻m, > where

• > is the usual ordering of the natural numbers,

• >m is the multiset ordering induced by >,

• ⊐m is the multiset ordering induced by some arbitrary well-founded ordering

of the set Σ ∪X, and

• ≻m is the multiset ordering induced by the given ordering ≻ over the abstrac-

tion variables.

The descending sequence (si, ti, Si, Ti, Mi, Ai, ni) for i = 0, 1, . . . is defined as fol-

lows. Recall that Σ-literals do not include oriented equations, labeling pairs, or

applications of Inst.

• si is the number of selector symbols in the Σ-literals of Ei;

• ti is total number of selector symbols appearing in Ei;

57



• Si is the multiset consisting of the sizes of the Σ-literals of Ei, where by size we

mean the number of occurrences of symbols from Σ (including ≈) and input

variables, but not of abstraction variables;

• Ti is the sum of all |v|i for all abstraction variables v ∈ Var(Ei) that do not

appear as an argument to Inst in Ei where, for each v, |v|i =
∑

C∈Li
|C| and

Li is the union of all label sets for v in Ei;

• Mi is the multiset of occurrences of symbols from Σ and input variables from

X in Σ-literals or oriented equations of Ei;

• Ai is the multiset of all the occurrences of abstraction variables in Ei;

• ni is the number of label occurrences in Ei, that is, occurrences of the con-

structor symbols in labeling pairs of Ei.

We show that for all consecutive nodes Ei, Ei+1 in the branch:

(si, ti, Si, Ti, Mi, Ai, ni) ≻l (si+1, ti+1, Si+1, Ti+1, Mi+1, Ai+1, ni+1).

The proof is by cases, depending on the rule used to derive Ei+1 from Ei.

1. The cases corresponding to the rules Inconsistent, Cycle, and Empty do

not apply since they all have conclusion ⊥.

2. Suppose one of the rules Abstract 1, Abstract 2, Orient, Remove 1,

or Remove 2 was applied. Each of these rules leaves si and ti unchanged

while removing at least one Σ-symbol or input variable from a literal (without

changing the other literals). In each of these cases, Si >m Si+1.

3. With Abstract 3, the number of selector symbols appearing in literals is

reduced by one, so si > si+1.

58



4. With all the congruence closure rules except for Superpose when the term t

in the rule is not an abstraction variable, the only change is the replacement

of an abstraction variable by another abstraction variable which is smaller by

Lemma 11.1(2). Thus, si, ti, Si, Ti, and Mi remain the same, while Ai ≻m

Ai+1. In the case where Superpose is applied and t is not an abstraction

variable, t must contain a symbol from Σ ∪ X. If t contains a selector, then

si = si+1 and ti > ti+1. Otherwise, Mi ⊐m Mi+1 (it is easy to see that si, ti,

Si, and Ti remain the same in this case).

5. The Decompose rule does not change the values of si, ti, Si, or Ti. However,

it does eliminate one occurrence of a constructor symbol. Hence, Mi ⊐m Mi+1.

6. Now consider the selector rules. With Instantiate 1, since the constructor C

in the rule has positive arity (i.e., n ≥ 1) then si = si+1 and ti > ti+1. With

Instantiate 2, si, ti and Si are unchanged but

Ti+1 = (Ti − |u|i) +

n∑

k=1

|uk|i+1 .

It is not difficult to see that |u|i >
∑n

k=1 |uk|i+1. Thus, Ti > Ti+1.

7. With the collapse rules, exactly one selector symbol is eliminated from (a

non-literal of) Ei, so si = si+1 and ti > ti+1.
5

8. Finally, consider the labeling rules. The Refine rule eliminates an occurrence

of an abstraction variable. Hence certainly Ai ≻m Ai+1. All the preceding

components of the tuple are unchanged with the possible exception of Ti which

may get smaller when L1 6= L2. The split rules both produce two conclusions,

each of which has fewer constructors appearing in labels than in the premise.

5Note that si = si+1 with Collapse 2 because, by definition, tiC is a ground term with no
selectors.

59



Furthermore, this is the only change, so Ti either decreases or is unchanged,

ni > ni+1 and everything else is unchanged.

The soundness of the decision procedure is based on the following result.

Lemma 11.3. The premise E of a derivation rule is satisfied in R by a valuation α

of Var(E) iff one of the conclusions E ′ of the rule is satisfied in R by an extension

of α to Var(E ′).

Proof. Again, the proof is by cases.

(Abstraction rules) The if direction is immediate. For the other direction, for

Abstract 1, suppose that the premise is satisfied by α inR. We extend α by setting

v to the value of c under R, α. Consider the labeling pair v 7→ Cs in the conclusion.

When v is of sort τ , it is satisfied as a consequence of the first axiom (schema) in R’s

specification and the fact that α(v) is a constructor term by Lemma 5.7. With this

observation, it is clear that the extended variable assignment satisfies the conclusion.

For Abstract 2, a similar argument shows that an extended variable assignment

which assigns v to the value of C u under R, α must satisfy the conclusion. For

Abstract 3, the argument is again similar, but this time we must extend α to map

each vi to the value of S
(i)
C u under R, α.

(Literal level rules) The case of Orient and Inconsistent is obvious. For Re-

move 1 the claim follows by definition of satisfaction for labeling pairs. For Re-

move 2 we rely on the fact thatR, α satisfies isC v exactly when it satisfies v 7→ {C},

for any C. This follows from Lemma 5.7 and the first and second axiom schemas.

(Upward closure rules) The claim follows from basic properties of equality.

(Downward closure rules) The result follows from Lemma 5.7 and basic properties

of the term algebra T (Ω).

60



(Selector rules) In case of Instantiate 1 and 2 the claims follow from the de-

finition of satisfaction for labeling pairs, the Inst predicate, the first three axiom

schemas, and Lemma 5.7. For Collapse 1 the result follows by the third axiom

schema; for Collapse 2 by the fourth schema, Lemma 5.7 and the definition of

satisfaction for labeling pairs.

(Labeling rules) The claim follows by simple Boolean reasoning and the definition

of satisfaction for labeling pairs.

Proposition 11.4 (Soundness). If a set E0 has a refutation tree, then it is unsat-

isfiable in R.

Proof. By structural induction on refutation trees and the previous lemma.

To prove completeness we will rely on the next three lemmas. First we need a couple

of definitions. If E is a multiset of literals, we write ∼E for the equivalence relation

induced by oriented equations in E. We also define lblsE(u) as the intersection of

all label sets L where v 7→ L appears in E for some v ∼E u.

Lemma 11.5. Suppose E is a node in a derivation tree and that E contains an

oriented equation of the form S
(i)
C u→ v for some C (of arity n), u, v, and i, where

1 ≤ i ≤ n. We will call this an oriented selector equation. Then at least one of the

following is also true:

(i) E also contains an oriented equation of the form C w → u′ for some w and

u′ where u′ ∼E u.

(ii) C 6∈ lblsE(u)

(iii) There exist u1, . . . , un and v1, . . . , vn such that for each 1 ≤ k ≤ n, S
(k)
C uk →

vk ∈ E and uk ∼E u.

61



Proof. The proof is by induction on derivation trees. The base case is trivial since

the root of a derivation tree has no oriented equations. For the inductive case, we

consider each of the rules. First note that if a rule does not introduce, change, or

delete any oriented selector equations and furthermore does not delete or change any

oriented equations of the form C w → u′, then the property is trivially preserved.

This covers the following rules: Abstract 1, Abstract 2, the literal level rules,

Simplify 1, Cycle, Instantiate 2, and the labeling rules. We now consider the

others:

Abstract 3. This rule introduces new oriented selector equations. For these, it is

easy to see that condition (iii) is satisfied. It is also easy to see that the property is

preserved for any other oriented selector equations.

Simplify 2. This rule may change an oriented selector equation from S
(i)
C u → v

to S
(i)
C u′ → v when u → u′. However, in this case, we have u ∼E u′, and it follows

that the property is preserved.

Superpose. If we have two oriented selector equations: S
(i)
C u→ v and S

(i)
C u→ v′,

with v ≻ v′, then the first of these may be eliminated by the Superpose rule.

If the eliminated oriented selector equation was needed to fulfill condition (iii) for

some other oriented selector equation in the premise, then we must ensure that the

property still holds in the conclusion. However, notice that S
(i)
C u→ v′ may be used

instead and so the property holds.

Compose. Suppose S
(i)
C u→ v is rewritten to S

(i)
C u→ v′. It is easy to see that the

property holds for the new oriented selector equation for the same reasons as it did

for the old. Also, if the old oriented selector equation was used to fulfill condition

(iii) for some other oriented selector equation, then the new one does so as well.

Decompose. This rule may eliminate an oriented equation of the form C w → u′

which might affect condition (i) for some oriented selector equation. However, it

62



only does so when there exists another oriented equation of the form C v→ u′ that

is not eliminated. This can be used to satisfy condition (i) instead.

Instantiate 1. This rule eliminates oriented selector equations which could affect

condition (iii) for some other oriented selector equation. However, it also introduces

an oriented equation of the form C w → u, so condition (i) will now apply to such

oriented selector equations.

Collapse 1. This rule eliminates an oriented selector equation which could affect

condition (iii) for some other oriented selector equation. However, it is easy to see

that because we have an oriented equation of the form C w→ u, condition (i) must

apply to such oriented selector equations.

Collapse 2. This rule eliminates an oriented selector equation which could affect

condition (iii) for some other oriented selector equation. However, it is easy to

see that because C 6∈ lblsE(u), condition (ii) must apply to such oriented selector

equations.

Lemma 11.6. No irreducible leaf E in a derivation tree contains occurrences of

selector symbols.

Proof. The claim is trivially true if E = {⊥}, so assume that E 6= {⊥}. Since

E is irreducible, by the rule Abstract 3 and Lemma 11.1(1), every occurrence of

a selector in E must be in an oriented equation of the form S
(i)
C u → v, for some

constructor C : s1 · · · sn → τ and an abstraction variable u of sort τ . So assume

that S
(i)
C u→ v ∈ E. By Lemma 11.5, we know that one of three conditions applies.

The first case is that condition (i) holds: E also contains an oriented equation of

the form C w → u′ for some w and u′ where u′ ∼E u. Since E is irreducible, we

must have that u′ = u, but then Collapse 1 applies, contradicting the irreducibility

of E. The second case is (ii): C 6∈ lblsE(u). Again, because E is irreducible, this

means that E contains u 7→ L and C 6∈ L. Thus, Collapse 2 applies, again a

63



contradiction. Finally, the third case is (iii): there exist u1, . . . , un and v1, . . . , vn

such that for each 1 ≤ k ≤ n, S
(k)
C uk → vk ∈ E and uk ∼E u. Again, because E

is irreducible, we must have that uk = u for each k. Also, since (ii) does not apply

and Split 1 cannot be applied, E must contain u 7→ {C}. But this means that

Instantiate 1 applies, again yielding a contradiction.

Lemma 11.7. Every irreducible leaf E other than {⊥} in a derivation tree is sat-

isfiable in R.

Proof. We build a valuation α of Var(E) that satisfies E in R. To start, let

V = {v | t→ v ∈ E for some t}

Tv = {t | t→ v ∈ E} for all v ∈ V

Observe that the sets Tu and Tv are disjoint for all distinct u and v, otherwise E

would contain two equations of the form t→ u and t→ v, and so would be reducible

by Superpose. Furthermore, for all v ∈ V , Tv contains at most one non-variable

term. To see that, recalling that E contains no occurrences of selector symbols

by Lemma 11.6, assume that Tv contains a term of the form C u. Again by well-

sortedness, it is enough to argue that Tv contains no additional terms of the form

C ′ u′ of the same sort as v’s. But such terms cannot be in Tv. If C = C ′ then

Decompose applies. If C 6= C ′, notice that whenever an oriented equation of the

form C u→ v is introduced, we also have v 7→ {C}. Since label sets never grow, at

some point we have to have had both v 7→ {C} and v 7→ {C ′}. Since Refine must

have been applied to these two labeling pairs, E must now contain v 7→ ∅ and is

thus reducible by Empty.

Now consider the relation ⋖ over V defined as follows:

64



u ⋖ v iff E contains an equation of the form C uuu′ → v.

By the Cycle rule and the assumptions on E, the finite relation ⋖ is acyclic and

hence well founded. We can define a valuation α of V into R6 by well founded

induction on ⋖.

Let {v1, . . . , vn} be the set of all the ⋖-minimal elements of V such that for

i = 1, . . . , n, ci → vi ∈ E with ci a constant symbol (a nullary constructor). For

i = 1, . . . , n we define α(vi) = ci. Now let {vn+1, . . . , vn+k} be the remaining ⋖-

minimal elements of V . If vi is of some sort τ , we know by a previous observation

that vi 7→ L ∈ E. Note that by the Empty and the Split rules, C ∈ L for some non-

nullary C. Moreover, C must be an infinite constructor, or otherwise an equation

of the form C u→ vk would be in E by Instantiate 2, making vk non-⋖-minimal.

We then define α(vk) = C t1 · · · tm where C is some infinite constructor in L of arity

m > 0 and C t1 · · · tm is some term in T (Ω) \ {α(v1), . . . , α(vn+k−1)}.

We are now left with defining α(v) for all non-minimal v ∈ V . If v is non-

minimal, then there must be an equation of the form C u1 · · ·uk → v in E for some

constructor C. Furthermore, k ≥ 1 (otherwise v would be minimal) and ui ⋖ v for

all i = 1, . . . , k. We then define α(v) = C α(u1) · · ·α(uk).

We now show by induction on ⋖ that the valuation α just defined is an injection

of V into T (Ω). Let u, v be two distinct elements of V of the same sort.

If u and v are both ⋖-minimal in the set {v1, . . . , vn} defined earlier, then α(u) 6=

α(v) because the sets Tv1 , . . . , Tvn
are mutually disjoint. If one (or both) of them is

in {vn+1, . . . , vn+k} then α(u) 6= α(v) by construction.

If u, say, is not ⋖-minimal, then both u and v must be of some sort τ . It

follows that α(u), α(v) are terms of the form C α(u1) · · ·α(un), C ′ α(v1) · · ·α(vn′),

respectively, with n, n′ ≥ 1. Now, if C 6= C ′, then α(u) and α(v) are trivially distinct

6Whose universe, recall, is the term algebra T (Ω).

65



terms. If C = C ′, then n = n′; however, ui 6= vi for some i otherwise C u1 · · ·un → u

and C u1 · · ·un → v would be in E and Superpose would apply. If ui and vi are

distinct then by induction α(ui) and α(vi) are distinct, therefore α(u) and α(v) are

distinct as well.

Now we can extend α to the whole Var(E) by defining it for the remaining (input

or abstraction) variables of E. Each such variable x occurs in an equation of the

form x → v in E. Hence we define α(x) = α(v). For later reference, let α′ be the

homomorphic extension of α to the set of Σ-terms over Var(E).

The valuation α satisfies every element e of E. If e has the form u 6≈ v with

u, v distinct, then α satisfies e for being injective over the abstraction variables of

E. If e has the form t→ v, then α satisfies e because α(v) = α′(t) by construction.

If e has the form v 7→ L where v has sort τ consider the following two cases. If

C u1 · · ·uk → v ∈ E for some C u1 · · ·uk then it is not difficult to show that L

must be {C}. But then α(v) = C α(u1) · · ·α(uk) by construction. If there is no

C u1 · · ·uk → v ∈ E, then α(v) is defined as some term C t1 · · · tk where C ∈ L. In

both cases, it is then immediate that α satisfies v 7→ L.

To conclude the proof it is enough to observe that, for being irreducible, E can

only contain elements of the forms listed above.

Proposition 11.8 (Completeness). If a set E0 is unsatisfiable in R, then it has a

refutation.

Proof. We prove the contrapositive of the proposition. Assume that E0 has no

refutations. By Proposition 11.2, there is a derivation tree for E0 with an irreducible

leaf E 6= {⊥}. By Lemma 11.7, E is satisfiable in R. It follows by a repeated

application of Lemma 11.3 that E0 is satisfiable in R as well.

66



12 Strategies and Efficiency

It is not difficult to see that the problem of determining the satisfiability of an

arbitrary set of literals is NP-complete. A subset of the problem (a simple case with

two constructors) was shown to be NP-hard in [36]. To see that it is in NP, we note

that given a type completion, no additional splits are necessary, and the remaining

rules can be carried out in polynomial time. However, as with other NP-complete

problems (Boolean satisfiability being the most obvious example), the right strategy

can make a significant difference in practical efficiency.

12.1 Strategies

A strategy is a predetermined methodology for applying the rules. Before discussing

our recommended strategy, it is instructive to look at the closest related work.

Oppen’s original algorithm is roughly equivalent to the following: After abstraction,

apply the selector rules to eliminate all instances of selector symbols. Next, apply

upward and downward closure rules (the bidirectional closure). As you go, check

for conflicts using the rules that can derive ⊥. We will call this the basic strategy.

Note that it excludes the splitting rules: because Oppen’s algorithm assumes a

single constructor, the splitting rules are never used. A generalization of Oppen’s

algorithm is mentioned in [50]. They add the step of initially guessing a “type

completion”. To model this, consider the following simple Split rule:

Split
u 7→ {C} ∪ L, E

u 7→ {C}, E u 7→ L, E
if L 6= ∅

Now consider a strategy which invokes Split greedily (after abstraction) until it no

longer applies and then follows the basic strategy. We will call this strategy the

greedy splitting strategy.

67



One of the key contributions of this section is to recognize that the greedy split-

ting strategy can be improved in two significant ways. First, the simple Split rule

should be replaced with the smarter Split 1 and Split 2 rules. Second, these rules

should be delayed as long as possible. We call this the lazy splitting strategy. The

lazy strategy reduces the size of the resulting derivation in two ways. First, notice

that Split 1 is only enabled when some selector is applied to u. By itself, this

eliminates many needless case splits. Second, by applying the splitting rules lazily

(in particular by first applying selector rules), it may be possible to avoid splitting

completely in many cases. We already saw in Section 10 that Example 10.2 can be

solved using only a single case split, instead of the 27 splits required by a naive type

completion. Here, we look at another example that emphasizes the advantages of

lazy splitting.

Example 12.1. Suppose we have the following simple tree data type:

tree := node(left : tree, right : tree) | leaf;

Let leaf be the designated term for both selectors and then consider the following set

of literals: {leftn(Z) ≈ X, is node(Z), Z ≈ X}.

A term graph for Example 12.1 is shown in Figure 11. After applying all available

rules except for the splitting rules, the resulting set of literals looks like this:

{ Z → u0, X → u0, u0 7→ {node}, node(u1, v1)→ u0, un → u0,

left(u1)→ u2, . . . , left(un−1)→ un, u1 7→ {leaf, node}, . . . , un 7→ {leaf, node},

right(u1)→v2,. . ., right(un−1)→vn, v1 7→ {leaf, node}, . . . , vn 7→ {leaf, node}},

Notice that there are 2n abstraction variables labeled with two labels each. If we

eagerly applied the naive Split rule at this point, the derivation tree would reach

size O(22n).

68



 
Z

left(left(Z)) right(left(Z))

left(Z) right(Z)

X

leftn−1(Z)

right(leftn−1(Z))leftn(Z)

Figure 11: Term graph for Example 12.1

Suppose, on the other hand, that we use the lazy strategy. First notice that

Split 1 can only be applied to n of the abstraction variables (ui, 1 ≤ i ≤ n). Thus

the more restrictive side-conditions of Split 1 already reduce the size of the problem

to at worst O(2n) instead of O(22n). However, by only applying it lazily, we do even

better: suppose we split on ui. The result is two branches, one with ui 7→ {node}

and the other with ui 7→ {leaf}. The second branch induces a cascade of (at most

n) applications of Collapse 2 which in turn results in uk 7→ {leaf} for each k > i.

This eventually results in ⊥ via the Empty and Refine rules. The other branch

contains ui 7→ {node} and results in the application of the Instantiate 1 rule, but

little else, and so we will have to split again, this time on a different ui. This process

will have to be repeated until we have split on all of the ui. At that point, there

will be a cycle from u0 back to u0, and so we will derive ⊥ via the Cycle rule.

Because each split only requires at most O(n) rules and there are n − 1 splits,

the total size of the derivation tree will be O(n2). In fact, if we start at un−1 and

69



work our way down, each split will take only O(1), so the total size of the derivation

tree will be O(n).7

12.2 Experimental Results

We have implemented both the lazy and the greedy splitting strategies in the theo-

rem prover CVC3 [8]. What is necessary for comparing the two splitting strategies is

to have some benchmarks that require non-trivial amounts of splitting. To produce

such benchmarks, we randomly generated conjunctions of literals over the mutually

recursive algebraic data types nat, list, and tree mentioned in the introduction.

As expected, most of the benchmarks are quite easy. In fact, over half of them

are solved without any case splitting at all. However, a few of them did prove to

be somewhat challenging, at least in terms of the number of splits required. We

tried both the greedy and lazy strategies on all benchmarks and categorized the

benchmarks according to how many case splits were required in the worst case by

either strategy.

Table 4 shows the results. As expected, for easy benchmarks that don’t re-

quire many splits, the two algorithms perform almost identically. However, as the

difficulty increases, the lazy strategy performs much better. For the hardest bench-

marks, the lazy strategy outperforms the greedy strategy by more than an order of

magnitude. Notice that the disparity in case splits is even greater: for nontrivial

benchmarks, the number of case splits taken by the lazy strategy is always much

less than that taken by the greedy strategy: over two orders of magnitude for the

hardest benchmarks.

7This does not mean the total time is necessarily O(n). In general, processing a node includes
bidirectional closure and checking for cycles which requires O(n) steps (see [37], for example). So
the total processing time is bounded by O(n ·m), where m is the size of the derivation tree. In
this case, the total time is bounded by O(n2).

70



Worst Case Num. of Greedy Lazy
Splits Tests Sat Unsat Splits Time (s) Splits Time (s)
0 4416 306 4110 0 24.6 0 24.6
1-5 2520 2216 304 6887 16.8 2414 17.0
6-10 692 571 121 4967 5.8 1597 5.7
11-20 178 112 66 2422 2.3 517 1.6
21-100 145 73 72 6326 4.5 334 1.1
101+ 49 11 38 16593 9.8 73 0.3

Table 4: Greedy vs. Lazy Splitting

Part IV

Theorem Prover over Algebraic

Data Structures

13 Introduction and Motivation

In part IV we describe a concept theorem prover based on type theory, called Term

Builder, which has been developed to support reasoning about functions over alge-

braic types. Nonetheless, one can define much more involved theories and concepts,

and interactively prove theorems about them as well.

From the start of this concept project, we have been motivated by the idea to

base it entirely on the Curry-Howard Isomorphism, known as “Programs are Proofs,

Propositions are Types”. For an exposition of this paradigm, see references [16] and

[45]. Among the reasons for our choice of formalism, is the fact that the language

of programs and the language of proofs are the same, and can be mixed in every

way. Since proof checking coincides with type checking, type annotations can be

71



put into proofs without changing the syntax, just as the logical information can be

embedded in programs seamlessly. This lets us avoid having to program the same

things twice. For example, the following declarations carry no formal distinction to

the prover. Each one introduces a constant of a given type:

Set : Type declaration of a user defined type;

axiom1 : f(2) ≈ f(3) postulating an assertion;

append : List→ List→ List declaration of a function;

Another motivation has been to develop a clear, convenient, and intuitive user in-

terface. By now, the notion of Pure Type Systems (PTS, reference [18]) has become

standard, when talking about type systems. It continues to be a reference frame, rel-

ative to which other type systems are being positioned, or compared. Introduced by

Henk Barendregt in [4], the λ-cube is a particular family of PTS, where the calculus

of constructions, CC, is the most expressive one. Among even more powerful type

systems are the calculus of constructions with universes CCω (Alexandre Miquel,

[34]), which is an adaptation of the Extended Calculus of Constructions ECC (Luo

[30]) and the calculus of inductive constructions CIC. The expressiveness of our

type system is positioned between CC and CIC.

Our prover is not intended to be industrial strength, as it has very little automa-

tion, and even proofs of relatively simple statements require too much time. Also,

there are no built-in libraries of any kind, other than what has been proved and

saved by the user. Our type rules are borrowed sequentially from the subsystems of

CIC, in this order:

λ→ → System F → λP2 → CC

In our formalism, reductions are less essential since they carry computational

meaning. Instead, we concentrate on equations, as they constitute propositions.

72



Therefore, we view the programming language capabilities of Term Builder not as

a way to run programs, but as the means to define functions. This is what distin-

guishes Reductionism from Equationism.

The theme of reductionism and equationism can be found already in early, as

well as modern type theory, the λ-cube, and the proof verifier Coq. Essentially, if

two terms t1 and t2 reduce to the same normal form, it constitutes a proof of their

equality. This means, one has to make the proof checker step out into the meta

realm, the realm of execution of programs, rather than establish (t1 ≈ t2) by finding

an explicit proof term p : (t1 ≈ t2). Here again we opt for the explicit proof term of

an equality, even if it is in some sense isomorphic to the execution trace, that is, they

can be put into a piece by piece correspondence with each other. One way in which

our approach takes the equationist point of view, is by rejecting the conversion rule,

common in type systems. This rule is discussed in section 15.4.1. By avoiding this

rule (at the expense of adding some others) we do not rely on any computation on

propositions, but always treat them as static structures during proof-checking.

This idea of Replacement of Proof by Computation is sometimes referred to as

the Poincaré Principle. This issue is thoroughly examined by Henri Poincaré in ref-

erence [9]. In his essay “On the nature of mathematical reasoning” he analyses an

example which establishes 2 + 2 = 4. After the necessary arithmetic definitions and

calculations, he writes: It cannot be denied that this reasoning is purely analytical.

But if we ask a mathematician, he will reply: “This is not a demonstration properly

so called, it is a verification”. We have confined ourselves to bringing together one

or two purely conventional definitions, and we have verified their identity; nothing

new has been learned. Verification differs from proof precisely because it is analyti-

73



cal, and because it leads to nothing.

The Poincaré Principle has been part of the inspiration for Term Builder. Our

earliest attempts to build proofs automatically were based on the idea of extract-

ing them from computations. In a sense, this is a backwards reinterpretation of

the Poincaré Principle. Here are the details: we take a proposition, that is, an

instantiated programmable predicate, and expose it to partial symbolic evaluation,

resembling a backwards type-inference procedure. It turns out, that the proof of

the proposition originally taken, can be synthesized directly out of the trace of such

partial evaluation, once it has stopped. At a later stage of the development of Term

Builder, every step of such proof building method became a command button on

the user screen, which controls the proof construction process. The rest of this

document is organized as follows. Section 14 gives technical background, which is

necessary for understanding the rest. Section 15 explains the explicit extentions of

the standard formalism present in Term Builder, in particular, support of algebraic

types. Section 16 proves the soundness of Term Builder.

14 Theoretic Background

14.1 Preliminary Considerations

What is the essence of interpreting terms as proofs and propositions as types? A

lambda-abstraction (a function) λx : A. tB represents a proof of the proposition

(∀x : A. B). Furthermore, (t1 t2) is an application of function t1 to the argument

t2. When such applications are carried out, it is common to use the concept of

β-reduction, which looks as follows: ((λx : A. t)a) −→β t{a/x}. This means, the

λ-term (λx : A. t) of type (∀x : A. B) will yield a proof t{a/x} of B{a/x} for

74



every proof a of A. The connection between β-reduction and Modus Ponens will be

explained shortly using the Figure 12.

Calculus of constructions (reference [18]), denoted CC, is part of our formalism.

The grammar for the pre-terms of the calculus of constructions is given below. This

grammar does not distinguish any syntactic categories. This role is delegated to the

type rules presented later in full detail. The point of this grammar is to give the

shortest possible description of the totality of expressions in CC. Refinement of this

rough schema is given later in Table 5.

pre terms t :== x(variable) | λx : t. t | ∀x : t. t | (t t)

To illustrate again the use of abstraction and application, consider the following

example: Let f ≡ (λx : A. MB). Also let (a : A). Then (f a) is an application of

function f to a, and (f a) −→β M{a/x}B{a/x}.

Let us briefly recall the properties of typed λ-calculi, in particular, the dynamic

properties that relate computation with logic. First, a term is said to be in normal

form if it is not β-reducible. That is, it does not contain a β-reducible subexpression

(called a redex). Weak Normalization of a calculus states that for every typed

term there is a reduction sequence leading to a normal form. Strong Normalization

asserts that any sequence of reductions of a typed term ends with a normal form.

Existence of normal forms is essential for logic. Whenever we have Modus Ponens

as an intermediate step in our proof, this introduces a potential redex. For instance,

((λx : A. M)a) reduces to M{a/x}. This is equivalent to the proof normalization

step in Figure 12, where H and D are natural deduction style derivations, and H is

parametrized with a sub-derivation.

Normalizability implies that all such uses of Modus Ponens can be eliminated by

way of substitutions, as shown above. In turn, this means that all lemmas have

75



H ( assume A
A

)

B
A→ B

(discharge A)
D

A
B

−→
H ( D

A
)

B

Figure 12: Modus Ponens as β-reduction

been expanded and we end up with a proof from first principles. This phenomenon

is also related to Gentzen’s Cut Elimination (reference [20], pages 105-112), except

it has been originally carried out for the Sequent Calculus.

14.2 Overview of Dependent Type Theory

We assume the reader is acquainted with natural deduction, some type theory, and

its relation to mathematical logic, which is covered in references [16] and [45]. First,

we consider the grammatic categories that we shall encounter. They are called

terms, types, kinds, and type universes (Typei)
∞
i=1. Here is the lineup, with the

typing of each entity by the next one.

(a term) : (a Type) : (a Kind) : (Universe Type1) : (Universe Type2) : . . .

The constant Type is one of the “kinds” in CC, and � is the only universe in CC.

So the following sequence is an example of the above scheme:

((λx : X. x) : (X → X) : Type : �), where � has no type and ends the chain.

This setup with the single universe � is what we use in Term Builder. The fol-

lowing table shows which syntactic categories play a role in which systems:

Terms t ∈ λ→ System F λP2 CC CCω CIC
Types T ∈ λ→ System F λP2 CC CCω CIC
Kinds K ∈ λP2 CC CCω CIC
Universes U ∈ CCω CIC

76



Functions Types T Applications Comment

λ→ λx : T. t T → T (t t) plain implication

⊥ falsehood

F λx : T. t T → T (t t) plain implication

ΛX. t ΠX. T (t T ) parametric polymorphism

λP2 λx : T. t ∀x : T. T (t t) dependent types

λx : Type. t ∀X : Type. T (t T ) parametric polymorphism

λx : T. T T → Type (t t) predicates

CC λx : T. t ∀x : T. T (t t) dependent types

λx : Type. t ∀X : Type. T (t T ) parametric polymorphism

λx : T. T T → Type (t t) predicates

λx : Type. T Type→ Type (t T ) type transformers

Table 5: Features of Type Systems

For every system, assume that there are term variables x and type variables X.

Traditionally, in System F there is no “kinds” level, so the quantification over

types carries no domain of quantification, but uses Λ, instead of λ. Therefore,

expressions (ΛX. t) and (λX : Type. t) are equivalent. The same is true for (ΠX. T )

and (∀X : Type. T ). Now let us give further intuition about Table 5. In system

λ→, the type ⊥ is given explicitly, since otherwise the propositional logic basis of

λ→ would be incomplete. In contrast, in System F and beyond, there is a type,

equivalent to falsehood, namely ΠA. A, or equivalently, ∀A : Type. A. This term is

supposed to be empty due to the logical consistency requirement, which states that

not every proposition is provable. The domain of types (denoted Type) is an essential

constant within the framework of CC. Functions mapping data objects into this

domain are considered predicates. Recall that in our formalism propositions are

types, so by mapping objects into the domain of types, we express their properties,

77



i. e. : let a : A, P : A→ Type. Then (Pa) expresses property P of object a.

14.3 Dependent Types in the Systems of the Lambda Cube

In this section we describe the type rules, which we have taken from the calculus

of constructions to be integrated with the logic of Term Builder. They include

Modus Ponens (the dependent version), and the four dependency rules for the for-

mation of universally quantified types. To illustrate the dependencies across types

and terms, we first focus on the standard type rules which are taken from the pro-

gression of systems considered below (λ→, System F, λP2, CC). This progression

is cumulative: each rule presented for one system carries over to the next one. We

start with two basic rules, and the rest is filled in by considering the sequence of

those systems. The grammatic categories are as follows: f is a term, a is a term or

a type, A is a type or kind, and B is also a type or kind.

(axiom)

Γ, x : A ⊢ x : A

Γ ⊢ f : (∀x : A. B) Γ ⊢ a : A

Γ ⊢ (f a) : B{a/x}
(Modus Ponens)

Now we can give the incremental additions to the type system, corresponding to the

progression: λ→, System F, λP2, CC. Later we will see that the four dependency

rules presented here can be compacted into one general rule serving to form arbi-

trary λ-abstractions, and to generate universally quantified types.

14.3.1 Simply Typed Lambda Calculus (λ→)

Γ, x : A ⊢M : B Γ ⊢ A, B : Type (Terms dependent on Terms, λ→)

Γ ⊢ (λx : A. M) : (A→ B)

This is a standard rule capturing substitutions of terms into terms. For an example

of using this rule, let Γ, x : X ⊢ x : X, then Γ ⊢ (λx : X. x) : (X → X). For simply

78



typed calculus λ→, the standard arrow type (A → B) is sufficient, and serves as

abbreviation for (∀x : A. B), when x 6∈ FV (B) in more expressive systems. To

see this, it is sufficient to look at Table 5 and notice that for λ→ the type of a

λ-abstraction is an implication, but in λP2 the type already involves the universal

quantifier. In systems considered next, A → B must be replaced by (∀x : A. B).

This is a product type, whose intended meaning is a function space where the range

of each function depends on its argument.

14.3.2 System F

Γ ⊢ T : Type Γ, X : Type ⊢M : T (Terms dependent on Types, F)

Γ ⊢ (λX : Type. M) : (∀X : Type. T )

This rule gives us the second order type theory System F, since it allows quan-

tification over types, and types may appear as arguments to functions. This is

the origin of the term “parametric polymorphism”. We can write, say, an iden-

tity function over any type as follows: (λX : Type. λx : X. x). Its type would be

(∀X : Type. X → X), which also serves as a replacement for proposition “true”.

It is useful to recall J.-Y. Girard’s account on the naive interpretation of the quan-

tification over types. Namely, such interpretation says that an object of type ΛX.V

assigns an object of type V {U/X} for every type U . We reproduce his account

here from reference [20], page 83: “This interpretation runs up against a problem of

size: in order to understand ΠX.V , it is necessary to know all the V {U/X}. But

among all the V {U/X} there are some which are (in general) more complex than

the type which we seek to model, for example V {ΠX.V/X}. So there is a circularity

in the naive interpretation, and one can expect the worst to happen. In fact, it all

works out, but the system is very sensitive to modifications, which are not of logical

nature”. An example of such sensitivity is a quote by Thierry Coquand from his

work [14], page 19: “J.-Y. Girard told me that his results on the system U must

79



show that the calculus of constructions with four levels is inconsistent”.

14.3.3 Second Order Dependent Type Theory (λP2)

Γ ⊢ T : Type Γ, x : T ⊢M : Type (Types dependent on Terms, λP2)

Γ ⊢ (λx : T. M) : (T → Type)

This rule is significant from the logical point of view, since it gives us the notion

of predicates. When type expressions become instantiated with data objects, what

we get is concrete assertions. For example, if A : Type, then P : A → Type is a

predicate, and P (aA) is an assertion about a. Here we step outside of System F,

which does not have dependent types. An example of using a predicate within a

term is (λX : Type. λP : X → Type. λx : X. (P x)).

14.3.4 Calculus of Constructions CC

Γ, X : Type ⊢M : Type (Types dependent on Types, CC)

Γ ⊢ (λX : Type. M) : (Type→ Type)

Using this last dependency rule, one has the power to construct new types out of old

types. For example, let T be a type, and declare List : Type→ Type. Then (List T )

is the type of lists with elements of type T . Otherwise, we would have to create a

new list type for every element type. This problem has a workaround, for example

in C++, via templates. Note that we have only used ∀ and Type as our logical

primitives. We follow the standard technique to simplify matters, in particular,

every logical connector can be encoded in second order type theory System F.

This encoding is presented in Table 6. It is due to J.-Y. Girard, and appears in

reference [20].

80



⊥ ≡ (∀X : Type. X)
A→ B ≡ ∀x : A. B
¬A ≡ (A→ ⊥)
A ∧ B ≡ ∀X : Type. (A→ B → X)→ X
A ∨ B ≡ ∀X : Type. (A→ X)→ (B → X)→ X
∃x : A. B ≡ ∀X : Type. (∀x : A. B → X)→ X

Table 6: Translation of {⊥,¬,∨,∧,→, ∀, ∃} into {∀, Type}

14.4 Calculus of Algebraic Constructions

14.4.1 The Need for Dependent Case Analysis

It is well known that analysis by cases is representable in System F (reference

[20], pages 84-85). This applies if the branches of the conditional statement have

equal return types. However, a well recognized difficulty arises if we try to define

dependent case analysis where the type of each branch is a predicate, parametrized

with the argument that is analyzed by cases. The difficulty is that selection of

data fields from constructor terms is only possible “by values”, and cannot be done

in constant time (references [15], [20] page 91, [48]). Therefore, standard pattern

matching is impossible to represent internally. An illustration of the solution for

this situation is presented by the following example. Let N ::= {0 | S N}. This

denotes that a member of N is either the constant 0 or successor of another member

of N . The rule introducing the case operator for the type N looks as follows:

Γ ⊢ t : N Γ ⊢M1 : (P 0) Γ, m : N ⊢M2 : P (Sm)

Γ ⊢ (case (t) | of 0 7→M1 | of S m 7→ M2) : (P t)

The main point of interest is that this rule combines two cases. The first branch,

when t ≡ 0, returns a proof of the property P parametrized with the numeral 0.

The second branch, when t ≡ (Sm), returns a proof of the same property P for

a numeral (Sm). Altogether, based on this exhaustive combination of cases (two,

in this case) we are assured that P holds for all numerals, hence we are able to

81



derive the proposition (P t) for any t : N . Such dependent elimination principles

are accepted explicitly in the calculus of inductive constructions CIC. In the next

subsection we will present the restriction of CIC to the calculus with algebraic

types.

14.4.2 Adaptation of the Calculus of Inductive Constructions

Here we present a fragment of the calculus of inductive constructions CIC that is

relevant for our purposes. We do not use the full power of the calculus of inductive

constructions, but only what we will call “calculus of algebraic constructions”. It

includes a way to define an algebraic type, a type rule for dependent case analysis,

and conditional evaluation rule. We now denote the domains of types and kinds in

CIC by Type′ and �′ respectively, to make a syntactic distinction from Type and

�. Figure 13 presents the relevant fragment of CIC. The following declaration

is a particular case of an inductive type declaration for the calculus of inductive

constructions, as outlined in reference [39]:

inductive I : Type with

C1 : (X1,1 × . . .×X1,k1)→ I

. . . . . . . . . . . . . . . . . .

Cn : (Xn,1 × . . .×Xn,kn
)→ I

end

This declaration consists of the name of our algebraic type I, the constructor names

Ci and their argument types Xi,j. The rule below is the dependent case analysis

rule from the calculus of inductive constructions, as specified in reference [5]:

Γ ⊢ P : I → Type Γ ⊢ t : I {Γ, {xi,j : Xi,j}
ki

j=1 ⊢ ti : (P Cixi)}
n
i=1

Γ ⊢ match t in I return P with {Cixi 7→ ti}ni=1 : (P t)

82



Γ, x : T ⊢ x : T Γ ⊢ Type′ : �′
Γ ⊢M : A (A←→βι B)

Γ ⊢M : B (conv)

Γ ⊢ T : Dom Γ, x : T ⊢ U : Type′

Γ ⊢ (∀x : T.U) : Type′ (all)1

Γ ⊢ T : Dom Γ, x : T ⊢ U : �′

Γ ⊢ (∀x : T.U) : �′ (all)2

Γ, x : T ⊢M : U Γ ⊢ (∀x : T.U) : Dom

Γ ⊢ (λx : T.M) : (∀x : T.U) (abs)

Γ ⊢M : (∀x : T.U) Γ ⊢ N : T

Γ ⊢ (M N) : U{N/x} (app)

where Dom ∈ {Type′,�′} and (∀x : T.U) ≡ (T → U), if x 6∈ FV (U)

Γ ⊢ t : I Γ ⊢ P : I → Type′ {Γ, {xi,j : Xi,j}
ki

j=1 ⊢ ti(xi) : (P (Cixi))}
n
i=1

Γ ⊢ match (t) in I return P with {(Cixi) 7→ ti}
n
i=1 : (P t) (case)

where I ::= {C1 X1,1 . . . X1,k1 | . . . | Cn Xn,1 . . . Xn,kn
};

Reductions:

(beta) : (λx : T. M)N −→β M{N/x}
(iota) : match (Cja) in I return P with {Cixi 7→ ti}

n
i=1 −→ι tj{a/xj}

Convertibility:

Let (←→βι) be the reflexive transitive symmetric closure of
of the combination of (−→β) and (−→ι). For a term or a type B(x)
it is said that B{t1} ←→βι B{t2}, whenever t1 ←→βι t2.

Figure 13: Relevant Fragment of the Calculus of Inductive Constructions

The reduction below is a standard evaluation rule for the match clause in the calculus

of inductive constructions from [5]:

match (Cja) in I return P with {Cixi 7→ ti}ni=1 −→ι tj{a/xj}

The meaning of this reduction is as follows. When the argument’s top constructor

is Cj , it gets matched with the appropriate branch tj of the match clause. The data

vector a is then plugged into tj , which becomes the return value tj{a/xj}.

83



15 Type System of Term Builder

15.1 High Level Overview

Our calculus is a restriction of CIC to algebraic data types. For any given algebraic

data type there is a conditional case statement. Such case statements are used as

branching devices in our language of programs, which is the same as case analysis

in the language of proofs. Algebraic types are presented in part II of this thesis,

and also in [28]. The difference between “algebraic” and “inductive” is that the

constructors of algebraic types can only take arguments of algebraic types, while

the restriction for inductive types is not so strong. For example, a constructor of

an algebraic type C is not allowed to have an argument of a composite type, say,

a functional type (S → C). This is why the ground terms of algebraic data types

form free term algebras.

The overall idea behind the Term Builder type system is to borrow most

features from the calculus of constructions (including impredicativity of the sort

Type, and introduction and elimination rules for λ-abstractions). Another aim is

to free ourselves from the conversion rule. The latter part is done by introducing

equality as a primitive predicate along with two equality formation rules: (beta) and

(eval). Also, there is one equality elimination rule (leq), which treats a given equality

proposition as Leibniz equality. For example, if we are given the proposition (a1 ≈A

a2), we can infer an implication (P a1)→ (P a2) for any predicate (P : A→ Type).

It is shown in [20] that algebraic data types can be encoded within System F. We

prefer a more direct representation, namely, explicit declarations like in a functional

programming language, for example, “Haskell”.

This section is structured as follows. First we give explicit notation for algebraic

types and their constructors. Then we give an example using case analysis and

84



structural induction together, to illustrate general case analysis for algebraic types.

Later we turn our attention to the built-in polymorphic equality and motivate our

rejection of the conversion rule. This leads us into an analysis of our rules (beta),

(eval), (leq), which shows how we are able to avoid conversion.

15.2 Well Founded Recursion and Induction

A standard method to avoid non-well-foundedness of recursion or induction is to

generate custom terminating recursors for each inductive data type, like recursor R

for natural numbers from Gödel’s System T. (see references [20] pages 47-53, [48]

page 342). To simplify matters, we opt for explicit unbounded recursion. Naturally,

if not properly applied, it may produce unsound proofs, therefore, when we use

Term Builder, we must take into account appropriate restrictions that will guar-

antee well-foundedness, but are not part of the formal type rules. Below is the type

rule for recursive expressions. It works equally well for programs that use recursion,

and for proofs that use induction. We have purposely restricted the type of f to be

the function type here, since we would only like to consider recursion in functions

or induction in theorems. Let F = (∀x : A.B),

Γ, f : F ⊢M : F

Γ ⊢ (fix f : F. M) : F
(fix)

For this rule to be sound logically, we require that all recursive calls to function

f within M have an argument, which is an immediate subterm of the original

argument to f . This constitutes our “immediate-subterm induction” – the analogue

of primitive recursion in programming. To give an example by what we mean by

immediate subterm consider the factorial function:

f = fix f : N → N. case n | of 0 7→ 1 | of (Sm) 7→ n× f(m)

85



Since the recursion is on the variable n, and m is instantiated by an immediate

subterm of n, function f always terminates, so the recursion is well-founded, and

the induction is sound.

We have just seen a recursive program, using the functionality of case. How do

we use the functionality of case analysis to enable inductive proofs? Assume

P : (N → Type) is a predicate, and we want to establish ∀n : N. (P n). The

induction principle IndN along with its proof indN , is given here:

IndN ≡ (P 0)→ (∀k : N. (P k)→ (P (Sk)))→ ∀n : N. (P n)

indN = λp : (P 0). λγ : (∀k : N. (P k)→ (P (Sk))).

f ix f : (∀n : N. (P n)). λn : N. 〈P 〉 case n | of 0 7→ p | of S m 7→ (γ m (f m))

The term indN serves as an inductive proof of the proposition IndN , and also il-

lustrates how case analysis of algebraic arguments can be integrated into a proof

by induction. The fact that primitive recursion “realizes” induction is examined in

reference [39].

15.3 Dependent Typing of the Conditional Operator

Let us extrapolate the (case) rule that we have seen in subsection 14.4.1 onto the

general algebraic type C.

Γ ⊢ t : C Γ ⊢ P : C → Type {Γ, {xi,j : Xi,j}
ki

j=1 ⊢Mi(xi) : P (Ci xi)}ni=1

Γ ⊢ (〈P 〉 case (t) of C1 ... 7→M1(x1) | ... | of Cn ... 7→Mn(xn) : (P t) (case)

How can this be understood as reasoning by cases? Suppose we are given the

premises of the rule (case), namely the set:

86



{Γ, {xi,j : Xi,j}
ki

j=1 ⊢Mi(xi) : P (Ci xi)}ni=1

This is a complete set with respect to n, that is, a proof term Mi is present for each

constructor Ci ∈ {Ci}ni=1. Moreover, each Mi(xi) proves that the predicate P is valid

over any instantiation of the variables {xi,j}. Naturally, if Γ ⊢ t : C, then t has the

form (Ci vi,1 . . . vi,ki
) for some i, and therefore, Mivi proves the proposition P (Civi).

The predicate P , in which we are interested, has to be supplied as a syntactic part

of the conclusion of the rule (case). This is done by a prefix 〈λn : C. P (n)〉, or,

equivalently 〈P 〉, like in Coq. Without such explicit declaration it is not necessarily

always possible to infer it from the proof terms {Mi}
n
i=1.

Our branches {of (Cixi) 7→ Mi}ni=1 cover each one of the n constructors. Based

on that, each is assigned a dependent type corresponding to the constructor. For

instance, let the case expression be:

〈P 〉 case (t) { of (Cixi) 7→Mi}ni=1

Then by letting t ≡ Cjvj, the resulting type is the proposition (P (Cjvj)). Moreover,

the proof of this proposition is Mj{vj/xj}. Since all constructors of type C are

exhausted in this manner, we are sure that (P t) holds for any t : C.

15.4 Polymorphic Equality Predicate

15.4.1 Conversion Rule

Among other things, our approach differs from others in one important way. We

discard the conversion rule (shown below), which is considered to be part of λP2,

CC, and CIC (see references [4], [1] pages 81-86, [49], [38]).

Γ ⊢M : A Γ ⊢ A, B : Dom (A←→βι B)

Γ ⊢M : B (conv)

Dom ∈ {Type, �}

87



However, we have an alternative, consistent with our viewpoint, which uses equality

explicitly, as explained below. One of the problems with the conversion rule is that

it introduces strange polymorphism, which is sometimes exactly what we are trying

to avoid: it does not distinguish between “live code” and static objects of discourse.

If we want to prove P (3+5), it is not the same as proving P (8), since “3+5” should

be a structural constant inside the type. This is especially visible when we try to

prove 3 + 5 =N 8, and it gets reduced to 8 =N 8, which is not what we are proving.

However, if we wrote a live program 3+5, of course it should normalize to 8. Other

known approaches to type systems not modulo conversion are [19, 44, 40].

15.4.2 Rule for Polymorphic Equality

As an additional primitive construct we have a built-in polymorphic equality pred-

icate, and introduction and elimination rules for it. In general, equality is used

not only for algebraic types, but any typed entities. The type rule for the equality

predicate itself is given here:

Γ ⊢ A : Dom Dom ∈ {Type, �}

Γ ⊢ (≈A) : A→ A→ Type

Note that this captures not only equality of terms, but also equality over the “kinds”

level, that is, equality of types. This is coherent with the conversion rule, which

works for conversions of kinds in addition to conversion of types.

15.4.3 Beta Conversion

From an equationist point of view, we would like to be able to express and prove

statements of the form (λx.M)N ≈M{N/x}. For such occasions, the following rule

gives a simple equational solution:

88



Γ, x : A ⊢M : B Γ ⊢ N : A

Γ ⊢ Beta(λx : A.M, N) : (M{N/x} ≈B (λx : A.M)N)
(beta)

This rule enables us to construct proofs of equality of terms before and after β-

reduction.

15.4.4 Conditional Expression Reduction

Let us again use type N with zero and successor. Consider this informal example:

(case 17 | of 0 7→ p | of (Sm) 7→ f(m)).

According to the intended meaning, we would like to be able to derive the equality:

(case (17) | of 0 7→ p | of (Sm) 7→ f(m)) ≈ f(16).

More generally, let xi represent the vector of data variables, which are formal para-

meters of the constructor Ci. Also let vi represent the vector of data objects, such

that Γ ⊢ (Civi) : C. Now let us have the following syntactic equivalence agreements:

CASEj ≡ 〈P 〉 case (Cjvj) { of (Cixi) 7→ Mi}
n
i=1

Then we are in a position to perform the following derivation, where Eval(CASEj)

is the explicit proof term:

Γ ⊢ (〈P 〉 case (Cjvj) { | of (Cixi) 7→Mi}ni=1) : P (Cjvj)

Γ ⊢ Eval(CASEj) : (CASEj ≈P (Cjvj) Mj{vj/xj})
(eval)

Our example now looks like this:

Γ ⊢

CASE2︷ ︸︸ ︷
〈P 〉 case 17 | of 0 7→ p | of Sm 7→ f(m) : P (17)

Γ ⊢ Eval(CASE2) : (CASE2) ≈ f(16)

89



15.4.5 Leibniz Equality and Equation Elimination Rule

There is a standard approach to equality, namely, the observable equivalence. This

is called “Leibniz Equality”. It amounts to saying that if two objects are equal, this

means that they satisfy exactly the same set of predicates. For example, in reference

[3], Leibniz Equality is defined as the following predicate:

λA : Type. λx : A. λy : A. ∀P : A→ Type. (Py)→ (Px)

Our rules (beta), (eval), (leq) fit together to compensate for the absence of the

conversion rule in Term Builder. Here is the rule (leq). The purpose of this rule is

to draw the conclusion of observable equivalence, just like Leibniz Equality is meant

to do.

Γ ⊢M, N : A Γ ⊢ A : Type Γ ⊢ e : (M ≈A N) Γ ⊢ P : A→ Type

Γ ⊢ LeibnizEq(M, N, e, P ) : (P M)→ (P N)
(leq)

16 Soundness

16.1 Proof Overview

The approach to proving soundness of Term Builder is explained below. This, of

course, would only be a “relative soundness”. The relativity comes from the fact

that Term Builder does not check for well foundedness of types or non termination

of functions, so it is up to the user not to allow these things (i.e. when the context

file for a proof session is being prepared). Also, this applies to the rule of typing

recursive functions. Even though it is a built-in rule, it is the only one that cannot

be trusted unconditionally. The reason for such mistrust is that the rule (fix) can

be used to program nonterminating terms, which leads to unsoundness in proofs.

The approach that we take is to embed Term Builder without the rule (fix) within

CIC, since soundness of CIC is a well known fact (reference [49]).

90



Γ, x : A ⊢ x : A Γ ⊢ Type : �

Γ ⊢ A : D D ∈ {Type,�}
Γ ⊢ (≈A) : A→ A→ Type

Γ, f : A ⊢M : A

Γ ⊢ (fix f : A. M) : A
(fix)

Γ ⊢ A : D Γ, x : A ⊢ B : Type

Γ ⊢ (∀x : A.B) : Type (all)1

Γ ⊢ A : D Γ, x : A ⊢ B : �

Γ ⊢ (∀x : A.B) : � (all)2

Γ, x : A ⊢M : B Γ ⊢ (∀x : A.B) : D

Γ ⊢ (λx : A.M) : (∀x : A.B) (abs)

Γ ⊢M : (∀x : A.B) Γ ⊢ N : A

Γ ⊢ (M N) : B{N/x} (app)

where D ∈ {Type,�} and (∀x : A.B) ≡ (A→ B), if x 6∈ FV (B)

Γ ⊢ t : C Γ ⊢ P : C → Type {Γ, {xi,j : Xi,j}
ki

j=1 ⊢Mi : (P (Cixi))}
n
i=1

Γ ⊢ (〈P 〉 case (t) of (C1x1) 7→M1 | ... | of (Cnxn) 7→Mn : (P t) (case)

where C ::= {C1 X1,1 . . . X1,k1 | . . . | Cn Xn,1 . . . Xn,kn
};

Γ, x : A ⊢M : B Γ ⊢ N : A

Γ ⊢ Beta(λx : A.M,N) : ((λx : A.M)N ≈M{N/x})
(beta)

Γ ⊢ (〈P 〉 case (t) {of (Cixi) 7→Mi(xi)}
n
i=1) : (P t)

Γ ⊢ Eval(CASEj) : (CASEj ≈P (Cjvj) Mj{vj/xj})
(eval)

where CASEj ≡ 〈P 〉 case (Cjvj) {of (Cixi) 7→Mi(xi)}
n
i=1

Γ ⊢M,N : A : D ∈ {Type,�} Γ ⊢ e : (M ≈A N) Γ ⊢ P : A→ Type

Γ ⊢ LeibnizEq(M,N, e, P ) : (P M)→ (P N) (leq)

Figure 14: Complete Set of Proof Rules of Term Builder

16.2 Translations between Term Builder and CIC

Definition 1. TB ⊲ Γ ⊢ t : A means that term t has type A in context Γ, and that

this is provable within Term Builder.

Definition 2. CIC ⊲ Γ′ ⊢ A′ means that statement A′ holds in context Γ′ within

the calculus of inductive constructions. Such a statement may be a type assignment,

or beta-reducibility, or other meta property.

(Qualifiers TB and CIC are optional, when clear from context).

91



Contexts Interpretation
[[∅]] ∅
[[Γ, x : A]] [[Γ]], x : [[A]]

Expression Interpretation
[[x]] x
[[Type]] Type′

[[�]] �′

[[λx : A. M ]] λx : [[A]].[[M ]]
[[∀x : A. B]] ∀x : [[A]].[[B]]
[[(M N)]] ([[M ]] [[N ]])
[[(Civi)]] (Ci[[vi]]) (Ci is a constructor)
[[≈T ]] λx : [[T ]]. λy : [[T ]]. ∀P : [[T ]]→ Type′. (Px)→ (Py)
[[Beta(λx.MB , N)]] λP : [[B]]{[[N ]]/x} → Type′. λp : (P [[(λx.M)N ]]). p
[[Eval(cT )]] λP : [[T ]]→ Type′. λp : (P [[c]]). p
[[LeibnizEq(M,N, e, P )]] λp : [[(PM)]]. p
[[〈P 〉 case (t)C match [[t]] in [[C]] return [[P ]]
{of (Cixi) 7→Mi(xi)}

n
i=1]] with {(Cixi) 7→ [[Mi(xi)]]}

n
i=1

Table 7: Encoding of Term Builder in CIC

We introduce the operation [[ ]], which represents the translation of Term Builder

expressions into the calculus of inductive constructions. Table 16.2 represents the

action of this operation.

16.2.1 Reflection of Term Builder in CIC

Theorem 16.1. (Substitution Lemma) The following substitution property exists

between Term Builder and CIC. If M(x) and N are terms in Term Builder

then the following syntactic identity holds:

[[M{N/x}]] ≡ [[M ]]{[[N ]]/x}

Proof. This lemma follows immediately by standard structural induction on M .

Theorem 16.2. If in Term Builder Γ ⊢ t : (M ≈ N), for some t, then

CIC ⊲ [[Γ]] ⊢ ([[M ]]←→βι [[N ]])

92



Proof. Equality types in Term Builder can originate from β-reduction, or from

case statement evaluation. We consider these two cases below:

• Suppose that the Term Builder derivation ends with this clause:

TB ⊲ Γ ⊢ Beta(λxA.M, N) : (M{N/x} ≈ (λxA.M)N)

The following line of reasoning gives us the desired result:

(λx : [[A]].[[M ]])[[N ]] ←→βι [[M ]]{[[N ]]/x} (by β-reduction in CIC)
(λx : [[A]].[[M ]])[[N ]] ←→βι [[M{N/x}]] (by substitution lemma)
[[(λx : A.M)N ]] ←→βι [[M{N/x}]] (by definition of the encoding)

• Now let C be an algebraic type with constructors {Ci}
n
i=1, and let t ≡ (Cjvj).

Suppose now that our Term Builder derivation ends with the following equality:

TB ⊲ Γ ⊢ Eval(CASEj) : (CASEj ≈Mj{vj/xj})

We need to validate the statement CIC ⊲ [[CASEj ]]←→βι [[Mj{vj/xj}]]. First, by
definition:

CASEj ≡ 〈P 〉 case (Cjvj) {of (Cixi) 7→ Mi(xi)}ni=1

[[CASEj ]] ≡ match (Cj[[vj]]) in [[C]] return [[P ]] with {(Cixi) 7→ [[Mi(xi)]]}ni=1

[[CASEj ]] −→βι [[Mj ]]{[[vj]]/xj} (by the reduction in CIC)
≡ [[Mj{vj/xj}]] (by substitution lemma)

Theorem 16.3. If TB ⊲ Γ ⊢ t : A then CIC ⊲ [[Γ]] ⊢ [[t]] : [[A]].

Proof. We will prove the statement by structural induction over the type derivation.

The base cases correspond to the axioms of the type systems, and the inductive cases

are based on the remaining type rules.

• First let us look at what happens to the axioms of CIC and Term Builder.

Consider the derivation step:

(axiom)

TB ⊲ Γ, x : A ⊢ x : A

93



We need to validate that CIC ⊲ [[Γ, x : A]] ⊢ [[x]] : [[A]]. By definition, [[Γ, x : A]] =
[[Γ]], x : [[A]] and [[x]] = x. Therefore, in CIC we have:

CIC ⊲ [[Γ]], x : [[A]] ⊢ x : [[A]]
CIC ⊲ [[Γ, x : A]] ⊢ [[x]] : [[A]]

Now consider the axiom Γ ⊢ Type : �. This is true for any context Γ, so we do not

have to worry about the transformation into [[Γ]]. We need to validate

CIC ⊲ [[Γ]] ⊢ [[Type]] : [[�]].

By definition, [[Type]] = Type′ and [[�]] = �
′. By the rule of CIC, we have:

CIC ⊲ [[Γ]] ⊢ Type′ : �′.

• Now let us look at the Term Builder derivation that ends with this step:

TB ⊲ Γ, x : A ⊢M : B TB ⊲ Γ ⊢ (∀x : A.B) : U ∈ {Type, �}

TB ⊲ Γ ⊢ (λx : A.M) : (∀x : A.B)
(abs)

First, [[Γ, x : A]] = [[Γ]], x : [[A]]. Then we have:

CIC ⊲ [[Γ]] ⊢ [[∀x : A.B]] : [[U ]] (by inductive hypothesis)
CIC ⊲ [[Γ]] ⊢ ∀x : [[A]].[[B]] : [[U ]] (by definition of encoding)
CIC ⊲ [[Γ, x : A]] ⊢ [[M ]] : [[B]] (by inductive hypothesis)
CIC ⊲ [[Γ]], x : [[A]] ⊢ [[M ]] : [[B]] (by definition of encoding)
CIC ⊲ [[Γ]] ⊢ (λx : [[A]].[[M ]]) : (∀x : [[A]].[[B]]) (by abstraction rule of CIC)
CIC ⊲ [[Γ]] ⊢ [[(λx : A.M)]] : [[(∀x : A.B)]] (by definition of encoding)

• Here we look at another case of our proof, the derivation ending in:

TB ⊲ Γ ⊢ A : U1 TB ⊲ Γ, x : A ⊢ B : U2 U1,2 ∈ {Type, �}

TB ⊲ Γ ⊢ (∀x : A.B) : U2

(all)1,2

We need to validate that CIC ⊲ [[Γ]] ⊢ [[(∀x : A.B)]] : [[U2]]. By inductive hypothesis,

in CIC we have CIC ⊲ [[Γ]] ⊢ [[A]] : [[U1]] and also CIC ⊲ [[Γ, x : A]] ⊢ [[B]] : [[U2]].

[[U2]] can be either Type′ or �′. In either case, we have:

94



CIC ⊲ [[Γ, x : A]] ⊢ [[B]] : [[U2]] (by inductive hypothesis)
CIC ⊲ [[Γ]], x : [[A]] ⊢ [[B]] : [[U2]] (by definition of encoding)
CIC ⊲ [[Γ]] ⊢ ∀x : [[A]].[[B]] : [[U2]] (by rule (all) of CIC)
CIC ⊲ [[Γ]] ⊢ [[(∀x : A.B)]] : [[U2]] (by definition of encoding)

• Consider the derivation that ends with this step:

TB ⊲ Γ ⊢M : (∀x : A.B) TB ⊲ Γ ⊢ N : A

TB ⊲ Γ ⊢ (M N) : B{N/x}
(app)

By inductive hypothesis, and by substitution lemma, we have:

CIC ⊲ [[Γ]] ⊢ [[M ]] : [[∀x : A.B]] (by inductive hypothesis)
CIC ⊲ [[Γ]] ⊢ [[M ]] : (∀x : [[A]].[[B]]) (by definition of encoding)
CIC ⊲ [[Γ]] ⊢ [[N ]] : [[A]] (by inductive hypothesis)
CIC ⊲ [[Γ]] ⊢ ([[M ]][[N ]]) : [[B]]{[[N ]]/x} (by the rule (app) of CIC)
CIC ⊲ [[Γ]] ⊢ [[(M N)]] : [[B{N/x}]] (by substitution lemma)

• Let C be an algebraic type with constructors {Ci}ni=1. Suppose that our Term

Builder derivation ends as follows: (we omit the qualifier TB ⊲ here)

Γ ⊢ t : C Γ ⊢ P : C → Type {Γ, {xi,j : Xi,j}
ki

j=1 ⊢Mi : (P (Cixi))}ni=1

Γ ⊢ (〈P 〉 case (t) {of (Cixi) 7→Mi}ni=1 : (P t) (case)

By inductive hypothesis [[Γ]] ⊢ [[t]] : [[C]], [[Γ, {xi,j : Xi,j}]]
ki

j=1 ⊢ [[Mi]] : [[(P (Cixi))]],

and [[Γ]] ⊢ [[P ]] : [[C]]→ Type′. Recall the equivalence:

[[〈P 〉 case (t)C {of (Cixi) 7→Mi}ni=1]] ≡

match [[t]] in [[C]] return [[P ]] with {(Cixi) 7→ [[Mi]]}
n
i=1.

By rule (case) in CIC, the last expression has type ([[P ]][[t]]), which is equal to

[[(P t)]]. Therefore, we have:

CIC ⊲ [[Γ]] ⊢ [[〈P 〉 case (t)C {of (Cixi) 7→Mi}ni=1]] : [[(P t)]]

• Suppose that the Term Builder derivation ends as follows:

TB ⊲ Γ ⊢ Beta(λx.M, N) : ((λx.M)N ≈D M{N/x})
(beta)

95



The following argument covers this case: let α ≡ (λx.M)N , and γ ≡M{N/x}.

CIC ⊲ [[Γ]] ⊢ ([[α]]←→βι [[γ]]) (by theorem 16.2)
CIC ⊲ [[Γ]], P : [[D]]→ Type′ ⊢ (P [[α]])←→βι (P [[γ]]) (since [[α]]←→βι [[γ]])
CIC ⊲ [[Γ]], P : [[D]]→ Type′, p : (P [[α]]) ⊢ p : (P [[α]]) (by the axiom of CIC)
CIC ⊲ [[Γ]], P : [[D]]→ Type′, p : (P [[α]]) ⊢ p : (P [[γ]]) (by conversion rule in CIC)

Finally, by abstraction rule applied twice:

CIC ⊲ [[Γ]] ⊢ (λP : [[D]]→ Type′. λp : (P [[α]]). p) : (∀P : [[D]]→ Type′. (P [[α]])→ (P [[γ]]))

This corresponds to: CIC ⊲ [[Γ]] ⊢ [[Beta(λx.M,N)]] : [[(λx.M)N ≈D M{N/x}]]

• Suppose that the Term Builder derivation ends as follows:

TB ⊲ Γ ⊢ Eval(CASEj) : (CASEj ≈T Mj{vj/xj})
(eval)

First, observe that:

[[Eval(CASEj)]] ≡ λP : [[T ]]→ Type′. λp : (P [[CASEj ]]). p

[[CASEj ≈T Mj{vj/xj}]] ≡ ∀P : [[T ]]→ Type′. (P [[CASEj]])→ (P [[Mj{vj/xj}]])

Now we continue to reason as follows: let α ≡ CASEj and γ ≡Mj{vj/xj}.

CIC ⊲ [[Γ]] ⊢ ([[α]]←→βι [[γ]]) (by theorem 16.2)
CIC ⊲ [[Γ]], P : [[T ]]→ Type′ ⊢ (P [[α]])←→βι (P [[γ]]) (since [[α]]←→βι [[γ]])
CIC ⊲ [[Γ]], P : [[T ]]→ Type′, p : (P [[α]]) ⊢ p : (P [[α]]) (by the axiom rule)
CIC ⊲ [[Γ]], P : [[T ]]→ Type′, p : (P [[α]]) ⊢ p : (P [[γ]]) (by the conversion rule)

Finally, by the abstraction rule applied twice:

CIC ⊲ [[Γ]] ⊢ λP : [[T ]]→ Type′. λp : (P [[α]]). p : ∀P : [[T ]]→ Type′. (P [[α]])→ (P [[γ]])

Or, equivalently, CIC ⊲ [[Γ]] ⊢ [[Eval(CASEj)]] : (CASEj ≈T Mj{vj/xj})

• Suppose that the Term Builder derivation ends by typing the equality predicate:

TB ⊲ Γ ⊢ (≈T ) : T → T → Type

We reason as follows:

96



CIC ⊲ [[Γ]], x : [[T ]], y : [[T ]], P : [[T ]]→ Type′ ⊢ (Py) : Type′ (by rule (app))
CIC ⊲ [[Γ]], x : [[T ]], y : [[T ]], P : [[T ]]→ Type′ ⊢ (Px) : Type′ (by rule (app))
CIC ⊲ [[Γ]], x : [[T ]], y : [[T ]], P : [[T ]]→ Type′ ⊢ (Px)→ (Py) : Type′ (by rule (all)1)
CIC ⊲ [[Γ]], x : [[T ]], y : [[T ]] ⊢ ∀P : [[T ]]→ Type′. (Px)→ (Py) : Type′ (by rule (all)1)
CIC ⊲ [[Γ]] ⊢ λx. λy. ∀P. (Px)→ (Py) : [[T ]]→ [[T ]]→ Type′ (by rule (abs))

By definition of the encoding, this is equivalent to:

CIC ⊲ [[Γ]] ⊢ [[≈T ]] : [[T → T → Type]]

• At last imagine that our Term Builder derivation ends as follows:

TB ⊲ Γ ⊢M, N : A TB ⊲ Γ ⊢ e : (M ≈A N) . . . . . .

TB ⊲ Γ ⊢ LeibnizEq(M, N, e, P ) : (P M)→ (P N)
(leq)

By Theorem 16.2 applied to term e: CIC ⊲ [[Γ]] ⊢ ([[M ]] ←→βι [[N ]]).

And by inductive hypothesis [[M ]], [[N ]] : [[A]].

Since [[M ]] ←→βι [[N ]], we have: ([[P ]][[M ]]) ←→βι ([[P ]][[N ]]). By definition of our

encoding, [[(PM)]]←→βι [[(PN)]]. Let x : [[(PM)]] in CIC. Then by rule (conv) and

rule (abs),

CIC ⊲ [[Γ]], x : [[(PM)]] ⊢ x : [[(PN)]]

CIC ⊲ [[Γ]] ⊢ (λx : [[(PM)]]. x) : [[(PM)]]→ [[(PN)]]
(abs)

By definition of the encoding:

CIC ⊲ [[Γ]] ⊢ [[LeibnizEq(M, N, e, P )]] : [[(PM)→ (PN)]]

16.2.2 Soundness Theorem

Theorem 16.4. Term Builder is based on consistent logic, modulo rule (fix).

Proof. Assume that Term Builder is inconsistent. Then TB ⊲ ∅ ⊢ (∀A : Type. A).

By Theorem 16.3, CIC ⊲ ∅ ⊢ [[(∀A : Type. A)]], or equivalently, CIC ⊲ ∅ ⊢ (∀A :

Type′. A) according to the encoding. Since the last statement is false, because CIC

is consistent, Term Builder is also consistent.

97



Part V

Using the Theorem Prover

17 User Interface of the Main Proof Window

The proof process starts by loading a context file, which contains all axioms, def-

initions, and type declarations. Thereafter, a formula to be shown is loaded from

another file, and it must be compatible with the context, using only the notation

predefined there. The prover itself works in two modes, proof mode and use mode.

In proof mode, the so-called target formula on the bottom of the window is what

we need to prove. In use mode, the formula on the bottom is already established,

and we are looking to extract information from it to place into the context for later

developments. The prover automatically detects what commands are appropriate

in its current state. In section 18 we describe each such command, which is repre-

sented by a button on the main screen of Term Builder, what it does, and why it

is useful.

The view of the main Term Builder window is presented in Table 8. The

commands are situated on the right side, while the middle is reserved for the current

context. By default we get the reflexivity proof constant and the identity function,

whose type is equivalent with the constant true. Each proof term is tagged with the

label, indicating the syntactic category to which the term belongs. The tags are as

follows:

98



Table 8: Appearance of the Main Proof Window
Term Builder
Context: Add Axiom to Context ... Mode: PROOF/USE
Term Type Command

[V] Refl ∀E : Type. (∀e : E. e ≈E e) Lambda abstract
[Λ] λA : Type... ∀A : Type. (A→ A) Generalize With...

Add as Hypothesis
Unify with Target
Expand Definition
Case Evaluation
Enter Case Split...
Upload Lemma...
Enter Use Mode
Instantiate With...
Prove Antecedent
Return from Use
Use Reflexivity
LHS ∩ LHS
Match and Return

Proof Current Formula

[V] variable
[λ] lambda abstraction on the object level
[Λ] lambda abstraction on the type level
[H] inductive hypothesis
[A] function application term
[C] case expression
[Y] recursive expression

In the next section we discuss each command on the main proof screen. Where

applicable, we illustrate how the applications of these commands are translated

into the internal proof rules. We show partial proof trees with the root on the

bottom and the branches directed upwards, indicating the proof steps associated

with corresponding prover commands.

99



18 Overview of Prover Commands

Load Axiom into Context. Axioms from the context file do not all appear in the

visual context of the proof window. While some definitions of programmable functions

and operators can be imported automatically by Term Builder, other axioms require

explicit acquisition in order to be used by instantiation.

Lambda Abstract. Whenever the target formula has the shape A → B or ∀x : A. B,

we have the option of detaching the logical assumption A into the context by issuing this

command and continue to work on the proof of B, using assumption A. Here is the rule-

based representation of this step, where the • characters indicate the places of the sought

proof terms:

. . .

Γ, x : A ⊢ • : B

Γ ⊢ • : (A→ B) by rule (abs)

Generalize With. If the current target formula has a free variable x, we might wish

to strengthen it by placing the quantification (∀x) in front. One of the uses of such

generalization in proof mode is to prepare to introduce a new induction hypothesis. Here

is the proof step:

Γ, x : A ⊢ x : A

. . .

Γ ⊢ • : (∀x : A. B(x))

Γ, x : A ⊢ • : B(x) by rule (app)

Add as Hypothesis. This command adds the current formula as an inductive hypothesis

to the context. It may later be invoked into use mode, and instantiated. For an illustration,

let us consider ∀x : N. 0 + x ≈ x. This assertion happens to be inductive, so we go ahead

100



and add it to the context as a hypothesis. We also immediately lambda abstract the

bound variable x in the target, so that the context now looks as follows:

Γ,H : (∀x : N. 0 + x ≈ x), x : N ⊢ 0 + x ≈ x

We cannot use H immediately, we are only allowed to use it via induction on x. Namely,

when we get to a point in our proof when a case split over the open variable x is performed,

we will get a variable, which represents a substructure of what x represents. Then we can

plug it into H, and proceed by induction, based on the definition of (+) and other elements

of the formula.

Unify with Target. For example, let our current target be α ≈ γ, and in the context we

have t : α ≈ β. Suppose also that β ≈ γ is easier to prove than the target. Then we may

want to unify t with the target to obtain an easier target β ≈ γ. Below is a rule-based

illustration of these manipulations:

Γ ⊢ e : β ≈ γ Γ ⊢ (λx : X. α ≈ x) : (X → Type)

Γ ⊢ t : (α ≈ β)
Γ ⊢





LeibnizEq(β, γ, e, λx : X. α ≈ x)

: (α ≈ β)→ (α ≈ γ)





by rule (leq)

Γ ⊢ (LeibnizEq(β, γ, e, λx : X. α ≈ x) t) : (α ≈ γ) by rule (app)

Expand Definition. The user will be presented with a choice of functions or predicates,

currently in the formula, in order to choose, which definition to unroll to proceed further.

For example, if we had (h k) as a choice for expansion, and our context had an axiom:

def : ((h) ≈ λx.H), then (h k) would be replaced accordingly by an instantiation H{a/x}.

The following is the rule-based view of the process:

Given the term E1 of type K(h k), we want to perform an expansion of function symbol

h, based on the definition def . Let us define the following abbreviations:

101



L1 = LeibnizEq(h, (λx.H), def , (λf.Refl(f k))) : (h k) ≈ ((λx.H)k)

B1 = Beta((λx.H)k,H{k/x}) : ((λx.H)k) ≈ H{k/x}

L2 = LeibnizEq((h k), (λx.H)k, L1,K) : K(h k)→ K((λx.H)k)

L3 = LeibnizEq((λx.H)k,H{k/x}, B1 ,K) : K((λx.H)k)→ K(H{k/x})

It is now easy to present the final construction in the Term Builder type system:

E1 : K(h k) L2 : K(h k)→ K((λx.H)k)

(L2 E1) : K((λx.H)k) by rule (app) L3 : K((λx.H)k)→ K(H{k/x})

(L3(L2 E1)) : K(H{k/x}) by rule (app)

Case Evaluation. This feature allows us to perform a desirable simplifying operation.

When a case statement has an argument which matches a branch, it reduces to what is

in that branch. As a target formula, let K be some context, and the case statement is

inside. We will present what is happening inside the prover in terms of using proof rules

with the following illustration:

Let C ::= {C1 X1,1 . . . X1,k1 | . . . | Cn Xn,1 . . . Xn,kn
} be an algebraic type, and

let CASEj ≡ (〈P 〉 case Cjvj {of Cixi 7→Mi}
n
i=1). Then:





Γ ⊢ t : C

Γ ⊢ P : C → Type



 {Γ, {xi,j : Xi,j}

ki

j=1 ⊢Mi : (P (Cixi))}
n
i=1

Γ ⊢ (〈P 〉 case t {of Cixi 7→Mi}
n
i=1) : (P t) by rule (case)

Γ ⊢ Eval(CASEj) : (CASEj ≈Mj{vj/xj})
by rule (eval)

Γ ⊢ K : P (Cjvj)→ Type

Γ ⊢





LeibnizEq(Mj{vj/xj}, CASEj , Eval(CASEj), K)

: K(Mj{vj/xj})→ K(CASEj)





by rule (leq)

Γ ⊢ k0 : K(Mj{vj/xj})

Γ ⊢





(LeibnizEq(Mj{vj/xj}, CASEj, Eval(CASEj), K) k0)

: K(CASEj)





by rule (app)

102



Enter Case Split. This is the least attractive and least economical feature (in terms of

proof amount), but a necessary one for proofs by structural induction. Basically, upon

selecting an open variable of an algebraic type A in current target formula, we split into

cases based on the constructors of A. Suppose we work with Peano Arithmetic, and our

split is based upon a variable n : N , where N ::= {0 | S N}, and we want to prove

∀n : N. (P n). There will be two branches, one to prove (P 0) and the other to prove

(P k) for k > 0. The types of the branches are (P 0) and (P k), but the type of the

entire case operator is (P n). We will illustrate the case split as follows. The proof terms

p : (P 0) and q : (P (Sm)) are exactly those that have to be completed in each of the two

branches respectively:





Γ, n : N ⊢ n : N

Γ ⊢ P : N → Type



 Γ ⊢ p : (P 0) Γ,m : N ⊢ q : (P (Sm))

Γ, n : N ⊢ (〈P 〉 case n of 0 7→ p | of Sm 7→ q) : (P n) by rule (case)

Γ ⊢ λn : N. 〈P 〉 case n of 0 7→ p | of Sm 7→ q) : (∀n : N. (P n)) by rule (abs)

Upload Lemma. This command loads a proof prepared earlier into the Term Builder

context, so it does type checking right after reading in a file, and the lemma may later

become part of the current proof. We emphasize that what is loaded is a proof file in

Term Builder language, not the statement of a lemma. The statement is inferred upon

checking the proof.

Enter Use Mode. Normally we find ourselves in proof mode. However, we may have

declared an induction hypothesis, or loaded an axiom, which we now want to use. What

we do is we fetch it from the context and enter use mode. This mode is dual to proof

mode. Statements like ∀x : X. Y can be instantiated by a choice of expressions of type

X. Also, if the current formula is A→ B, then A cannot be considered established in use

mode, while in proof mode we must prove B as though A is already known to hold.

103



Instantiate With. This feature lets us utilize an established proposition when we are

in use mode. For example, ∀x : A. B can be instantiated with an available expression of

type A. The rule-based view of this command is a simple application of Modus Ponens:

Γ ⊢ t : (∀x : A. B) Γ ⊢ a : A

Γ ⊢ (t a) : B{a/x}
(app)

Prove Antecedent. Suppose we are in use mode and the formula that we want to use is

f : A→ B. In order to use it, we have the option of proving A and then having B as an

established fact. This command lets us do just that: we enter proof mode with the target

A, and upon successfully returning back, we have (a : A). It gets used automatically,

and we end up with (f a) : B as a formula for further use. The rule-based view of this

command is again an application of Modus Ponens:

Γ ⊢ f : A→ B Γ ⊢ a : A

Γ ⊢ (f a) : B
(app)

Return From Use. Once we are done using a proposition for the time being, we exit

the current use mode. After the exit, the current formula from the use mode screen gets

moved to the context for future use.

Use REFL.

If our target formula has the form K ≈ K, it gets proved via this feature.

LHS ∩ LHS. This feature is related to Unify with Target. Assume that our current

target is f(g(a)) ≈ f(g(b)). However, when f and g are uninterpreted, there is no imme-

diate way to prove this even if a ≈ b. Instead, if we add an equation f(g(a)) ≈ f(g(a)) to

the context, and then unify it with the target, the unification task will look like this:

104



t =





(Cons V126 V125) −→ l =





(Cons V153 V152)

null −→ V125 =

{
(Cons V560 V559)
null

null −→ l =

{
(Cons V586 V585)
null

Figure 15: Case Splitting Tree of the Proof

f g a ≈ f g a

f g a ≈ f g b

Each component on the top line would unify trivially with its counterpart on the bottom,

except that the only remaining equality left to establish would be a ≈ b. The further

idea is explained by the following steps. Having constructed a proof e : a ≈ b, we build

the term LeibnizEq(a, b, e, λx.f(g(a)) ≈ f(g(x))). It has type (f(g(a)) ≈ f(g(a))) →

(f(g(a)) ≈ f(g(b))). The antecedent is true by reflexivity, and we can conclude that our

goal is reached by simple Modus Ponens.

Match and Return. This function lets us finish with the current screen, if we already

have what is being asked. By selecting an item from the context that matches the goal,

we complete the proof of the current target. For example, if we want to establish A and

Γ ⊢ t : A, then we can use the term t.

19 Example of a Proof Session

In this section we will demonstrate the functionality of Term Builder using an

example combining the data type of lists, natural numbers, and arithmetic. The

statement that we are going to prove is:

105



N : Type {O | S N};
NList : Type {null | Cons N NList};

(+) : N → N → N ;
def plus : ((+) ≈ (λx : N. λy : N. case 〈λn : N. N〉 (y)

{of O 7→ x}
{of (Sw) 7→ (S(x + w))}));

append : NList → NList → NList ;
def append : (append ≈ λl : NList . λt : NList . case〈λq : NList . NList〉 (l)

{of null 7→ t}
{of (Cons n k) 7→ (Cons n (append k t))});

len : NList → N ;
def len : (len ≈ λl : NList . case〈λq : NList . N〉 (l)

{of null 7→ O}
{of (Cons n t) 7→ (S(len t))});

Table 9: User Defined Context

∀t : NList . ∀l : NList . (len(append t l)) ≈ (len t) + (len l)

where N is the type of natural numbers, NList is the type of lists made of elements of

N , len is the list length function, and append is the operation of list concatenation.

All these components are user-defined. There is nothing that the system knows,

even about the function (+), before the user provides necessary definitions. Once

that is done, and only then, will this statement have the intended meaning that the

length of the combined list is equal to the sum of two lengths. Table 9 shows the

user defined context, necessary to carry out our proof. Each line is a declaration of

a constant along with its type. As can be seen, some types are equality statements

which serve to define functions. Figure 15 is the diagram of all the case splits

which are done in this proof. Branching is based on the set of all constructors for a

given data type. The equality sign following a variable indicates which expressions

are used instead of it, after the branching point. The arrows indicate the flow of

106



proof, i.e. which case choices lead to next case choices. We now proceed with the

description of the proof session. We start the proof session by displaying the default

screen with the formula to be proved at the bottom:

Term Builder
Context: Mode: PROOF
Term Type

[V] Refl ∀E : Type. (∀e : E. e ≈E e)
[Λ] λA : Type... ∀A : Type. (A→ A)

Proof Current Formula

∀t : NList . ∀l : NList . (len(append t l)) ≈ (len t) + (len l)

At first, we should not forget to add the current formula as an inductive hypothesis to

the context. It will appear there with the tag “H” as the type of a new automatically

generated free variable named V86.

Term Builder
Context: Mode: PROOF
Term Type

[V] Refl ∀E : Type. (∀e : E. e ≈E e)
[Λ] λA : Type... ∀A : Type. (A→ A)
[H] V86 ∀t : NList . ∀l : NList . (len(append t l)) ≈ (len t) + (len l)

Proof Current Formula

∀t : NList . ∀l : NList . (len(append t l)) ≈ (len t) + (len l)

Recall that we restrict our use of induction to immediate sub-terms, therefore, term

V86 could not be used here to “prove” the target formula immediately. Our induction

principle works as follows: the base cases correspond to nullary constructors, (null,

in this case), and the inductive hypothesis gets used in the branches belonging to

the rest of constructors (Cons, in this case). Next, since we have two universal

quantifiers in front of the target formula, we need to unbind the bound variables by

pushing them into the context. This is done by using the lambda abstract command

twice, and here is what we get:

107



Term Builder
Context: Mode: PROOF
Term Type

[V] Refl ∀E : Type. (∀e : E. e ≈E e)
[Λ] λA : Type... ∀A : Type. (A→ A)
[H] V86 ∀t : NList . ∀l : NList . (len(append t l)) ≈ (len t) + (len l)
[V] t NList
[V] l NList

Proof Current Formula

(len(append t l)) ≈ (len t) + (len l)

Now we are faced with the decision to expand the definition of one of the functions

in our current formula. All these sub-expressions are listed in the choice window.

Here we opt to expand the definition of equality. This equality is over type N , and

is defined by the predicate of syntactic identity of internal structure:

(n ≈ m) = case m of O 7→ (case n of O 7→ true | ofSk 7→ false)

| of Sw 7→ (case n of O 7→ false | ofSk 7→ (k ≈ w));

Note that the tag “A” denotes that the grammatic category of the sub-expression

is an application.

Please make your Selection
[A] (len(append t l)) ≈ (len t) + (len l)
[A] (len(append t l))
[A] (append t l)
[A] (len t) + (len l)
[A] (len t)
[A] (len t)

There are actually several unfoldings of function definitions that we do at this point.

They are as follows:

Expand Definition of ≈ in: len(append t l) ≈ (len t) + (len l)

Expand Definition of len in: len(append t l)

Expand Definition of append in: (append t l)

After these unfoldings we enter the case splitter. We must split our reasoning based

108



on two cases: is t an empty list, or not? This screen shows the splitter window.

There are only two branches, since type NList has two constructors.

Case Splitter
Argument : t
Term Branch

{of null 7→ l}
{of Cons V126 V125 7→ (Cons V126 (append V125 l))}

We will work with the second branch first. As a result of unfolding function defini-

tions in the previous screens, we have acquired unevaluated conditional statements

from the bodies of the unfolded functions. After some trivial evaluation of these case

statements we again enter the case splitter for the variable l. Since this variable is

also of type NList , we get two branches:

Case Splitter
Argument : l
Term Branch

{of null 7→ 0}
{of Cons V153 V152 7→ (S (len V152)}

Here we also decided to work with the second branch first. After the two splits, the

variables t and l have been decomposed, so that the formula that was our target

before now looks like the current formula on the next screen:

Term Builder
Context: Mode: PROOF
Term Type

[V] Refl ∀E : Type. (∀e : E. e ≈E e)
[Λ] λA : Type... ∀A : Type. (A→ A)
[H] V86 ∀t : NList . ∀l : NList . (len(append t l)) ≈ (len t) + (len l)

Proof Current Formula

(len(append V125 (Cons V153 V152))) ≈
(len (Cons V126 V125)) + (len V152)

Evidently, l = (Cons V153 V152) and t = (Cons V126 V125). Now we want to use the

induction hypothesis which is sitting in the context. It does not fully match the

109



goal formula, but by proper instantiation it can get us closer to the desired form.

So we enter the use mode, where V86 is the term whose type will be used:

Term Builder
Context: Mode: USE
Term Type

[V] Refl ∀E : Type. (∀e : E. e ≈E e)
[Λ] λA : Type... ∀A : Type. (A→ A)
[H] V86 ∀t : NList . ∀l : NList . (len(append t l)) ≈ (len t) + (len l)

Proof Current Formula

[H] V86 ∀t : NList . ∀l : NList . (len(append t l)) ≈ (len t) + (len l)

The proper instantiation that we will use is plugging in V125 for t and leave l intact

by plugging in (Cons V153 V152) for l. Thereby we find ourselves in the following

situation:

Term Builder
Context: Mode: USE
Term Type

[V] Refl ∀E : Type. (∀e : E. e ≈E e)
[Λ] λA : Type... ∀A : Type. (A→ A)
[H] V86 ∀t : NList . ∀l : NList . (len(append t l)) ≈ (len t) + (len l)

Proof Current Formula

[A] . . . (len(append V125 (Cons V153 V152))) ≈
(len V125) + (len (Cons V153 V152))

Let us exit the use mode to get back to the proof mode. This will bring the current

formula, which now possesses a proof, into the context as an established proposition.

110



Term Builder
Context: Mode: PROOF
Term Type

[V] Refl ∀E : Type. (∀e : E. e ≈E e)
[Λ] λA : Type... ∀A : Type. (A→ A)
[H] V86 ∀t : NList . ∀l : NList . (len(append t l)) ≈ (len t) + (len l)
[A] . . . (len(append V125 (Cons V153 V152))) ≈

(len V125) + (len (Cons V153 V152))

Proof Current Formula

(len(append V125 (Cons V153 V152))) ≈
(len (Cons V126 V125)) + (len V152)

Now that we have obtained something that looks closer to the target formula, we

take the direction of trying to unify one equality with another, where the left-hand-

side should be unified by reflexivity.

Unifier LHS RHS
� Refl ≈ ≈
� Refl len(append V125 (Cons V153 V152)) len(append V125 (Cons V153 V152))

len(V125) + (len(Cons V153 V152)) len(Cons V126 V125) + len(V152)

By easy evaluation commands, the following two reductions are performed:

len(Cons V153 V152) −→ S(len(V152))

len(Cons V126 V125) −→ S(len(V125))

That is why the proof obligation to complete the requirements of the unifier looks

as follows on the next main screen:

Term Builder
Context: Mode: PROOF
Term Type

[V] Refl ∀E : Type. (∀e : E. e ≈E e)
[Λ] λA : Type... ∀A : Type. (A→ A)
[H] V86 ∀t : NList . ∀l : NList . (len(append t l)) ≈ (len t) + (len l)
[A] . . . (len(append V125 (Cons V153 V152))) ≈

(len V125) + (len (Cons V153 V152))

Proof Current Formula

(len V125) + (S(len V152))) ≈ (S(len V125)) + (len V152)

111



Instead of proving the current formula by induction from scratch, we will load the

lemma, which proves just what we need. A lemma is something that we have proven

in Term Builder before, and saved into a file. The lemma that we need here asserts

that ∀x : N.∀y : N. x + Sy ≈ Sx + y. Here is the screen after we have loaded the

lemma:

Term Builder
Context: Mode: PROOF
Term Type

[V] Refl ∀E : Type. (∀e : E. e ≈E e)
[Λ] λA : Type... ∀A : Type. (A→ A)
[H] V86 ∀t : NList . ∀l : NList . (len(append t l)) ≈ (len t) + (len l)
[A] . . . (len(append V125 (Cons V153 V152))) ≈

(len V125) + (len (Cons V153 V152))
[Y] Fix . . . ∀x : N. ∀y : N.(x + Sy) ≈ (Sx + y)

Proof Current Formula

(len V125) + (S(len V152))) ≈ (S(len V125)) + (len V152)

Now that the lemma is loaded, we immediately enter the use mode for this lemma:

Term Builder
Context: Mode: USE
Term Type

[V] Refl ∀E : Type. (∀e : E. e ≈E e)
[Λ] λA : Type... ∀A : Type. (A→ A)
[H] V86 ∀t : NList . ∀l : NList . (len(append t l)) ≈ (len t) + (len l)
[A] . . . (len(append V125 (Cons V153 V152))) ≈

(len V125) + (len (Cons V153 V152))
[Y] Fix . . . ∀x : N. ∀y : N.(x + Sy) ≈ (Sx + y)

Proof Current Formula

[Y] Fix . . . ∀x : N. ∀y : N.(x + Sy) ≈ (Sx + y)

After the instantiation: x 7→ (len V125), y 7→ (len V152), we end up with the following

established current formula on the main screen:

112



Term Builder
Context: Mode: USE
Term Type

[V] Refl ∀E : Type. (∀e : E. e ≈E e)
[Λ] λA : Type... ∀A : Type. (A→ A)
[H] V86 ∀t : NList . ∀l : NList . (len(append t l)) ≈ (len t) + (len l)
[A] . . . (len(append V125 (Cons V153 V152))) ≈

(len V125) + (len (Cons V153 V152))
[Y] Fix . . . ∀x : N. ∀y : N.(x + Sy) ≈ (Sx + y)

Proof Current Formula

[A] . . . (len V125) + S(len V125) ≈ S(len V125) + (len V125)

Now we are back to the unifier, where our proof obligation has been fulfilled, and

we are ready to move on, after contemplating this complete picture:

Unifier LHS RHS
� Refl ≈ ≈
� Refl len(append V125 (Cons V153 V152)) len(append V125 (Cons V153 V152))
[A] . . . len(V125) + (len(Cons V153 V152)) len(Cons V126 V125) + len(V152)

At this time the lower branch (l ≈ (Cons . . .)) is complete, and this is shown in

the case splitter window below:

Case Splitter
Argument : l
Term Branch

{of null 7→ 0}
[A] . . . {of Cons V153 V152 7→ (S (len V152)}

We turn to the other case, where (l ≈ null). Based on this assumption, and using

inductive hypothesis, we have made a substitution: t 7→ V125, l 7→ null. After the

simplifications, the target formula len(append t l) ≈ (len t) + (len l) becomes:

len(append V125 null) ≈ (len V125)

113



Term Builder
Context: Mode: PROOF
Term Type

[V] Refl ∀E : Type. (∀e : E. e ≈E e)
[Λ] λA : Type... ∀A : Type. (A→ A)
[H] V86 ∀t : NList . ∀l : NList . (len(append t l)) ≈ (len t) + (len l)

Proof Current Formula

(len (append V125 null)) ≈ (len V125)

This statement must also be proved by induction. In order to build an induction

hypothesis we must generalize it by adding a quantifier ∀V125 in front. This is because

when we use the hypothesis, we must be able to instantiate it with an argument.

Logically, this is not strengthening, but weakening, so this step is perfectly safe:

Term Builder
Context: Mode: PROOF
Term Type

[V] Refl ∀E : Type. (∀e : E. e ≈E e)
[Λ] λA : Type... ∀A : Type. (A→ A)
[H] V86 ∀t : NList . ∀l : NList . (len(append t l)) ≈ (len t) + (len l)

Proof Current Formula

∀V125. (len (append V125 null)) ≈ (len V125)

Now that we have what we wanted as a hypothesis, we go ahead and add it into a

context with the tag “H” using the “Add as Hypothesis” command:

Term Builder
Context: Mode: PROOF
Term Type

[V] Refl ∀E : Type. (∀e : E. e ≈E e)
[Λ] λA : Type... ∀A : Type. (A→ A)
[H] V86 ∀t : NList . ∀l : NList . (len(append t l)) ≈ (len t) + (len l)
[H] V521 ∀V125. (len (append V125 null) ≈ (len V125)

Proof Current Formula

∀V125. (len (append V125 null)) ≈ (len V125)

Having generalized and then pushed the inductive hypothesis into the context, we

114



can immediately lambda-abstract again to get back to the original statement in

order to proceed as usual. Only now, the abstracted variable over which we plan to

use induction shall become part of the context:

Term Builder
Context: Mode: PROOF
Term Type

[V] Refl ∀E : Type. (∀e : E. e ≈E e)
[Λ] λA : Type... ∀A : Type. (A→ A)
[H] V86 ∀t : NList . ∀l : NList . (len(append t l)) ≈ (len t) + (len l)
[H] V521 ∀V125. (len (append V125 null) ≈ (len V125)
[V] V125 NList

Proof Current Formula

(len (append V125 null) ≈ (len V125)

To prove the current formula on the previous screen by induction, we need to case

split, based on variable V125 being a null list or not. The case when (V125 ≈ null) is

routine, therefore we show two consecutive splitter windows at once:

Case Splitter
Argument : V125

Term Branch
{of null 7→ null}
{of Cons V560 V559 7→ (Cons(V560 (append(V559 null))}

Case Splitter
Argument : V125

Term Branch
[A] . . . {of null 7→ null}

{of Cons V560 V559 7→ (Cons(V560 (append(V559 null))}

After the substitution V125 7→ (Cons V560 V559), a series of definition expansions and

simplifying case evaluations will lead us to the following screen:

115



Term Builder
Context: Mode: USE
Term Type

[V] Refl ∀E : Type. (∀e : E. e ≈E e)
[Λ] λA : Type... ∀A : Type. (A→ A)
[H] V86 ∀t : NList . ∀l : NList . (len(append t l)) ≈ (len t) + (len l)
[H] V521 ∀V125. (len (append V125 null) ≈ (len V125)

Proof Current Formula

(len (append V559 null) ≈ (len V559)

This is the exact place to use our induction hypothesis V521, since the variable V559

is a product of decomposing V125, and is technically a sub-term of it. So here we

enter use mode with the hypothesis V521 and instantiate it immediately with V559:

Term Builder
Context: Mode: USE
Term Type

[V] Refl ∀E : Type. (∀e : E. e ≈E e)
[Λ] λA : Type... ∀A : Type. (A→ A)
[H] V86 ∀t : NList . ∀l : NList . (len(append t l)) ≈ (len t) + (len l)
[H] V521 ∀V125. (len (append V125 null) ≈ (len V125)

Proof Current Formula

[A] . . . (len (append V559 null) ≈ (len V559)

At this point the case split on V125 is completed, and both branches have been

provided with proofs, as shown below. Right after that, the automatic process

consisting of “Match and Return” commands, completes the case split on l, and on

the 2-nd branch of the case split on t. Therefore we show all three case-split screens

sequentially, without more comment on them:

Case Splitter
Argument : V125

Term Branch
[A] . . . {of null 7→ null}
[A] . . . {of Cons V560 V559 7→ (Cons(V560 (append(V559 null))}

116



Case Splitter
Argument : l
Term Branch
[A] (Eq . . . {of null 7→ 0}
[A] (Eq . . . {of Cons V153 V152 7→ (S (len V152)}

Case Splitter
Argument : t
Term Branch

{of null 7→ l}
[A] . . . {of Cons V126 V125 7→ (Cons V126 (append V125 l))}

The remaining cases are when (t ≈ null). This leads to a necessity to case split on

l again:

Case Splitter
Argument : l
Term Branch

{of null 7→ 0}
{of Cons V586 V585 7→ (S (len V585)}

The null branch is trivial and consists of several standard definition expansions and

case evaluations. In the Cons branch, after a series of definition unfoldings and

case evaluations, the target formula is reduced to the following form: (len V585) ≈

(len null) + (len V585). We will derive it by using a previously proved lemma:

∀l : NList . (len l) ≈ (len null) + (len l)

We load this lemma, place it into use mode and instantiate it with V585:

Term Builder
Context: Mode: USE
Term Type

[V] Refl ∀E : Type. (∀e : E. e ≈E e)
[Λ] λA : Type... ∀A : Type. (A→ A)
[H] V86 ∀t : NList . ∀l : NList . (len(append t l)) ≈ (len t) + (len l)
[Y] Fix . . . ∀l : NList . (len l) ≈ (len null) + (len l)

Proof Current Formula

[A]... (len V585) ≈ (len null) + (len V585)

117



We have come to the end of our proof session. After numerous “Match and Return”

commands and successful exits from the case splitters, all remaining case splits on l

and t will be completed, which is shown below on three separate screens, as well as

the conclusion:

Case Splitter
Argument : l
Term Branch
[A] (Eq... {of null 7→ 0}

{of Cons V586 V585 7→ (S (len V585)}

Case Splitter
Argument : l
Term Branch
[A] (Eq... {of null 7→ 0}
[A] (Eq... {of Cons V586 V585 7→ (S (len V585)}

Case Splitter
Argument : t
Term Branch
[C] (case... {of null 7→ l}
[A] (Eq... {of Cons V126 V125 7→ (Cons V126 (append V125 l))}

Proof Completed:

Property: ∀t : NList . ∀l : NList . len(append t l) ≈ (len t) + (len l).

118



Part VI

Concluding Remarks

In part II we have proposed a three-valued logic for use in applications which are

most naturally modeled using partial functions. We have shown how the question

of checking validity of formulas in this logic can be solved by checking the formula

and its Type Correctness Condition (TCC). Both these checks can be done using

standard two-valued semantics.

Future work includes using these ideas to develop a more general notion of valid-

ity in the presence of theories with sub-sorts and dealing with non-strict functions

and predicates (those which, like the Boolean operators ∧ and ∨ do not have the

property that if one of their children evaluates to ⊥, then the whole expression eval-

uates to ⊥).

In part III we use partiality among other tools to build an abstract decision

procedure for theories of algebraic data structures. Novel features of our treatment

include the ability to handle mutually recursive types in many-sorted setting, a

simpler presentation of the theory, an abstract declarative algorithm, and smarter

splitting rules which can greatly enhance efficiency. Future work includes handling

universally or existentially quantified formulas within this framework.

In part IV we have proposed a concept theorem prover to reason deductively

about algebraic structures and functions operating on them. There are two con-

tributions in part IV. First, we avoid the unwanted polymorphism as explained in

subsection 15.4.1, which is due to the type-theoretic conversion rule. The second

contribution is presentation. We have developed a GUI-based solution for interactive

119



deduction, which has shown to be very convenient and effective.

Future work related to our theorem prover can include a multitude of directions.

First, all logical connectors may be taken as primitives for user convenience, rather

than their encoding in System F. Second, some of the forms of non-parametric

polymorphism and function overloading would be very relevant features to add.

One approach to this is given in reference [13].

Third, a different view of algebraic types may be employed and facilitate the use

of dynamic dispatch. ADTs would only have one constructor each, and disjunction

of them would simulate multiplicity of constructors. The behavior would then be

split according to the type of the argument, like dynamic dispatch is meant to do,

and the case statement would become obsolete.

Finally, one of the future goals is to generalize part IV to general inductive data

types and understand how explicit equality and explicit case statements will be

affected. The reason for complications is that we are not going to be dealing with

free term algebras, which we have had with algebraic types.

120



References

[1] The Coq Proof Assistant Reference Manual, version 8.0. 2004.

[2] L. Bachmair, A. Tiwari, and L. Vigneron. Abstract congruence closure. JAR,

31:129–168, 2003.

[3] F. Barbanera and S. Berardi. “Proof-irrelevance out of Excluded-middle and

Choice in the Calculus of Constructions”. Journal of Functional Programming,

6(3):519–525, 1996.

[4] H. Barendregt. Lambda Calculi with Types, volume 2 of Handbook of Logic in

Computer Science. 1992.

[5] B. Barras, P. Corbineau, B. Grégoire, H. Herbelin, and J. L. Sacchini. A new

elimination rule for the calculus of inductive constructions. 5497:32–48, 2009.

[6] C. Barrett, I. Chikanian, and C. Tinelli. An abstract decision procedure for

satisfiability in the theory of recursive data types. Technical Report TR2005-

878, Department of Computer Science, New York University, Nov. 2005.

[7] C. Barrett, I. Chikanian, and C. Tinelli. An abstract decision procedure for

satisfiability in the theory of recursive data types. In Proceedings of PDPAR,

Aug. 2006.

[8] C. Barrett and C. Tinelli. “CVC3”. In W. Damm and H. Hermanns, editors,

Proceedings of the 19th International Conference on Computer Aided Verifica-

tion (CAV’07), Berlin, Germany, Lecture Notes in Computer Science. Springer,

2007.

[9] P. Benacerraf and H. Putnam, editors. Philosophy of Mathematics, 2nd Edition.

Cambridge University Press, 1988.

121



[10] S. Berezin, C. Barrett, I. Chikanian, M. Chechik, A. Gurfinkel, and D. L. Dill. A

practical approach to partial functions in CVC Lite. In W. Ahrendt, P. Baum-

gartner, H. de Nivelle, S. Ranise, and C. Tinelli, editors, Selected Papers from

the Workshops on Disproving and the Second International Workshop on Prag-

matics of Decision Procedures (PDPAR ’04), volume 125(3) of Electronic Notes

in Theoretical Computer Science, pages 13–23. Elsevier, July 2005. Cork, Ire-

land.

[11] M. P. Bonacina and M. Echenim. Generic theorem proving for decision proce-

dures. Technical report, Università degli studi di Verona, 2006. Available at

http://profs.sci.univr.it/∼echenim/.

[12] G. Bruns and P. Godefroid. “Model Checking Partial State Spaces with 3-

Valued Temporal Logics”. In Proceedings of Proceedings of 11th International

Conference on Computer-Aided Verification (CAV’99), volume 1633 of LNCS,

pages 274–287, Trento, Italy, 1999. Springer.

[13] G. Castagna, G. Ghelli, and G. Longo. A Calculus for Overloaded Functions

with Subtyping. April 1992.

[14] T. Coquand. An Analysis of Girard’s Paradox, volume 531 of Rapports de

Recherche, INRIA. 1986.

[15] T. Coquand and C. Paulin-Mohring. “Inductively Defined Types”. In Proceed-

ings of the International Conference on Computer Logic (COLOG-88), volume

417 of LNCS, 1988.

[16] P. de Groote, editor. The Curry-Howard Isomorphism, volume 8 of Cahiers du

Centre de Logique. 1995.

122



[17] W. M. Farmer. A Partial Functions Version of Church’s Simple Theory of

Types. The Journal of Symbolic Logic, 55(3):1269–1291, 1990.

[18] H. Geuvers. Calculus of Constructions and Higher Order Logic, volume 8 of

Cahiers du Centre de Logique, pages 139 – 191.

[19] H. Geuvers and F. Wiedijk. A Logical Framework with Explicit Conversions.

In C. Schürmann, editor, Proceedings of the Fourth International Workshop on

Logical Frameworks and Meta-Languages, 2004.

[20] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge

Tracts in Theoretical Computer Science. 1989.

[21] A. Gurfinkel and M. Chechik. “Multi-Valued Model-Checking via Classical

Model-Checking”. In Proceedings of 14th International Conference on Concur-

rency Theory (CONCUR’03), volume 2761 of LNCS, September 2003.

[22] W. Hodges. A Shorter Model Theory. Cambridge University Press, 1997.

[23] M. Kerber and M. Kohlhase. A Mechanization of Strong Kleene Logic for

Partial Functions. In A. Bundy, editor, 12th International Conference on Au-

tomated Deduction, volume 814 of LNAI, pages 371–385. Springer Verlag, 1994.

[24] M. Kerber and M. Kohlhase. Mechanising Partiality without Re-

Implementation. In 21st Annual German Conference on Artificial Intelligence,

volume 1303 of LNAI, pages 123–134. Springer Verlag, 1997.

[25] S. C. Kleene. Introduction to Metamathematics. New York: Van Nostrand,

1952.

[26] D. Kozen. Complexity of finitely presented algebras. In Proceedings of the 9-th

Annual ACM Symposium on Theory of Computing, pages 164–177, 1977.

123



[27] V. Kuncak and M. Rinard. On the theory of structural subtyping. Technical

Report MIT-LCS-TR-879, Massachusetts Institute of Technology, 2003.

[28] J. Loeckx, H.-D. Ehrich, and M. Wolf. Specification of Abstract Data Types.

Wiley Teubner, 1996.

[29] F. Lucio-Carrasco and A. Gavilanes-Franco. A First Order Logic for Par-

tial Functions. In Proceedings STACS’89, volume 349 of LNCS, pages 47–58.

Springer, 1989.

[30] Z. Luo. “ECC, An Extended Calculus of Constructions”. In Proceedings of

the Fourth Annual Symposium on Logic in Computer Science, pages 385–395.

IEEE Press, 1989.

[31] A. I. Mal’cev. On elementary theories of locally free universal algebras. Soviet

Mathematical Doklady, 2(3):768–771, 1961.

[32] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Trans-

actions on Programming Languages and Systems, 4(2):258–282, 1982.

[33] K. Meinke and J. V. Tucker. Universal algebra. In S. Abramsky, D. V. Gab-

bay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science,

volume 1. Claredon Press, 1992.

[34] A. Miquel. Calculus of Constructions with Universes. Slides, Proofs-as-

Programs Summer School. 2002.

[35] J. Mitchell. Foundations for Programming Languages. MIT Press, 1996.

[36] G. Nelson and D. C. Oppen. Fast decision procedures based on congruence clo-

sure. Journal of the Association of Computing Machinery (JACM), 27(2):356–

364, April 1980.

124



[37] D. C. Oppen. Reasoning about recursively defined data structures. Journal of

the Association of Computing Machinery (JACM), 27(3):403–411, July 1980.

[38] C. Paulin-Mohring. “Inductive Definitions in the System Coq - Rules and

Properties”. In Proceedings of the International Conference on Typed Lambda

Calculi and Applications (TLCA-93), volume 664 of LNCS, 1993.

[39] F. Pfenning and C. Paulin-Mohring. “Inductively Defined Types in the Calculus

of Constructions”. In Proceedings of the 5th International Conference on Math-

ematical Foundations of Programming Semantics, pages 209–228. Springer-

Verlag, 1990.

[40] E. Pimentel, B. Venneri, and J. Wells, editors. Proceedings Fifth Workshop on

Intersection Types and Related Systems, volume 45 of EPTCS, 2010.

[41] T. Rybina and A. Voronkov. A decision procedure for term algebras with

queues. ACM Transactions on Computational Logic, 2(2):155–181, Apr. 2001.

[42] N. Shankar, S. Owre, and J. M. Rushby. PVS Tutorial. Computer Science

Laboratory, SRI International, Menlo Park, CA, 1993. Also appears in Tutorial

Notes, Formal Methods Europe’93: Industrial-Strength Formal Methods, pages

357–406, Odense, Denmark, April 1993.

[43] R. Shostak. Deciding combinations of theories. Journal of the Association for

Computing Machinery, 31(1):1–12, 1984.

[44] V. Sjöberg and A. Stump. Equality, quasi-implicit products, and large elimi-

nations. In ITRS, pages 90–100, 2010.

[45] M. H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism,

volume 149 of Studies in Logic and Foundations of Mathematics. 2006.

125



[46] P. Tichy. Foundations of partial type theory. Reports on Mathematical Logic,

14:59–72, 1982.

[47] K. N. Venkataraman. Decidability of the purely existential fragment of the

theory of term algebras. JACM, 34(2):492–510, Apr. 1987.

[48] B. Werner. “A Normalization Proof for an Impredicative Type System with

Large Eliminations over Integers”. In Proceedings of the 1992 Workshop on

Types for Proofs and Programs, 1992.

[49] B. Werner. Une Théorie des Constructions Inductives. PhD thesis, Université

Paris 7, 1994.

[50] T. Zhang, H. B. Sipma, and Z. Manna. Decision procedures for term algebras

with integer constraints. In Proceedings of IJCAR ’04 LNCS 3097, pages 152–

167, 2004.

[51] T. Zhang, H. B. Sipma, and Z. Manna. Term algebras with length function

and bounded quantifier alternation. In Proceedings of TPHOLs, 2004.

126


