
Shape Analysis by Augmentation,

Abstraction, and Transformation

by

Ittai Balaban

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May 2007

Amir Pnueli and Lenore D. Zuck — Advisers



c© Ittai Balaban

All Rights Reserved, 2007





To Mor, to my parents, and to Rotem and her friends Winnie & the Pooh

iv



Acknowledgements

I would like to thank Amir Pnueli and Lenore Zuck, who have tried their

best to teach me how to think and express myself rationally (and have not

despaired as of yet).

Thanks go to Dennis Dams and Kedar Namjoshi, for numerous illuminat-

ing discussions. In addition, Stephen Fink has my thanks for pointing out

problems with the abstraction refinement algorithm that led directly toward

an improvement to the method.

I wish to thank my thesis committee, which, in addition to Amir, Lenore,

Dennis, and Kedar, includes Clark Barrett, Ken McMillan, and Benjamin

Goldberg. I thank them for their constructive comments and penetrating

questions, some of which resulted in followup research.

Finally I wish to thank the numerous anonymous reviewers of the [BPZ05,

BPZ07b] and [BPZ07a] paper submissions, which form the bulk of this dis-

sertation. There is nothing better for improving one’s work than insightful

criticism as to how bad it is ⌣̈

v



Abstract

The goal of shape analysis is to analyze properties of programs that per-

form destructive updating on dynamically allocated storage (heaps). In the

past decade various frameworks have been proposed, most notable being

the line of work based on shape graphs and canonical abstraction [SRW99,

LAS00]. Frameworks have been proposed since, among them based on counter

automata, predicate abstraction, and separation logic. However, among these

examples there has been little effort in dealing with liveness properties (e.g.,

termination) of systems whose verification depends on deep heap properties

(a notable exception being [BCDO06]).

This dissertation presents a new shape analysis framework that is based

on predicate abstraction, program augmentation, and model checking. The

combination of predicate abstraction and program augmentation is collec-

tively known as Ranking Abstraction, and provides a sufficiently powerful

model for verification of liveness properties of sequential and concurrent sys-

tems. Furthermore, a new predicate abstraction method is presented, that

allows for automatic computation of abstract systems that does not rely on

theorem provers. This approach has several intrinsic limitations, most no-

tably on the class of analyzable heap shapes. Thus several extensions are

described that allow for complex heap shapes.

vi



Contents

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction 1

1.1 Abstraction-Aided Verification . . . . . . . . . . . . . . . . . . 3

1.2 Shape Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Deriving Proofs from Abstractions . . . . . . . . . . . . . . . . 6

1.4 Implementation and Experiments . . . . . . . . . . . . . . . . 8

1.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Preliminaries 15

2.1 Fair Discrete Systems . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Temporal Specification of Systems . . . . . . . . . . . . . . . . 19

2.3 Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vii



2.4 Predicate Abstraction . . . . . . . . . . . . . . . . . . . . . . . 25

3 Ranking Abstraction 31

3.1 Modular Ranking Augmentation . . . . . . . . . . . . . . . . . 32

3.2 Soundness and Completeness of the Method . . . . . . . . . . 37

4 Abstraction and Ranking Refinement 43

4.1 Abstract Runs and Their Concretizations . . . . . . . . . . . . 44

4.2 A “Fluctuation-Proof” Ranking Augmentation . . . . . . . . . 48

4.3 Counterexample Guided Abstraction Refinement . . . . . . . . 51

4.4 Synthesizing Elementary Ranking Functions . . . . . . . . . . 59

5 Deriving Proofs from Abstractions 61

5.1 Extracting A Deductive Proof . . . . . . . . . . . . . . . . . . 61

5.1.1 Extracting Deductive Proofs of Invariance Properties . 62

5.1.2 Deductive Rules for Response Properties . . . . . . . . 64

5.1.3 Extracting the Ranking Functions . . . . . . . . . . . . 67

5.1.4 Forming an Abstract Verification Diagram . . . . . . . 77

5.1.5 Obtaining the Concrete Helpful Assertions . . . . . . . 79

5.2 Extracting Proofs for Systems with Justice Requirements . . . 82

5.2.1 A Deductive Rule for Response under Justice . . . . . 83

5.2.2 Ranking Abstraction and Concurrent Programs . . . . 84

5.2.3 Extracting a Deductive Proof . . . . . . . . . . . . . . 86

5.2.4 Forming an Abstract Verification Diagram . . . . . . . 92

viii



5.2.5 Obtaining the Concrete Helpful Assertions . . . . . . . 93

6 Shape Analysis by Ranking Abstraction 95

6.1 Finite Heap Systems . . . . . . . . . . . . . . . . . . . . . . . 96

6.1.1 Predicate Abstraction of Finite Heap Systems . . . . . 100

6.2 Symbolic Computation of Abstractions . . . . . . . . . . . . . 102

6.3 Liveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4 Example: Bubble Sort . . . . . . . . . . . . . . . . . . . . . . 122

6.4.1 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.4.2 Optimizing the Computation . . . . . . . . . . . . . . 124

6.4.3 Liveness . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7 Complex Heap Shapes 129

7.1 Single-Parent Heaps . . . . . . . . . . . . . . . . . . . . . . . 131

7.1.1 Unordered Single-Parent Heaps . . . . . . . . . . . . . 133

7.1.2 Ordered Single-Parent Heaps . . . . . . . . . . . . . . 134

7.2 Computing Symbolic Abstractions of Single-Parent Heaps . . . 135

7.3 Multi-Linked Heap Systems . . . . . . . . . . . . . . . . . . . 142

7.4 Reducing Multi-Linked into Single-Parent Heaps . . . . . . . . 145

7.4.1 The Transformation . . . . . . . . . . . . . . . . . . . 145

7.4.2 Correctness of Transformation . . . . . . . . . . . . . . 153

7.5 Examples of Verified Systems . . . . . . . . . . . . . . . . . . 162

7.5.1 Unordered Trees . . . . . . . . . . . . . . . . . . . . . 163

7.5.2 Ordered Trees . . . . . . . . . . . . . . . . . . . . . . . 166

ix



7.6 Composite Data Structures . . . . . . . . . . . . . . . . . . . 169

7.6.1 Cascading Heap Systems: An Example . . . . . . . . . 171

7.6.2 Data Types . . . . . . . . . . . . . . . . . . . . . . . . 172

7.6.3 Assertional Language . . . . . . . . . . . . . . . . . . . 173

7.6.4 Cascading Heap Systems: A Small Model Property . . 174

8 Conclusion 181

Bibliography 185

Index 197

x



List of Figures

2.1 The Temporal Hierarchy of Properties . . . . . . . . . . . . . 23

2.2 Program Any-X . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Abstraction of Program Any-X . . . . . . . . . . . . . . . . . 29

3.1 Program Nested-Loops and Its Augmented Version . . . . . 35

3.2 Program Abstract-Augmented-Nested-Loops . . . . . . 36

4.1 Motivating Example for Fluctuation-Proof Monitors . . . . . . 49

4.2 Augmentation with Fluctuation-Proof Monitor . . . . . . . . . 50

4.3 Counterexample Guided Abstraction Refinement Algorithm . 55

5.1 Deductive Rule and Extraction Algorithm for Invariance . . . 63

5.2 Deductive Rule Basic-Response . . . . . . . . . . . . . . . . 65

5.3 Deductive Rule Response . . . . . . . . . . . . . . . . . . . . 66

5.4 Procedure Rank-Graph . . . . . . . . . . . . . . . . . . . . . 69

5.5 Abstract Nested-Loops . . . . . . . . . . . . . . . . . . . . 70

5.6 Progress of Algorithm Rank-Graph for Nested-Loops . . . 71

5.7 End Result of Rank-Graph for Nested-Loops . . . . . . . 72

xi



5.8 Result of Rank-Graph with Helpful Assertions . . . . . . . . 81

5.9 Deductive Rule Just-Response . . . . . . . . . . . . . . . . 84

5.10 Program Up-Down . . . . . . . . . . . . . . . . . . . . . . . 85

5.11 Program Abstract-Up-Down . . . . . . . . . . . . . . . . . 85

5.12 Pending Graph for Program Abstract-Up-Down . . . . . . 87

5.13 Procedure Rank-Just-Graph . . . . . . . . . . . . . . . . . 88

5.14 Progress of Algorithm Rank-Just-Graph . . . . . . . . . . . 89

5.15 Ranking and Verification Diagram for Abstract-Up-Down . 91

6.1 Program List-Reversal . . . . . . . . . . . . . . . . . . . . 99

6.2 fhs for Program List-Reversal . . . . . . . . . . . . . . . . 100

6.3 Program Abstract-List-Reversal . . . . . . . . . . . . . 102

6.4 Progress Monitor M(δ) for a Ranking δ . . . . . . . . . . . . . 116

6.5 Program Bubble Sort . . . . . . . . . . . . . . . . . . . . . 123

7.1 Multi-Linked to Single-Parent Heap Transformation . . . . . . 130

7.2 Program Tree-Insert . . . . . . . . . . . . . . . . . . . . . . 132

7.3 Transition Relation of Tree-Insert . . . . . . . . . . . . . . 133

7.4 Model Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.5 Multi-Linked Tree Insertion Algorithm . . . . . . . . . . . . . 145

7.6 Single-Parent Counterpart of Multi-Linked Tree Insertion . . . 151

7.7 Algorithm Traversal-by-Reversal . . . . . . . . . . . . . 164

7.8 Traversal-by-Reversal– Single-Parent Version . . . . . . 166

7.9 Algorithm Ordered-Traversal . . . . . . . . . . . . . . . . 167

xii



7.10 Binary Encoding of Ordered Unbounded Trees . . . . . . . . . 168

7.11 Ordered-Traversal– Single-Parent Version . . . . . . . . . 169

7.12 Procedure append child . . . . . . . . . . . . . . . . . . . . . . 170

7.13 A Cascading Heap System . . . . . . . . . . . . . . . . . . . . 179

7.14 Single-Parent Version of Depth-First-Traversal . . . . . . 180

xiii



xiv



List of Tables

1.1 Predicate vs. Ranking Abstraction . . . . . . . . . . . . . . . 4

5.1 Iterative Ranking for Nested-Loops . . . . . . . . . . . . . . 73

5.2 Extracted Auxiliary Constructs for Program Up-Down . . . . 94

7.1 Grammar for Assertions for Multi-Linked Systems . . . . . . . 144

xv



xvi



Chapter 1

Introduction

The goal of shape analysis is to analyze properties of programs that perform

destructive updating on dynamically allocated storage (heaps) [JM81]. Pro-

grams manipulating heap structures can be viewed as parameterized in the

number of heap nodes, or, alternatively, the memory size.

This dissertation presents an approach for shape analysis based on predi-

cate abstraction ([GS97]) and model checking ([CE81, EC80]) that allows for

verification of functional specifications. The abstraction used does not re-

quire any abstract representation of the heap nodes (e.g. shape graphs), but

rather, requires only reachability relations between the program variables.

Predicate abstraction has become one of the most successful methodolo-

gies for proving safety properties of programs. However, with no extension

it cannot be used to verify general liveness properties. Therefore, in the

framework presented here, predicate abstraction is complemented by rank-

1
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ing abstraction, a method for verification of both safety and progress prop-

erties. Ranking abstraction is derived from augmented finitary abstraction

which was introduced in [KP00]. It is based on an augmentation of the

concrete program that is parameterized by a set of well-founded ranking

functions. Based on these, new compassion (strong fairness) requirements as

well as transitions are generated, all of which are synchronously composed

with the program in a non-constraining manner. Unlike most methodologies,

the ranking functions are not expected to decrease with each transition of

the program.

The dissertation is organized as follows: After the computational model

and formal background are defined in Chapter 2, Chapters 3 and 4 present

the method of ranking abstraction and its embedding in an abstraction re-

finement framework, in a domain-neutral manner. Chapter 5 then presents

an algorithm for extracting a deductive proof using a model-checker, once

a successful verification effort (using ranking abstraction) has been carried

out. Chapters 6 and 7 deal with shape analysis: Chapter 6 presents a method

based on ranking abstraction that is fully automatic for singly-linked heaps

– heaps where nodes have at most one outgoing edge. In Chapter 7 this lim-

itation is overcome via reductions from complex heap shapes to singly-linked

heaps.
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1.1 Abstraction-Aided Verification

Deductive verification is a method of program verification that incrementally

constructs proofs until the desired conclusion, a proof that the system meets

its specification, is obtained. Its main advantage is that it allows verifica-

tion of infinite-state systems. Deductive verification is often manual, and,

like all deductive proofs, requires considerable human skill and time. The

method generally involves two activities: (1) Devising auxiliary constructs

(e.g., ranking functions and auxiliary assertions), and (2) Deciding validity of

assertions known as verification conditions. The former involves creative ef-

fort, while the latter is typically characterized by mechanical effort and thus,

while error-prone for humans, is a likely candidate for automation. The pred-

icate abstraction framework makes such a distinction: The creative effort of

devising ingredients (in the form of predicates) for an auxiliary construct is

delegated to the user, while the task of checking if they combine to form an

inductive assertion is relegated to the machine (e.g., a model checker).

In [DGG00] Dams, Gerth, and Grumberg point out the duality between

activities in the verification of safety, and progress of programs. With Rank-

ing Abstraction we present a dual to the predicate abstraction framework

that similarly delegates to the user the task of devising ranking functions,

while automating the effort of checking that they indeed combine to form

an adequate global ranking function. The duality between predicate and

ranking abstraction is expressed through the components given in Table 1.1.
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Role Predicate Abstraction Ranking Abstraction

Initial abstraction Heuristics to choose a
predicate base

Heuristics to choose a predi-
cate base and a ranking core

(set of well-founded ranking
functions)

Handling spurious
counterexamples

Predicate refinement Predicate refinement or
ranking refinement

Automatic generation
of deductive proof
constructs

Inductive invariants
as a boolean combi-
nation of predicates

Global concrete ranking
function as a lexicographical
combination of the core
ranking functions

Table 1.1: Comparison Between Components of Predicate and Ranking
Abstraction

1.2 Shape Analysis

Our approach to modeling dynamic memory is based on an idealized model

that represents the heap as a graph, or linked structure, that is mutated

throughout the computation of a program by deletion or creation of edges,

or links. Thus a system state is given by an interpretation of a set of vari-

ables, together with a graph shape. In our approach, states are abstracted

using a predicate base that contains reachability relations among program

variables pointing into the heap. The computation of the abstract states

and transition relation is precise and automatic and does not require the

use of a theorem prover. Rather, we use a small model theorem to identify

a truncated (small) finite-state version of the program whose abstraction is

identical to the abstraction of the unbounded-heap version of the same pro-

gram. The abstraction of the finite-state version is then computed by bdd

techniques.
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For proving properties of system behavior over time, the original system

is augmented by a well-founded ranking function, which is then abstracted

together with the system. Well-foundedness is abstracted into strong fairness

(compassion). We show that, for a restricted class of programs (that still

includes numerous interesting cases), the small model theorem can be applied

to this joint abstraction.

The small model theorem that is at the basis of the abstraction method

applies to a restricted first order logic with transitive closure, one that is

expressive enough for describing mutation of singly-linked structures. Using

a technique known as structure simulation, we show that this restriction can

be lifted to represent heaps with multiple links in which sharing (where a

node has multiple incoming edges) is disallowed. Here, graph shapes such as

trees are represented by sets of singly-linked lists, with list edges represent-

ing reversed tree edges. This allows for the verification of a wide array of

algorithms over trees.

Moving to yet more complex shapes, we consider structures that can be

partitioned into a hierarchy of heaps, where each heap on its own is singly-

linked or multi-linked and sharing-free, but in addition contains links pointing

to nodes of heaps that are lower in the hierarchy. This model allows algo-

rithms that manipulate some “main” data structure, yet contain auxiliary

data structures with pointers into the “main” structure, an example of which

is a graph traversal algorithm that maintains an auxiliary stack or a queue.
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1.3 Deriving Proofs from Abstractions

Model checking ([CE81, EC80]) is an automatic process for verifying tem-

poral properties of finite-state systems. In this process, when executions

violating the property exist, at least one is reported and serves as a coun-

terexample. When the search for counterexamples fails one may conclude

that the system satisfies its specification. However, our confidence in such a

positive conclusion is tarnished by two possible factors:

• Due to complexity and decidability, the system being checked is often

an oversimplification of the actual system. Hence, failure to find coun-

terexamples for it does not necessarily imply that the actual system is

fault free.

• There always exists the possibility that the model checker itself contains

a bug causing it to report success, while the system is faulty.

Both these risks may cause us to treat with diffidence a result which purely

claims success without providing some supporting evidence, a “witness” or

“certificate” that the property does indeed hold over the considered system.

This ‘proof by lack of counterexample’ is the main drawback of the model

checking approach; some would even say that model checking is a tool for

falsification rather than a tool for verification. An alternative approach to

model checking, deductive verification, while often manual, has the benefit

that it often explains why the system satisfies its specification.
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In [PZ01a, PPZ01a] Peled, Pnueli, and Zuck enhance the model checking

process of Linear Time Temporal Logic (ltl) with the ability to automati-

cally generate a deductive proof that the system meets its ltl specification,

thus emphasizing the point of view that model checking can be used to justify

why the system actually works. They show that, by exploiting the informa-

tion in the graph that is generated during the search for counterexamples,

they generate a fully deductive proof that the system meets its specification.

The generated deductive proof can then be sent to a theorem prover to verify

its validity.

The work in [PZ01a, PPZ01a] is restricted to finite-state systems. [Nam01]

expanded these results to proof of the µ-calculus. One issue left unresolved

is that of extending the method to deal with infinite-state systems. In this

dissertation this issue is addressed for the class of specifications embodied by

response properties. A response property is typically used to specify that for

any computation of a system, if infinitely many states satisfying some logical

property p, then infinitely many states must satisfy some logical property q.

An example of such a requirement is “Any process that continually requests

access to a shared resource, must eventually be granted access to said re-

source.” The method presented here extracts a proof from the control-flow

graph of the (finite-state) abstract system, once the process of ranking ab-

straction has been applied successfully. This is done in a fully automatic

manner. In other words, once we verify a system using the ranking abstrac-

tion method, we are able to produce a certificate, in the form of a proof, of



8 1.4. Implementation and Experiments

the correctness of the system.

1.4 Implementation and Experiments

The shape analysis framework of Chapter 6 is illustrated on two examples,

both using (singly) linked lists: List reversal and in-place sort. It is shown

how various predicate abstractions can be used to establish various safety

properties, and how, for each program, one of the abstractions can be aug-

mented with a progress monitor to establish termination. The extensions

of the framework in Chapter 7 are demonstrated on AVL tree insertion and

graph traversal algorithms. These illustrate how multi-linked structures of

varying complexity are represented within the restrictions of the basic frame-

work. All examples have been implemented using the tlv programmable

model checker [PS96].

1.5 Related Work

Ranking Abstraction In [PR05] Podelski and Rybalchenko extend pred-

icate abstraction ([GS97]) by employing predicates over program transitions,

rather than states. In this way, the abstraction preserves the argument for

proving termination (general liveness is handled by a reduction to fair ter-

mination).

The body of work most comparable to ours is [CPR05], where Cook,
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Podelski, and Rybalchenko present a framework for verifying termination,

which formalizes dual refinements – of transition predicate abstraction and

of transition invariants [PR04b]. A transition invariant can be described

as a union of transition relations. An important element common to the

two methods is the modularity that decomposes the task of proving well-

foundedness (absence of infinite executions) into several ingredients that are

analyzed separately. In the transition invariant method, this is done by

decomposing the invariant into separate transition relations, each of which

is independently well-founded. In our case, we construct a separate progress

monitor for each ranking function component.

Previous work on termination analysis of logic programs, notably of Lin-

denstrauss and Sagiv ([LS97]) and Codish and Taboch ([CT99]), applies con-

cepts similar to transition invariants. Moreover, The abstract domain intro-

duced in [CT99] was specialized in ([LJBA01]) into what was termed size

change graphs, the purpose of both being automatic termination analysis us-

ing abstract interpretation. In these lines of work, the formal justification

of the termination analyses is similar to what is termed disjunctive well-

foundedness in [PR04b]. Further work in [BCG+07] uses a similar notion in

its decomposition of the termination argument into size norms.

Comparable to our abstraction/ranking refinement algorithm, the algo-

rithm in [CPR05], when presented with an abstract counterexample, ana-

lyzes the cause of its “spuriousness”, and refines either the predicate ab-

straction or the transition invariant. The method has been implemented in
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the Terminator tool, and applied to practical examples (e.g., Windows

device drivers) in [CPR06]. While our framework is inherently applicable

to systems with (weak and strong) fairness constraints (e.g., concurrent sys-

tems), the framework as presented in [CPR05] lacks any notion of fairness.

Therefore, [PPR05, CGP+07] extend it to allow for fairness requirements.

Dams, Gerth, and Grumberg [DGG00] point out the duality between

verification of safety and progress of programs. Like us, they aim to lift this

duality to provide tools for proving progress properties, whose functionality

is analogous to similar tools used for safety. Specifically, they propose a

heuristic for discovering ranking functions from a program’s text. In contrast,

we concentrate on an analogy with predicate abstraction, a particular method

for safety. Our approach is broader, however, in that we suggest a general

framework for safety and progress properties where each of the activities in a

verification process has an instantiation with respect to each of the dualities.

In [PR04a] Podelski and Rybalchenko present a method for synthesis of

linear ranking functions. The method is complete for unnested loops, and is

embedded successfully in a broader framework for proving liveness properties

[PR03], as well as in [CPR05]. This method is one of several candidates that

can be embedded in our framework.

The topic of refinement of state abstraction, specifically predicate ab-

straction, has been widely studied. A number of existing works in this area

are [CGJ+00, BR01, BPR02].
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Proof Extraction There have been several works dealing with the extrac-

tion of proofs from successful application of a model checking run. The papers

[PZ01b] and [PPZ01b] show how to construct a deductive temporal proof out

of a successful run of model for checking the property of interest. Namjoshi in

[Nam01] argues for the need of a certificate that confirms the correctness of a

successful model checking run. This certificate can be viewed as a deductive

proof of the property, where the proof is presented as an automaton similar

to the verification diagrams of [MP94]. In a similar way, [KV05] show how to

construct an automaton certificate that confirms the correctness of a model

checked property, and can be checked automatically and efficiently. However,

all of these methods were applied to propositional properties of finite-state

systems and produced proofs (or certificates) that were propositional in na-

ture. None of them could produce a proof that included a ranking function

over an unbounded domain. Namjoshi in [Nam03] realizes the need to trans-

late a proof of a finite-state abstraction of an infinite-state system. He refers

to this proof concretization process as lifting of the proof. In this process, he

takes into account the need to deal with ranking functions. The limitation of

his method was that the lifting of ranking functions necessarily preserve the

range of the functions. Starting from a finite-state system, the range of the

abstract ranking functions and, therefore, the resulting range of the concrete

ranking functions is necessarily bounded. In comparison, the methods pre-

sented here in Chapter 5 extract ranking functions over unbounded domains

from their finitary representation as compassion requirements.
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Shape Analysis The work in [SRW02] presents a parametric framework

for shape analysis that deals with the specification language of the shape

analysis framework and the construction of the shape analyzer from the spec-

ification. A 2-value logic is used to represent concrete stores, and a 3-valued

logic is used to represent abstract stores. Properties are specified by first-

order formulae with transitive closure; these also describe the transitions of

the system. The shape analyzer computes a fixed point of the set of equations

that are generated from the analysis specification. The systems considered

in [SRW02] are more general than ours, e.g., we allow at most one “next

pointer” for each node. Due to the restricted systems and properties we con-

sider, we do not have to abstract the heap structure itself, and therefore our

computation of the transition relation is precise. Moreover, their work does

not handle liveness properties.

In [DN03], Dams and Namjoshi study shape analysis using predicate ab-

straction and model checking. Starting with shape predicates and a property,

the method iteratively computes weakest preconditions to find more predi-

cates and constructs abstract programs that are then model checked. As

in the [SRW02] framework, the abstraction computed in not precise. Some

manual intervention is required to apply widening-like techniques and guide

the system into convergence. This work, too, does not handle liveness.

Some related but less relevant works are [DDP99, DD01] that study con-

current garbage collection using predicate abstraction, [FQ02] that study loop

invariants using predicate abstraction, and [Nel83] that calculates weakest
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preconditions for reachability. All these works do not apply shape analysis

or use shape predicates.

Our shape analysis approach, which is based on predicate abstraction and

model-checking, relies on a decidable logic with transitive closure to automat-

ically compute abstractions. Comparable works include [RBH07, MYRS05,

DN03] that, as well as [Rey02, BCDO06, BBH+06], are less expressive then

the present framework as they do not allow bi-directional traversal of lists,

nor graph reachability under universal quantification. As such they are not

easily adaptable to modeling trees, nor are they rich enough to express prop-

erties of data in structures. Our assertional language is in some ways weaker

but generally incomparable to the logic of reachable patterns of [YRS+06].

The class of graphs expressible in our logic is subsumed by the canonical

abstraction framework of [SRW02].

The correspondence between tree structures and singly-linked structures

is the basis of the proof of decidability of first-order logic with one func-

tion symbol in [BGG97]. More generally, the observation that complex data

structures with regular properties can be reduced to simpler structures has

been utilized in [KS93, IRR+04b, MS01, WKL+06]. However, it is not al-

ways straightforward to apply, and has not been applied in the context of

predicate abstraction. Several assumptions that hold true in analysis of “con-

ventional” programs over singly-linked heaps (e.g., C or Pascal programs),

cannot be relied upon when reducing trees to lists. For example, the number

of roots of the heap is no longer bounded by the number of program variables.
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Furthermore, the cited works typically use trees to simulate more complex

structures, while our starting point is lists, which are used to simulate tree-

like structures.

The use of path compression in heaps to prove small model properties

of logics of linked structures, has been used before, e.g., in [BRS99] and

more recently in [YRS+06]. Our work on parameterized systems relies on

a small model theorem for checking inductiveness of assertions. The small

model property there is similar to the one here with respect to stratified

data. However, with respect to unstratified data (such as graphs), the work

on parameterized systems suggests using logical instantiation as a heuristic

(see, e.g., [APR+01]), whereas here completeness is achieved using graph-

theoretic methods.

The idea of modeling composite structures using a static hierarchical

separation (here referred to as cascading heap structures) has been used by

[RS01] to perform interprocedural analysis of recursive heap-manipulating

programs. The idea is to model the recursion stack as a linked structure

with pointers into the main heap structure.



Chapter 2

Preliminaries

In this chapter we present our computational model, as well as the method of

predicate abstraction. In the following, we refer to a first-order state formula

as an assertion. We denote by ~y a set of variables, and write ϕ(~y) to denote

that ~y is the set of free variables of an assertion ϕ. ϕ(~y) is said to be a

consistent assertion if there exists an assignment η to ~y such that η |= ϕ.

2.1 Fair Discrete Systems

As our computational model, we take a fair discrete system (fds) [KPR98].

This generalizes the model of fair transition systems [MP95] by allowing a

more general form of fairness requirements. An fds is presented by a tuple

D : 〈V,Θ, ρ,J , C〉, where

• V — A set of system variables. A state of D provides a type-consistent

15
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interpretation of the variables V . For a state s and a system variable

v ∈ V , we denote by s[v] the value assigned to v by the state s. Let Σ

denote the set of all states over V .

• Θ — The initial condition: An assertion characterizing the initial

states.

• ρ(V, V ′) — The transition relation: An assertion, relating the values V

of the variables in state s ∈ Σ to the values V ′ in an D-successor state

s′ ∈ Σ. We assume that every state has a ρ-successor.

• J — A set of justice (weak fairness) requirements (assertions); A com-

putation must include infinitely many states satisfying each of the jus-

tice requirements.

• C — A set of compassion (strong fairness) requirements: Each com-

passion requirement is a pair 〈p, q〉 of state assertions; A computation

should include either only finitely many p-states, or infinitely many

q-states.

Definition 2.1 (Path). A path in an fds D is a possibly infinite sequence of

states σ : s0, s1, . . . that are consecutive, meaning that for each ℓ = 0, 1, . . .,

the state sℓ+1 is a D-successor of sℓ. That is, 〈sℓ, sℓ+1〉 |= ρ(V, V ′) where, for

each v ∈ V , we interpret v as sℓ[v] and v′ as sℓ+1[v].

Let ψ be an assertion and s, s′ ∈ Σ be states of an fds. We say that s

is a ψ-state if s |= ψ. s′ is said to be reachable from s if there exists a finite
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path σ : s = s0, . . . , sk = s′, for some k ≥ 0. If s′ is reachable from a Θ-state,

it is simply called a reachable state. A path is said to be ψ-free if no state in

the path is a ψ-state.

Definition 2.2 (Run). A run of an fds D is an initialized path σ : s0, s1, . . .,

meaning that s0 |= Θ.

Definition 2.3 (Computation). A computation of an fds D is an infinite

run that satisfies

• Justice — for every J ∈ J , σ contains infinitely many occurrences of

J-states.

• Compassion – for every 〈p, q〉 ∈ C, either σ contains only finitely many

occurrences of p-states, or σ contains infinitely many occurrences of

q-states.

We denote by Comp(D) the set of all computations of system D.

Fair discrete systems are closed under two composition operators that are

useful in describing concurrent systems. Fix two systems D1 : 〈V1,Θ1, ρ1,J1, C1〉

and D2 : 〈V2,Θ2, ρ2,J2, C2〉.

Definition 2.4 (Synchronous Parallel Composition). The synchronous par-

allel composition of D1 and D2, denoted by D1 ‖|D2, is defined as the system

D = 〈V,Θ, ρ,J , C〉, where

V = V1 ∪ V2 J = J1 ∪ J2

Θ = Θ1 ∧ Θ2 C = C1 ∪ C2

ρ = ρ1 ∧ ρ2



18 2.1. Fair Discrete Systems

As implied by the definition, each of the basic actions of a composed

system D1 ‖|D2 consists of the joint execution of an action of D1 and an

action of D2. Thus, we can view the execution of D as the joint execution of

D1 and D2.

Definition 2.5 (Asynchronous Parallel Composition). The asynchronous

parallel composition of D1 and D2, denoted by D1‖D2, is defined as the sys-

tem D = 〈V,Θ, ρ,J , C〉, where

V = V1 ∪ V2 J = J1 ∪ J2

Θ = Θ1 ∧ Θ2 C = C1 ∪ C2

ρ =

(
ρ1 ∧ pres(V2 − V1)

∨ ρ2 ∧ pres(V1 − V2)

)

The predicate pres(U) stands for the assertion U ′ = U , implying that all the

variables in U are preserved by the transition.

Asynchronous composition represents an interleaving model of concur-

rency, in which the system alternates (though not in a strict manner) between

transitions of both components of the composition.

Programs

A program is a textual representation of an fds using the notation of the
Simple Programming Language (spl), as proposed in [MP95]. A minimal
spl program consists of data definitions and a set of labeled statements.
The fds associated with a program has, in addition to variables declared
in the data definitions, a program counter variable π, which ranges over the
statement labels. The transition relation is derived from the program state-
ments by translating variable assignments into a relation between primed
and unprimed copies of the variables. Program control statements, such as
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if or while, are handled as assignments to the program counter. For exam-
ple, the program Nested-Loops in Fig. 3.1(a) is associated with the fds

〈V,Θ, ρ, ∅, ∅〉, where

V : {x, y : N, π : [0 . . . 6]}
Θ : x = y = π = 0

ρ :





π = 0 ∧ π′ = 1 ∧ x′ > 0 ∧ y′ = y
∨ π = 1 ∧ x > 0 ∧ π′ = 2 ∧ x′ = x ∧ y′ = y
∨ π = 1 ∧ x = 0 ∧ π′ = 6 ∧ x′ = x ∧ y′ = y
∨ π = 2 ∧ π′ = 3 ∧ y′ > 0 ∧ x′ = x
∨ π = 3 ∧ y > 0 ∧ π′ = 4 ∧ x′ = x ∧ y′ = y
∨ π = 3 ∧ y = 0 ∧ π′ = 5 ∧ x′ = x ∧ y′ = y
∨ π = 4 ∧ π′ = 3 ∧ y′ = y − 1 ∧ x′ = x
∨ π = 5 ∧ π′ = 1 ∧ x′ = x− 1 ∧ y′ = y
∨ π = 6 ∧ π′ = 6 ∧ x′ = x ∧ y′ = y





From here on, we will assume that the systems being verified are derived

from programs. This implies that in every such system, control is specified

via a program counter.

2.2 Temporal Specification of Systems

As the language for specifying properties of systems we use linear-time tem-

poral logic (ltl) [MP91b].

Assume an underlying (first-order) assertion language. A temporal for-

mula is constructed out of state formulas (assertions) to which we apply the

boolean operators ¬ and ∨ and the basic temporal operators:

2 : Next Y : Previous

U : Until S : Since

Other temporal operators can be defined in terms of the basic ones as follows:
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1 p = True U p: Eventually

0 p = ¬ 1 ¬p: Henceforth

pW q = 0 p ∨ (pU q): Waiting-for, Unless, Weak Until

Q p = True S p: Sometimes in the past

` p = ¬ Q ¬p: Always in the past

p B q = ` p ∨ (pSq): Back-to, Weak Since

A model for a temporal formula p is an infinite sequence of states σ : s0, s1, ...

where each state sj provides an interpretation for the variables of p.

Semantics of ltl

Given a model σ, we define the notion of a temporal formula p holding at a

position j ≥ 0 in σ, denoted by (σ, j) |= p:
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• For an assertion p,

(σ, j) |= p ⇐⇒ sj |= p

That is, we evaluate p locally on state sj.

• (σ, j) |= ¬p ⇐⇒ (σ, j) 6|= p

• (σ, j) |= p ∨ q ⇐⇒ (σ, j) |= p or (σ, j) |= q

• (σ, j) |= 2 p ⇐⇒ (σ, j + 1) |= p

• (σ, j) |= pU q ⇐⇒ for some k ≥ j, (σ, k) |= q,

and for every i such that j ≤ i < k,

(σ, i) |= p

• (σ, j) |= � p ⇐⇒ j > 0 and (σ, j − 1) |= p

• (σ, j) |= pSq ⇐⇒ for some k ≤ j, (σ, k) |= q,

and for every i such that j ≥ i > k, (σ, i) |= p

This implies the following semantics for the derived operators:

• (σ, j) |= 0 p ⇐⇒ (σ, k) |= p for all k ≥ j

• (σ, j) |= 1 p ⇐⇒ (σ, k) |= p for some k ≥ j

If (σ, 0) |= p we say that p holds over σ and write σ |= p. Formula p is

satisfiable if it holds over some model. Formula p is (temporally) valid if it

holds over all models.

Formulas p and q are equivalent, denoted p ∼ q, if p ↔ q is valid. They

are called congruent, denoted p ≈ q, if 0 (p ↔ q) is valid. If p ≈ q then p

can be replaced by q in any context.

The entailment p =⇒ q is an abbreviation for 0 (p → q).
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For an fds D and an ltl formula ϕ, we say that ϕ is D-valid, denoted

D |= ϕ, if all computations of D satisfy ϕ.

Classification of Formulas/Properties

A formula of the form 0 p for some past formula p is called a safety formula.

A formula of the form 0 1 p for some past formula p is called a response for-

mula. An equivalent characterization is the form p =⇒ 1 q. The equivalence

is justified by

0 (p =⇒ 1 q) ∼ 0 1 ((¬p) B q)

Both formulas state that either there are infinitely many q’s, or there are no

p’s, or there is a last q-position, beyond which there are no further p’s.

A property is classified as a safety (resp. response) property if it can be

specified by a safety (resp. response) formula.

Every temporal formula is equivalent to a conjunction of a reactivity for-

mulas, i.e.
k∧

i=1

( 0 1 pi ∨ 1 0 qi)

Hierarchy of the Temporal Properties

In Fig. 2.1 we present a hierarchy of the temporal properties. Every box

in this diagram represents a class of properties together with the canonical

formula corresponding to this class. The formulas p, pi, q, qi appearing in
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the canonical representations are arbitrary past formulas. Lines connecting

the boxes in the diagram represent strict inclusion relations between the

classes. Thus, the class of safety properties is strictly included in the class

of obligation properties. This means that every safety property is also an

obligation property, but there exists an obligation property which is not a

safety property. Note that the obligation and reactivity classes each contain

an internal strict hierarchy parameterized by k.

Reactivity
k∧

i=1

( 0 1 pi ∨ 1 0 qi)

Guarantee
1 p

Response
0 1 p

Persistence
1 0 p

Progress

Safety
0 p

Obligation
k∧

i=1

( 0 pi ∨ 1 qi)

Figure 2.1: The Temporal Hierarchy of Properties



24 2.3. Ranking

2.3 Ranking

A well-founded domain is a pair (W ,≻) such that W is a set and ≻ is a partial

order over W that admits no infinite ≻-decreasing chains. A ranking function

is a function mapping program states into some well-founded domain.

An assertion, like a transition relation, that refers to both unprimed and

primed copies of the system variables is called a bi-assertion. A bi-assertion

β(V, V ′) is called well founded over assertion p if there does not exist an

infinite sequence of states s0, s1, . . ., such that s0 |= p and 〈si, si+1〉 |= β, for

every i ≥ 0. If p = 1 (true), then we say simply that β is well founded.

In order to prove that β is well founded over p, it is sufficient [MP91a] to

find an auxiliary assertion ϕ and a well-founded ranking δ, such that

p→ ϕ and ϕ(V ) ∧ β(V, V ′) → ϕ(V ′) ∧ δ(V ) ≻ δ(V ′)

In this case, we say that the well-founded ranking δ proves the well founded-

ness of β over p.

To illustrate our ability to verify liveness properties, we will demonstrate

our proposed techniques on the class of response properties that have the

form p =⇒ 1 q (abbreviating 0 (p → 1 q)), where p and q are assertions.

To verify such a property over a system, we use the notion of a pending state:

Definition 2.6 (Pending State). Let p and q be assertions. A state of an

fds D is said to be pending with respect to p and q if it is reachable by a

q-free path from a reachable p-state.
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To verify a response property, it is sufficient to find a well-founded ranking

δ such that δ decreases on every step that departs from a pending state.

2.4 Predicate Abstraction

The material here is a summary of [KP00]. We fix an fds D = 〈V,Θ, ρ,J , C〉

whose set of states is Σ. We consider a set of abstract variables VA =

{u1, . . . , un} that range over finite domains. An abstract state is an inter-

pretation that assigns to each variable ui a value in the domain of ui. We

denote by ΣA the (finite) set of all abstract states. An abstraction mapping

is presented by a set of equalities

α
E

: u1 = E1(V ), . . . , un = En(V ),

where each Ei is an expression over V ranging over the domain of ui. The

abstraction α
E

induces a semantic mapping α
E

: Σ 7→ ΣA, from the states of

D to the set of abstract states.

Usually, most of the abstract variables are boolean, and then the corre-

sponding expressions Ei are predicates over V . This is why this type of ab-

straction is often referred to as predicate abstraction with {E1, . . . , En} being

the predicate base. The abstraction mapping α
E

can be expressed succinctly

by:

VA = E(V )
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When there is no ambiguity, we refer to α
E

simply as α. For an assertion

p(V ), we define its α-abstraction (with some overloading of notation) by:

α(p) : ∃V . (VA = E(V ) ∧ p(V ))

The semantics of α(p) is ‖α(p)‖ : {α(s) | s ∈ ‖p‖}. Note that ‖α(p)‖ is

an expanding, or over-approximating, abstraction – an abstract state S is in

‖α(p)‖ iff there exists some concrete p-state that is abstracted into S. A

bi-assertion β(V, V ′) is abstracted by:

α2(β) : ∃V, V ′ . (VA = E(V ) ∧ V ′
A = E(V ′) ∧ β(V, V ′))

In a dual way to the abstraction of a concrete assertion, we can concretize

an abstract assertion. Let Φ be an abstract assertion. The concretization of

Φ, denoted by α−1(Φ), is defined as

α−1(Φ) : ∃VA . (VA = E(V ) ∧ Φ(VA))

Similarly, an abstract bi-assertion Ψ(VA, V
′
A) is concretized by

α−1(Ψ) : ∃VA, V
′
A . (VA = E(V ) ∧ V ′

A = E(V ′) ∧ Ψ(VA, V
′
A))

For example, consider the abstract assertion Φ : Π = 3 ∧ X = 1 ∧ Y =

0 over program Abstract-Augmented-Nested-Loops of Fig. 3.2. Its
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concretization is given by α−1(Φ) : π = 3 ∧ x > 0 ∧ y = 0.

While the abstraction α(p) has been described as expanding, we define

the dual contracting abstraction α by

α(p) : α(1) ∧ ¬α(¬p)

The conjunct α(1), taking the α-abstraction of true (= 1), restricts the range

of α to contain only abstract states that have at least some concrete source

state mapped by α into S.

The abstraction α is said to be precise with respect to the assertion p if

α(p) = α(p), implying that we cannot have a p-state and a (¬p)-state both

being abstracted into the same abstract state.

For a temporal formula ψ in positive normal form (where negation is

applied only to state assertions), ψα is the formula obtained by abstracting

every maximal state sub-formula p in ψ into α(p).

With no loss of generality we assume that all temporal specifications

of properties are given in positive normal form. Thus, when we write the

property p =⇒ 1 q, we will treat it as though it is presented in the (logically

equivalent) form 0 (¬p ∨ 1 q).

The abstraction of D by α is the system

Dα = 〈VA, α(Θ), α2(ρ), {α(J) | J ∈ J }, {〈α(p), α(q)〉 | (p, q) ∈ C} 〉

The soundness of abstraction is derived from [KP00]:
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Theorem 2.7. For a system D, abstraction α, and a temporal formula ψ:

Dα |= ψα =⇒ D |= ψ

Thus, if an abstract system satisfies an abstract property, then the concrete

system satisfies the concrete property.

In general we aim to abstract the data of the system, while preserving its

control structure. This is formalized by the following definition:

Definition 2.8 (Control-Preserving Abstraction). Let D : 〈V,Θ, ρ,J , C〉 be

an fds with a program counter variable π ∈ V . Let αE : VA = E(V ) be an

abstraction mapping. αE is said to be control-preserving if it contains the

equality (Π = π) where Π ∈ VA is a variable ranging over the same finite

domain as π.

Definition 2.8 is easily extended to the case of a concurrent program with

k processes: Instead of considering a single concrete program counter, we

assume a set of concrete and abstract program counters {π1, . . . , πk} and

{Π1, . . . ,Πk}, respectively. Then for each i ∈ [1..k], a control-preserving

abstraction should contain the equality Πi = πi.

In the following chapters, we assume that all abstractions are control-

preserving and omit the explicit mapping of concrete and abstract program

counters.

We close this section by demonstrating the process of predicate abstrac-
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tion on a simple infinite-state program.

Example 2.1 (Predicate Abstraction)

x, y : natural init x = y = 0


ℓ0 : while x = 0 do

ℓ1 : y := y + 1
ℓ2 :


 ‖




m0 : while y = 0 do

m1 : skip

m2 : x := y

m3 :




Figure 2.2: Program Any-X

Xp, Yp : bool init Xp = Yp = False

X0, Y0 : bool init X0 = Y0 = True



ℓ0 : while X0 do

ℓ1 : (Y0, Yp) := (False,True)
ℓ2 :


 ‖




m0 : while Y0 do

m1 : skip

m2 : (X0, Xp) := (Y0, Yp)
m3 :




Figure 2.3: Abstraction of Program Any-X

Consider program Any-X given in Fig. 2.2, which consists of two asyn-

chronously composed processes that communicate using shared variables.

Consider the specification given by the safety property

at−ℓ2 =⇒ at−m3

To verify that Any-X satisfies its specification, we apply the predicate
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abstraction induced by the following mapping:

P :





Xp ↔ x > 0,

X0 ↔ x = 0,

Yp ↔ y > 0,

Y0 ↔ y = 0





This results in the abstract program given in Fig. 2.3. We now model check

that the abstract program satisfies the abstract property, which is given by

Π1 = ℓ2 =⇒ Π2 = m3



Chapter 3

Ranking Abstraction

This chapter deals with abstraction-aided verification of temporal specifica-

tions. State abstraction often does not suffice to verify progress properties

([PR05]). We consider ranking abstraction, a method of augmenting the con-

crete program by a non-constraining progress monitor, which measures the

progress of program execution, relative to a given ranking function. Once a

program is augmented, a conventional state abstraction can be used to pre-

serve the ability to monitor progress in the abstract system. This method

was introduced in [KP00] and further clarified and elaborated in [KPV01].

We demonstrate the use of ranking refinement for proving termination of

a program with nested loops and unbounded random assignments, as well as

a bubble sort algorithm on unbounded linked lists. Both examples entail the

use of additional heuristics in order to synthesize core ranking functions.

31
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3.1 Modular Ranking Augmentation

Ranking abstraction allows us to get away with finding a set of possible

ingredients for ranking functions, without having to design a comprehensive

single ranking function, which is usually required in deductive verification

of termination (of the style advocated in [MP91a]). This is accomplished

by means of augmenting the system with several non-constraining monitors,

and predicate-abstracting the resulting system.

Fix some system D : 〈V,Θ, ρ,J , C〉 and some well-founded domain (W ,≻),

and let δ be some ranking function over the domain. Let dec be a fresh vari-

able (not in V ). The augmentation of D by δ, denoted by D+δ, is the system

D+δ : 〈V ∪ {dec},Θ, ρ ∧ ρδ,J , C ∪ {(dec > 0, dec < 0)}〉

where the conjunct ρδ is defined by:

ρδ : dec
′ =





1, If δ ≻ δ′

0, If δ = δ′

−1, otherwise

Thus, D+δ behaves exactly like D and, in addition, keeps track of whether

δ decreases, remains the same, or otherwise. The new compassion require-

ment captures the restriction that δ cannot decrease infinitely often without

increasing infinitely often, which follows immediately from the well founded-

ness of W . For the pervasive case that δ ranges over the naturals, we can

express ρδ as dec′ = sign(δ − δ′).
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Since augmentation does not constrain the behavior of D, any property

over V is valid over D iff it is valid over D+δ. In order to verify a live-

ness property of D, the augmentation D+δ can be predicate abstracted and

checked for satisfiability of the abstracted property. In that abstraction, it

is not necessary to abstract the variable dec since it ranges over the finite

domain {−1, 0, 1}. Therefore, the abstraction preserves the compassion re-

quirement (dec > 0, dec < 0). Note that we do not require that δ decreases

on every step. As demonstrated below, it suffices to have δ capture some of

the behavioral aspects of a “comprehensive” ranking function.

Combining such augmentation with subsequent predicate abstraction trans-

lates the effect of a well-founded ranking function in the concrete system into

a compassion requirement in the abstract system. Both have the effect that

they disallow a cycle in the execution of the program. A concrete cycle in

which the ranking decreases at least once and never increases cannot exist

within the set of pending states. Similarly, in the abstracted version of the

same program we cannot have a cycle in which dec = 1 at least once and

dec ≥ 0 at all states.

Example 3.1 (Nested Loops) Consider program Nested-Loops in Fig. 3.1(a).

In this program, the statements “x := ?” and “y := ?,” in lines 0 and 1

respectively, denote random assignments of arbitrary positive integers to vari-

ables x and y. For this program, we are interested in proving that it always

terminates, which can be specified by the response property at−0 =⇒ 1 at−6,
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where the assertion at−k stands for π = k.

An initial attempt to prove termination of this program is to define the

ranking function δy = y. The augmentation D+δy is shown in Fig. 3.1(b).

Note that statements that in the original program assign values to y, are

now replaced with a simultaneous assignment to both y and the augmen-

tation variable decy. In the case of control statements such as while, the

augmentation is not displayed explicitly. However, it is implicitly assumed

that the assignment decy := 0 is executed in parallel with any of these state-

ments. Note that the assignments to decy have been optimized in some of

the statements, replacing the expression sign(y − y′) by its values that are

known to be 1 and 0 at the execution of statements 4 and 5, respectively.

While this augmentation is not sufficient to prove termination of the entire

program, it can be used to prove termination of the inner loop (lines 3, 4).

Consider the abstraction:

α : Π = π, X = (x > 0), Y = (y > 0), Decy = decy

where Π is the abstract program counter. The resulting abstract program is

presented in Fig. 3.2. Note that α introduces nondeterministic assignments

to both X and Y (lines 2, 4 and 5). It is now possible to verify, e.g. by model

checking, the termination of the inner loop.

Deductive verification of termination (à la [MP91a]) of the inner loop

consisting of statements 3 and 4, requires the use of the ranking function
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x, y : natural init x = 0, y = 0


0 : x := ?
1 : while x > 0 do



2 : y := ?
3 : while y > 0 do[

4 : y := y − 1
]

5 : x := x− 1




6 :




(a) Program Nested-Loops

x, y : natural init x = 0, y = 0
decy : {−1, 0, 1}
compassion (decy > 0, decy < 0)



0 : (x, decy) := (?, 0)
1 : while x > 0 do



2 : (y, decy) := (?, sign(y − y′))
3 : while y > 0 do[

4 : (y, decy) := (y − 1, 1)
]

5 : (x, decy) := (x− 1, 0)




6 :




(b) Program Augmented-Nested-Loops

Figure 3.1: Program Nested-Loops and Its Augmented Version

2y + (π = 3) (where the boolean expression (π = 3) evaluates to 1 on states

in which π equals 3) or the function 〈y, π = 3〉 ranging over lexicographic

pairs. However, supplying the model checker with the “ingredient rank” y

suffices for the application of the ranking abstraction method. Obviously, to

obtain the termination of the complete program, one need also consider the

variable x.

As shown in Example 3.1, it is sometimes necessary to include several

δ’s in order to obtain a termination proof, by considering simultaneous aug-

mentations by a set of ranking functions. A ranking core is a set of ranking

functions. Let R be the ranking core {δ1, . . . , δk}. The ranking augmentation
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X,Y : {0, 1} init Y = 0,X = 0
Decy : {−1, 0, 1}
compassion (Decy > 0,Decy < 0)



0 : (X,Decy) := (1, 0)
1 : while X do



2 : (Y,Decy) := ({0, 1}, {−1, 0, 1})
3 : while Y do[

4 : (Y,Decy) := ({0, 1}, 1)
]

5 : (X,Decy) := ({0, 1}, 0)




6 :




Figure 3.2: Program Abstract-Augmented-Nested-Loops

D+R is the system

D+R : (· · · ((D+δ1)+δ2)+· · · )+δk

Just like the case of predicate abstraction, we lose nothing (except ef-

ficiency) by adding potentially redundant rankings. The main advantage

here over direct use of ranking functions within deductive verification is that

one may contribute as many elementary ranking functions as one wishes. It

is then left to a model checker to sort out their interaction and relevance.

To illustrate this, consider a full deductive proof of termination of program

Nested-Loops. Due to the unbounded nondeterminism of the random as-

signments, a deductive termination proof is necessarily based on a ranking

function over lexicographic tuples, an example of which is the following:

〈(π = 0), 4x+ 3(π = 1) + 2(π = 2) + (π ∈ {3, 4}), 2y + (π = 3)〉
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With multi-component ranking abstraction, however, one need only pro-

vide the well-founded ranking core R = {x, y}. This also improves on the

augmentation-based approaches presented in [KP00] and [KPV01] that, in-

tent on exploring the theory of this method rather than its practical appli-

cations, imply the use of a single ranking function.

To abbreviate the notation, we will write DR,α as shorthand for (D+R)α.

Note that when we perform ranking abstraction w.r.t a core R : δ1, . . . , δk,

we use an abstraction mapping that extends α by the additional definitions:

Dec1 = dec1, . . . , Deck = deck

Since augmentation induced by the ranking core R does not constrain the

behavior of the original fds D, it follows that every σ : s0, s1, . . ., a compu-

tation of D, gives rise to σ̃ : s̃0, s̃1, . . ., a computation of D+R agreeing with

σ on all variable except for the dec variables associated with R. The compu-

tation σ̃ can be abstracted into σα : S0, S1, . . ., a computation of DR,α, such

that Si = α(s̃i), for all i ≥ 0. Thus, the set of computations of D is, modulo

augmentation and abstraction, a subset of the computations of DR,α.

3.2 Soundness and Completeness of the Method

In order to establish soundness and completeness of the ranking abstraction

method we have to consider a more general augmentation than just pure
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ranking abstraction. Such an augmentation may introduce additional auxil-

iary variables and their transitions, provided these additions do not constrain

the behavior of the system D.

Let D1 : 〈V1,Θ1, ρ1,J1, C1〉 and D2 : 〈V2,Θ2, ρ2,J2, C2〉 be two systems.

We define the synchronous parallel composition of D1 and D2, denoted by

D1 ‖|D2, to be the system D = 〈V,Θ, ρ,J , C〉, where,

V = V1 ∪ V2 Θ = Θ1 ∧ Θ2 ρ = ρ1 ∧ ρ2

J = J1 ∪ J2 C = C1 ∪ C2

As implied by the definition, each of the basic actions of system D consists

of the joint execution of an action of D1 and an action of D2. Thus, we can

view the execution of D as the joint execution of D1 and D2.

We are interested in the synchronous parallel composition A : D ‖|M ,

where D is the system to be verified, while fds M serves as a monitor that

observes the behavior of system D. Let σ : s0, s1, . . . be a computation of the

parallel composition A. We denote by σ⇓D the sequence of states obtained

by projecting each state si on the variables of D. Let Comp(A)⇓D denote the

set of all computations of the composition A when projected on the variables

of D. In general, we have the following relation between the computations

of A and the computations of D:

Comp(D ‖|M)⇓D ⊆ Comp(D)
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That is, any D-projection of a computation of A is a computation of D.

However, there may be computations of D that are blocked due to the in-

teraction with the monitor M . An augmentation D ‖|M is defined to be

non-constraining if the set of D-projections of the computation of A equals

the set of D-computations, i.e.

Comp(D ‖|M)⇓D = Comp(D)

That is, any computation of D can be extended by an appropriate assignment

of values to the variables in VM−VD to a computation of D ‖|M . The notion

of a non-constraining monitor is referred to in [KP00] as an accommodating

monitor.

It is not difficult to see that the ranking augmentation corresponding to

the ranking function δ is equivalent to augmentation by the following non-

constraining monitor

Mδ =




V : Vδ ∪ {dec : {−1, 0, 1}}, J : ∅,

Θ : True, C : {(dec > 0, dec < 0)}

ρ : dec′ = sign(δ − δ′)




where Vδ is the set of variables occurring within δ.

The fact that Mδ is non-constraining follows from the transition relation,

which can always assign an appropriate value to the fresh variable dec. The

compassion requirement is non-constraining because it is a direct consequence
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of the fact that the ranking function δ ranges over a well-founded domain

and, therefore, cannot decrease infinitely many times without also increasing

infinitely many times.

Temporal Testers

One of the most useful non-constraining monitors that can be augmented to

a system is a temporal tester for an ltl formula ψ. As shown in [KPR98],

[KP00] and [KP05], it is possible to construct a temporal tester T [ψ] for ev-

ery ltl formula ψ. The tester T [ψ] is an fds with a distinguished (output)

variable x such that, in any computation σ : s0, s1, . . . of T [ψ], and at any po-

sition j ≥ 0, sj[x] = 1 iff (σ, j) |= ψ. Furthermore, T [ψ] is non-constraining,

which implies that any state sequence σ can be extended to a computation

of T [ψ] by assigning appropriate values to the output variable x. The main

application of temporal testers is for model checking of ltl properties. It is

based on the observation that

For a system D and ltl formula ψ, D |= ψ iff the synchronous

parallel composition D ‖|T [ψ] ‖| [Θ : x = 0] has no computations.

Here [Θ : x = 0] is a trivial fds that imposes the initial condition that, at

position 0, the output variable x assumes the value 0. Thus, a computation

of D ‖|T [ψ] ‖| [Θ : x = 0] corresponds to a computation of D that satisfies

¬ψ. Claiming that this composition has no computations is equivalent to

the claim that all computations of D satisfy the formula ψ.



Chapter 3. Ranking Abstraction 41

In this paper we use temporal testers in order to enrich the abstraction

by additional information that traces the satisfaction of an arbitrary ltl

formula during execution of a system.

We are now ready to state the theorems of soundness and completeness for

the ranking abstraction method in a more general context, in which the orig-

inal system is augmented by an arbitrary non-constraining progress monitor

M . The case that the progress monitor consists purely of a ranking augmen-

tation according to a ranking core R is an important special case. To denote

the dependence of the monitor M on the ranking core R, we often write it

as MR. The following theorem is taken from [KP00].

Theorem 3.1 (Soundness).

For a system D, a progress monitor MR that is non-constraining w.r.t D,

abstraction α, and a temporal formula ψ:

(D ‖|MR)α |= ψα =⇒ D |= ψ

Thus, if an augmented and abstracted system satisfies an abstract prop-

erty, then the concrete system satisfies the concrete property.

The notion that (augmented) ranking abstraction is more powerful than pred-

icate abstraction for the verification of temporal properties is formalized by

the following claim of completeness ([KP00]):

Theorem 3.2 (Completeness).

The method of ranking abstraction is complete. Namely, for every system D



42 3.2. Soundness and Completeness of the Method

and temporal formula ψ, such that D |= ψ, there exist a progress monitor

MR and an abstraction α such that (D ‖|MR)α |= ψα.

The theorem shows that every ltl property, and, in particular, all progress

properties, can be verified using the ranking abstraction method. In com-

parison, state-based predicate abstraction can only verify safety properties.

A close study of the completeness proof, as presented in [KP00] yields

the following observations:

• In many cases, the progress monitor is just the ranking augmentation

given by D+R. This is typically the case when the temporal property

ψ is not too complex. For example, for verifying response properties,

there is no need for an augmentation beyond the ranking augmentation

induced by R.

• In all other cases, it is sufficient to augment the system by the temporal

tester T [ψ] and then apply the ranking abstraction induced by R.



Chapter 4

Abstraction and Ranking

Refinement

In this section we will show that, similarly to predicate abstraction, ranking

abstraction also possesses a counterexample guided refinement process. As-

sume that, wishing to check that D |= ψ, we have model checked DR,α |= ψα

and have obtained an abstract counterexample σα. There are two possi-

bilities. Either there exists a concrete computation σ, such that σα is the

abstraction of σ, or σα cannot be concretized. In the first case, σ is a true

counterexample, implying that ψ is not valid over D. In the second case, this

means that our abstraction is too coarse and needs to be refined.

The process of counterexample guided refinement has to distinguish be-

tween these two cases, and in the case of a spurious counterexample, to utilize

the failure to concretize in order to refine the two abstraction components: α

43
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and R. Note that the situation here is more complex than simple predicate

abstraction, because the refinement may call for a refinement of α or of R,

or of both. The realization that, in addition to predicate refinement, there

is also a need to refine the termination components has already been made

in [CPR06]. However, they perform their version of refinement within the

framework of transition invariants.

4.1 Abstract Runs and Their Concretizations

Let D : 〈V,Θ, ρ,J , C〉 be a system, P be a predicate base, α be the abstraction

mapping (lifted to map assertions) α(p) : ∃V.VA = P(V ) ∧ p(V ), and α−1

be α’s inverse, i.e., the mapping α−1(Φ) : ∃VA.VA = P(V ) ∧ Φ(VA), which

we fix for the duration of this section. We refer to runs of D and DR,α as

concrete and abstract runs, respectively. In this section, we assume that,

unless explicitly stated otherwise, all runs are finite. For a run ξ : s0, . . . , sm,

we denote by |ξ| = m the length of ξ.

Consider an abstract run Ξ: S0, . . . , Sm. A concrete run ξ : s0, . . . , sm

is called a concretization of Ξ if α(si) = Si, for all i ∈ [0..m]. Rather

then considering a single state concretization of the abstract run Ξ, we may

wish to derive a characterization of all possible concretizations of Ξ. This

may be captured by a sequence ϕ0, . . . , ϕm of assertions over V . We thus

define the symbolic concretization of Ξ (with respect to D) to be the sequence
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γ(Ξ) : ϕ0, . . . , ϕm of concrete assertions inductively as follows:

ϕi :





Θ ∧ α−1(S0) i = 0

(ϕi−1 1 ρ) ∧ α−1(Si) i ∈ [1..m]

where ϕ 1 ρ is the assertion characterizing the states that are ρ-successors of a

ϕ-state. We sometimes refer to ϕi as γ(Ξ)[i], or simply γ[i] if Ξ is understood

from the context.

Example 4.1 Recall program Nested-Loops of Fig. 3.1(a), and consider

the abstraction and ranking core of Example 3.1, that is:

α : X = (x > 0), Y = (y > 0), Decy = decy

R : {δ1 = y}

The abstract system is shown in Fig. 3.2. Consider an abstract run Ξ: S0, . . . , S6

of the system, where

S0 : 〈Π:0, X:0, Y :0, Decy:0〉 S1 : 〈Π:1, X:1, Y :0, Decy:0〉
S2 : 〈Π:2, X:1, Y :0, Decy:0〉 S3 : 〈Π:3, X:1, Y :1, Decy: − 1〉
S4 : 〈Π:4, X:1, Y :1, Decy:0〉 S5 : 〈Π:3, X:1, Y :0, Decy:1〉
S6 : 〈Π:5, X:1, Y :0, Decy:0〉

The symbolic concretization of Ξ is ϕ0, . . . ϕ6 where:
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ϕ0 : π = 0 ∧ x = 0 ∧ y = 0 ∧ decy = 0
ϕ1 : π = 1 ∧ x > 0 ∧ y = 0 ∧ decy = 0
ϕ2 : π = 2 ∧ x > 0 ∧ y = 0 ∧ decy = 0
ϕ3 : π = 3 ∧ x > 0 ∧ y > 0 ∧ decy = −1
ϕ4 : π = 4 ∧ x > 0 ∧ y > 0 ∧ decy = 0
ϕ5 : π = 3 ∧ x > 0 ∧ y = 0 ∧ decy = 1
ϕ6 : π = 5 ∧ x > 0 ∧ y = 0 ∧ decy = 0

The following claim establishes the relation between symbolic concretiza-

tions of abstract and concrete runs:

Claim 4.1 (Feasibility). For every abstract run Ξ, k ∈ [0..|Ξ|], and concrete

state s, s satisfies γ[k] iff there exists a concrete run s0, . . . , sk = s that is a

concretization of Ξ[0..k].

Proof. Assume that s |= γ[k]. Proceeding from k down to 0, we will construct

a sequence of states s = sk, sk−1, . . . , s0, such that, for each i = 0, . . . , k,

Ξ[i] = α(si) and si |= γ[i], s0 is initial, and, for each i ∈ [0..k − 1], si+1 is a

ρ-successor of si.

For every i ∈ [1..k] assume that we already constructed si, such that

si |= γ[i]. The fact that si satisfies γ[i] = (γ[i − 1] 1 ρ) ∧ α−1(Ξ[i]) implies

that Ξ[i] = α(si) and that there exists a state si−1 that is a ρ-predecessor of

si and satisfies γ[i− 1].

For i = 0, the fact that s0 |= γ[0] = α−1(S0) ∧ Θ implies that s0 is an

initial state such that S0 = α(s0).

Thus, the state sequence ξ : s0, . . . , sk = s is a concretization of Ξ[0..k].
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In the other direction the claim is straightforward.

A corollary of Claim 4.1 is that an abstract run Ξ[1..m] can be concretized

iff γ(Ξ)[m] is satisfiable.

The assertion γ(Ξ)[i] characterizes all the states that can appear at posi-

tion i of a concretization of the abstract run Ξ. We will generalize this notion

by defining a bi-assertion βi,j(Ξ), for 0 ≤ i ≤ j ≤ |Ξ|, such that 〈sa, sb〉 |= βi,j

iff there exists ξ : s0, . . . , s|Ξ|, such that si = sa and sj = sb. This bi-assertion

will be used when attempting to concretize “abstract cycles” that are ob-

tained in counterexamples. The generic presentation of the bi-assertion is

βi,j(V0, V ) (rather than βi,j(V, V
′)), where V0 is a fresh copy of the system

variables, and records the values of variables at state si.

Let Ξ = S0, . . . , Sm be an abstract run. The bi-assertion βi,j(Ξ) is defined

inductively, for all j, i ≤ j ≤ m by:

βi,j =





V = V0 ∧ α−1(Si) j = i

(βi,j−1 1 ρ) ∧ α−1(Sj) j > i

In this definition, V = V0 is an abbreviation for
∧
x∈V (x = x0), which states

equality between all V -variables and their corresponding V0-counterparts.

The expression βi,j−1 1 ρ stands for

∃Ṽ : (βi,j−1(V0, Ṽ ) ∧ ρ(Ṽ , V ))

Note in particular that this expression preserves the values of the V0-variables
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from βi,j−1 to βi,j.

Example 4.2 Continuing Example 4.1, we compute β1,1, . . . , β1,6 as follows:

β1,1 : init ∧ π = π0 ∧ x = x0 ∧ y = y0 ∧ decy = dec0
y

β1,2 : init ∧ π = 2 ∧ x = x0 ∧ y = y0 ∧ decy = 0
β1,3 : init ∧ π = 3 ∧ x = x0 ∧ y > 0 ∧ decy = −1
β1,4 : init ∧ π = 4 ∧ x = x0 ∧ y > 0 ∧ decy = 0
β1,5 : init ∧ π = 3 ∧ x = x0 ∧ y = 0 ∧ decy = 1
β1,6 : init ∧ π = 5 ∧ x = x0 ∧ y = 0 ∧ decy = 0

where init : π0 = 1 ∧ x0 > 0 ∧ y0 = 0 ∧ dec0
y = 0.

4.2 A “Fluctuation-Proof” Ranking Augmen-

tation

We now consider a somewhat more complex ranking augmentation that is

designed to simplify the ranking components required by the counterexample-

guided refinement described in the next section.

For an fds D : 〈VD,ΘD, ρD,JD, CD〉, a set of variables Vδ ⊆ VD, a ranking

function δ(Vδ), and an assertion ϕ over VD, we define the monitor Mδ,ϕ as

follows:
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Mδ,ϕ =




V : VD ∪ V0 ∪ {dec : {−1, 0, 1}},
Θ : V0 = Vδ,

ρ :



ϕ′ ∧ V ′

0 = V ′
δ ∧ dec′ = sign(δ(V0) − δ(V ′

δ ))
∨

¬ϕ′ ∧ V ′
0 = V0 ∧ dec′ = 0




J : ∅,
C : {(dec > 0, dec < 0)}




where V0 is a fresh copy of the variable set Vδ. In essence, the monitor Mδ,ϕ

records changes to the ranking only upon visiting ϕ-states, at which time

the variables of V0 are updated. As long as ϕ does not hold, the value of

V0 remains unchanged. In the next section, this will be used to capture the

effect of a control-flow loop iteration on the variables of D.

Example 4.3

x : natural

1 : while x > 0 do[
2 : x := x+ 1;
3 : x := x− 2;

]

4 :
(a) A Simple Loop with
Fluctuating Ranking

x : natural, dec : {−1, 0, 1}
1 : while x > 0 do[

2 : (x, dec) := (x+ 1,−1);
3 : (x, dec) := (x− 2, 1);

]

4 :
compassion(dec > 0, dec < 0)

(b) Augmentation with Ranking Core
{x}

Figure 4.1: Motivating Example for Fluctuation-Proof Monitors

Consider the program of Fig. 4.1(a) and its augmentation, as defined

in Section 3.1, with the ranking core {x}, which yields the program in

Fig. 4.1(b). It is clear that x would serve as the main component in an
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x, x0 : natural, dec : {−1, 0, 1}
init x = x0

1 : while x > 0 do[
2 : (x, x0, dec) := (x+ 1, x0, 0);
3 : (x, x0, dec) := (x− 2, x′, sign(x0 − x′));

]

4 :
compassion(dec > 0, dec < 0)

Figure 4.2: Augmentation with Fluctuation-Proof Monitor

adequate ranking function for proving termination of the program. However,

the ranking augmentation, as constructed in Section 3.1, fails in this case

due to the fluctuating value of x, which causes dec to assume both a positive

and a negative value during each loop iteration, which in turn causes the

compassion requirement to be satisfied at each iteration. This can be reme-

died by employing the ranking core {5x(π = 1) + 4x(π = 2) + 3x}, which

“distributes” the ranking function x over the loop body. Since this distribu-

tion of a ranking function is hard automate, we instead rely on the following

observation: As long as the overall effect of a loop iteration is to decrease x,

we may safely ignore occasional increases while inside the loop. Thus we aug-

ment the program of Fig. 4.1(a) with the progress monitor Mx,(π=1), yielding

the program in Fig. 4.2. An equivalent formulation of the same construct can

be obtained by augmenting the program of Fig. 4.1(a) with the assignment

x0 := x at location 1, and then applying the simpler ranking augmentation

with the ranking core {x0}. Note that if we proceed to predicate-abstract

this program, the relation between x and its copy x0 needs to be taken into

account. For this purpose, the predicate base {x = x0, x = x0+1, x = x0−1}
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can be used.

As in the construction of Section 3.1, the monitorMδ,ϕ is non-constraining.

Thus the soundness result of the previous section continues to apply. Since

the present construction subsumes that of Section 3.1 (the constructions are

equivalent when ϕ = True), the completeness result applies as well.

Throughout the rest of this chapter we use a definition of ranking aug-

mentation that is based on the new monitor construction. Namely, the aug-

mentation of an fds D by δ with respect to assertion ϕ, denoted by D+〈δ, ϕ〉,

is the synchronous parallel composition D‖|Mδ,ϕ. Accordingly, as a ranking

core we now use a set R : {〈δ1, ϕ1〉, . . . , 〈δn, ϕn〉}, and define augmentation

of D by R to be

D+R : (· · · ((D+〈δ1, ϕ1〉)+〈δ2, ϕ2〉)+· · · )+〈δk, ϕk〉

As before we use the notation DR,α as a shorthand for (D+R)α.

4.3 Counterexample Guided Abstraction Re-

finement

The verification (or refutation) of a progress property ψ over an fds begins

with a (possibly empty) user-provided initial ranking R and a predicate

abstraction P . Following [GS97], initially P is chosen to be the set of atomic

state formulas occurring in ρ, Θ, J , C and the concrete formula ψ, excluding
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formulas that refer to primed variables.

Let ψα be the formula α(ψ). We start by model checking the validity

of ψα over DR,α. If valid, we can safely conclude that S |= ψ. Otherwise,

a counterexample is found in the form of a computation of DR,α that does

not satisfy ψα. If such a computation exists then a standard model checker

will return a counterexample that is finitely represented as a “lasso” – an

abstract computation of the form Ξ1; Ξ
ω
2 where Ξ1 : S0, . . . , Sk−1 is a finite

abstract run, and Ξ2 : Sk, . . . , Sm−1 is a finite sequence of consecutive abstract

states. As in the case of predicate abstraction refinement, we first attempt

to concretize the counterexample Ξ : S0, . . . , Sk, . . . , Sm−1, Sm = Sk. Namely,

we compute γ(Ξ) : ϕ0, . . . , ϕm and βk,m(Ξ). The following may occur:

Case 1. The counterexample Ξ cannot be concretized.

This case is identified by observing that ϕm = γ[m] is unsatisfiable. This is a

typical scenario in predicate abstraction refinement – the abstraction is too

coarse, and should be refined so as to eliminate the spurious counterexam-

ple. One can apply any of the known predicate refinement techniques, e.g.,

[CGJ+00, BPR02, BR01]. For all following cases, we may assume that ϕm is

satisfiable.

Case 2. The concretization of the counterexample contains a cycle com-

patible with Ξ2 — the property is not valid.

This case is identified by observing that ϕk(V ) ∧ βk,m(V, V ) is satisfiable.

This implies that there exists a state s such that s |= ϕk and 〈s, s〉 |=
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βk,m, and therefore, there exists a state concretization of Ξ of the form

ξ : s0, . . . , sk, . . . , sm = sk = s. It follows that the infinite concrete run

s0, . . . , sk−1(sk, . . . , sm−1)
ω is a computation of D that violates ψ. We con-

clude that ψ is not D-valid.

Case 3. The infinite abstract run Ξ1; Ξ
ω
2 cannot be concretized — the

abstract counterexample is spurious; perform ranking refinement.

This case is identified by observing that the bi-assertion βk,m is well founded

over ϕk. Obviously, if Ξ1; Ξ
ω
2 could be concretized by the infinite concrete

run s0, s1, . . . , then we would have had an infinite state sequence, namely

sk, sk+L, sk+2L, . . . , where L = m − k, such that sk |= ϕk and βk,m holds

between any two consecutive states in this sequence. This would have con-

tradicted the fact that βk,m is well founded over ϕk. We conclude that the

counterexample is spurious.

This case is a typical scenario in ranking abstraction refinement – the

ranking is too coarse, and should be refined to eliminate the spurious coun-

terexample. The ranking core is refined by adding to it a well-founded rank-

ing that proves the well foundedness of βk,m over ϕk. To avoid fluctuation

of the ranking throughout a computation (for example, when the value of a

variable decreases at each iteration of a control flow loop, but fluctuates at

different points within the loop), the refined ranking augmentation is applied

with respect α−1(Ξ[k]).

A number of methods have been proposed to synthesize such functions
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from well-founded relations, among them in [PR04a, DGG00]. In Section 4.4

we present an additional heuristic for the domain of unbounded linked lists.

Case 4. The infinite abstract run Ξ1; Ξ
ω
2 can be concretized — the prop-

erty is not valid.

This case can be identified by observing that the bi-assertion βk,m is not well

founded over ϕk. From the fact that βk,m is not well founded, we can infer

the existence of an infinite sequence sk, sk+L, sk+2L, . . ., where L = m − k.

This state sequence can be transformed into a computation by filling in the

missing states (i.e., s1, . . . , sk−1 as well as each interval sk+iL, . . . , sk+(i+1)L,

i ≥ 0) to form a concretization of Ξ1; Ξ
ω
2 that is a computation of D violating

the property ψ.

In this case we can declare the property ψ to be invalid over the concrete

program, with the computation s1, . . . , sk, sk+1, . . . serving as a counterex-

ample.

It can be shown that these four cases cover all the possibilities, even though

some of the tests that have to be applied in order to distinguish between the

cases are not, in general, decidable.

The process is described in Fig. 4.3. Lines 1 and 2 abstract the system and

the property respectively with respect to the ranking core R and the predicate

base P . Line 3 (model-)checks whether the abstract property holds over the

abstract program. If so, the algorithm returns “success” (line 4). Else, a
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Cegar(D, ψ,P,R)


1 :Let DA = DR,α;
2 :Let ψA = ψα;
3 : If DA |= ψA then

4 : Return “success”;
Else


5 :Let C = S0 · · ·Sk−1(Sk · · ·Sm−1)
ω be a computation of DA

such that C |= ¬ψA;
6 :Let Ξ = S0, . . . , Sk, . . . , Sm−1, Sm = Sk;
7 :Compute γ(Ξ) : ϕ0, . . . , ϕm, and βk,m(Ξ);
8 : If (∃i : 0 ≤ i ≤ m : ¬sat(ϕi)) then — — Case 1


9 :Let P ′ be a predicate refinement of P induced by the failure

to concretize Ξ;
10 :Return Cegar(D, ψ,P ′,R);

11 :Else if sat(ϕk(V ) ∧ βk,m(V, V )) then — — Case 2[
12 :Let ξ : s0, . . . , sk, . . . , sm = sk be the concrete run concretizing Ξ;
13 :Return “Property not valid. Counterexample: ξ”;

14 :Else if there exists well-founded relation Ψ(V0, V ) over ϕk— — Case 3
such that βk,m ⊆ Ψ then


15 :Let δ be a well-founded ranking proving the well-foundedness

of βk,m over ϕk;

16 :Return Cegar(D, ψ, P ∪ {Ψ},R∪ {〈δ, α−1(∃ ~Dec . Sk)〉});
17 :Else return “Property not valid. — — Case 4

Counterexample: sk, sk+L, sk+2L, . . . ”;

Figure 4.3: Counterexample Guided Abstraction Refinement Algorithm

finitely-representable counterexample is produced (by a model checker) in line

5, from which we construct the “lasso” Ξ : S0, . . . , Sk, . . . , Sm−1, Sm = Sk at

line 6. Line 7 computes the symbolic concretization γ(Ξ) and the bi-assertion

βk,m(Ξ). Line 8 checks whether the symbolic concretization is satisfiable. If

it is not satisfiable (Case 1), then predicate refinement is applied (line 9) and

the algorithm is re-started with the augmented predicate base (line 10).

If the symbolic concretization is satisfiable, then we check in line 11

whether ϕk(V ) ∧ βk,m(V, V ) is satisfiable. If it is satisfiable (Case 2) then we
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can construct a concrete lasso ξ : s0, . . . , sk, . . . , sm−1, sm = sk concretizing

Ξ that is therefore a concrete counterexample.

If the above two tests were answered negatively, we decide in line 14

whether the bi-assertion βk,m(Ξ) is well founded over ϕk by searching for

a well-founded relation Ψ that contains it. If it is (Case 3) then we know

that the abstract counterexample is spurious. In line 15, we attempt to con-

struct a well-founded ranking δ that proves the well foundedness over ϕk of

βk,m(Ξ). If we succeed, then the ranking core is refined with δ, along with the

assertion α−1(∃ ~Dec . Sk) characterizing D-states in which control (modulo

Dec-variables) is at the head of the repeating period of the lasso. In addi-

tion, the predicate base is extended with the predicate1 Ψ, which identifies

a relationship between the system variables occurring in δ and their copies,

which are maintained by the monitor Mδ,α−1(∃ ~Dec.Sk). The algorithm then

reiterates with the extended ranking core. This step is the least constructive

in the algorithm, and the best that can be offered is a set of heuristics for

finding a well-founded ranking that can prove the well foundedness of a given

bi-assertion.

Finally, if all preceding tests fail, we reach line 17 (Case 4). In this case,

βk,m is known not to be well founded over ϕk. This implies that there exists

a concrete counter example, but not necessarily one that can be presented

in finite terms. The best that we can do is present to the user a prefix of a

1In practice, the assertion denoting Ψ is split into its component subformulae, each of
which is added as a separate predicate.
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potentially infinite counterexample, as explained in the preceding discussion

of Case 4.

The algorithm may not terminate (assuming even an extremely powerful

model checker). For one, predicate refinement is not guaranteed to terminate.

Similarly, ranking refinement may not terminate. Furthermore the test at

line 14, which decides whether we are in Case 3 or Case 4, is, in general,

undecidable. Thus, to apply this algorithm, we must invoke various heuristics

that were designed in order to check whether a given bi-assertion is well

founded.

Example 4.4 (Termination of Nested-Loops) Recall program Nested-

Loops, which was presented in Fig. 3.1(a), and the related termination prop-

erty expressed as at−0 =⇒ 1 at−6. Following Example 4.1, we begin with

the initial abstraction and ranking used in Example 3.1. The first iteration

of Cegar results in an abstract counterexample consisting of the single-

state prefix S0 and the repeating period (S1, . . . , S6), where S0, . . . , S6 are

as in Example 4.1. The abstract lasso derived from this counterexample is

Ξ : S0, S1, . . . , S6, S7 = S1. We follow the computation of Example 4.2 to

obtain the bi-assertions β1,1, . . . , β1,6, and also compute

β1,7 : init ∧ π = 1 ∧ x = x0 − 1 ∧ x > 0 ∧ y = 0 ∧ decy = 0

It follows that β1,7(V0, V ) implies x0 > x > 0, which is well founded. A well-

founded ranking function proving well foundedness of β1,7 is δ2 = x over the
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domain (N, >). Our ranking augmentation construction requires a concrete

assertion that identifies the head of the loop, which is where the ranking

will be measured2, for which we use the assertion α−1(∃Decy . S1). We

refine the predicate base with the predicates {x0 > x, x > 0} and reiterate

with the refined ranking core R′ : {〈δ1,True〉, 〈δ2, α
−1(∃Decy . S1)〉}. At

this point, model-checking of the abstract program fails, yielding a spurious

counterexample that falls under case 1 (line 8). On refinement with the

predicate (x = x0) and subsequent reiteration, the model-checker successfully

verifies termination.

The discussion in this section only considered the case that the sole augmen-

tation applied is a ranking augmentation, while the completeness theorem

implies that, in some cases, it is necessary to use a more general progress

monitor. However, according to the comments following Theorem 3, there

are cases in which we are guaranteed that ranking augmentation is adequate.

For all other cases, it is sufficient to take the tester T [ψ] as a standard addi-

tional augmentation.

2For the program at hand, the ranking augmentation of Section 3.1, which requires no
such identification of the loop head, is just as effective.
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4.4 Synthesizing Elementary Ranking Func-

tions

A number of methods have been suggested for synthesis of ranking functions

that establish (prove) well foundedness of a well-founded bi-assertion. In our

examples we have used the simple heuristic of searching for simple linear

constraints implied by the transition relation of a control-flow loop ([PR04a]

provides a more general method for doing this. Indeed, their method is

complete for the reals). For example, given a set of variables V and a bi-

assertion β, we check validity of implications such as β → v > v′, for each v ∈

V . As demonstrated, this has been sufficient for dealing program Nested-

Loops. A more general approach based on linear algebra may look for

ranking functions that are linear combinations of system variables.

Such an extraction is useful in two contexts in which bi-assertions may

arise. The first has been demonstrated in the ranking refinement process.

The second is related to the determination of the ranking components that

should be placed in the initial ranking core. This can be based on a heuris-

tic that analyzes the various loops in the program. Assume a control loop

identified by a sequence of locations L = ℓ1, . . . , ℓn = ℓ1, such that, for each

i = 1, . . . , n−1, ℓi+1 can be reached from ℓi in a single step. For a loop L, we
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can define a sequence of bi-assertions as follows:

βi,j =





V0 = V ∧ π = ℓi j = i

(βi,j−1 1 ρ) ∧ π = ℓj j > i

It only remains to check whether the bi-assertion βL = β1,n is well founded,

and identify well-founded ranking functions that prove the well foundedness

of βL. Such an identification is, in general, undecidable, but we can use any

of the heuristics mentioned above, such as linear analysis.

In Subsection 6.4.3 we use a variant of this heuristic to deal with programs

that manipulate unbounded pointer structures.



Chapter 5

Deriving Proofs from

Abstractions

5.1 Extracting A Deductive Proof

There are situations in which verification alone is not sufficient, and an ac-

tual proof is required. This is the case, for example, when the verification

effort is embedded in a larger proof-generating effort, because of either con-

sidering only a component of the system, or verifying a property that is only

a part of the full specification. When dealing with safety properties, it is

straightforward to generate a concrete logical formula that represents an in-

ductive invariant, based on the set of reachable abstract states, to be used

as the basis of a deductive proof. The analogous constructs in the case of

a response-property proof consist of an assertion that over-approximates the

61
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set of pending states, and a well-founded, always-decreasing ranking function.

In this section we present algorithms that extract the necessary auxiliary

constructs from a successful application of the ranking abstraction method.

The algorithm is based on the LTL model checking algorithm of [LP85] in

carrying out a similar analysis of strongly connected components. For sim-

plicity, we consider first the case of an fds that has no fairness (justice or

compassion) requirements. This is typically the case of an fds derived from

a sequential program. We will consider the more general case in which the

system has justice requirements in the next section.

5.1.1 Extracting Deductive Proofs of Invariance Prop-

erties

For the sake of completeness and emphasizing the analogy between predicate

abstraction and ranking abstraction, we present here the process of extracting

a deductive proof of an invariance property from a successful application of

predicate abstraction. In Fig. 5.1(a), we present the deductive rule inv for

establishing the validity of the invariance property 0 p. The application of

the rule calls for the identification of an auxiliary assertion ϕ that, together

with p, satisfies premises I1 — I3. We refer to an assertion that satisfies

premises I1 and I2 as inductive.

Let D be an fds for which we wish to verify the invariance property

ψ : 0 p. Assume that we employed the predicate abstraction α : VA = P(V )
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Rule inv

For assertions p, ϕ,

I1. Θ → ϕ
I2. ϕ ∧ ρ→ ϕ′

I3. ϕ→ p

0 p

(a) Deductive Rule inv

Algorithm Extract-invariance (D, α)
1. Compute Dα;
2. let Φ := Θα 1 (ρα)∗;
3. let ϕ := α−1(Φ);

(b) Inductive Assertion Extraction Algorithm

Figure 5.1: Deductive Rule and Extraction Algorithm for Invariance Prop-
erties

and verified, by model checking, that Dα |= 0 pα. By soundness of the

predicate abstraction method we can conclude that D |= 0 p. It only remains

to extract a deductive proof of this fact.

In Fig. 5.1(b), we present algorithm Extract-invariance, which ex-

tracts an auxiliary assertion ϕ from the abstracted system Dα. The algorithm

first computes, in Φ, an abstract assertion that characterizes all abstract

states that are reachable in Dα. It then concretizes Φ into ϕ by applying the

concretization mapping α−1.

The correctness of the algorithm is stated by the following claim:

Claim 5.1 (Extraction of inductive assertion).

For any D and α, the assertion ϕ extracted by Algorithm Extract-invariance

is inductive over D. If Dα |= 0 pα then also ϕ→ p is valid.

It follows that if we apply the extraction algorithm to a system after a

successful application of the predicate abstraction method, then the extracted
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assertion ϕ satisfies all the premises of rule inv.

Example 5.1 (Extraction of a deductive proof of invariance)

Consider program Nested-Loops presented in Fig. 3.1(a). For this pro-

gram, we wish to prove the invariance of the assertion p : π = 6 → ¬(y > 0),

claiming that when execution reaches location 6, then y = 0. Applying

the predicate abstraction α introduced in Example 3.1, we obtain the ab-

stract program presented in Fig. 3.2 when we omit all references to vari-

able Decy. The property 0 p is abstracted by α into the abstract property

0 (Π = 6 → Y 6= 1).

Computing the set of reachable states in this abstract program we obtain

a set that is captured by the following abstract assertion:

Φ : (X → Π ∈ [1..5]) ∧ (Π ∈ [2..5] → X) ∧
(Y → Π ∈ [3..4]) ∧ (Π = 4 → Y )

Concretizing by α−1, we obtain the following candidate assertion for ϕ:

ϕ : (x > 0 → π ∈ [1..5]) ∧ (π ∈ [2..5] → x > 0) ∧
(y > 0 → π ∈ [3..4]) ∧ (π = 4 → y > 0)

It is not difficult to verify independently that ϕ is indeed inductive, and that

ϕ implies π = 6 → ¬(y > 0).

5.1.2 Deductive Rules for Response Properties

Moving to response properties, we consider a property of the form p =⇒ 1 q.

As previously explained, in this section we focus only on fairness-free fds’s. A
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basic proof rule Basic-Response for the deductive verification of a response

property over a fairness-free fds is presented in Fig. 5.2.

Rule Basic-Response

For a well-founded domain A : (W,≻),
assertions p, q, ϕ,
and ranking function ∆ : Σ 7→ A

B1. p =⇒ q ∨ ϕ
B2. ϕ ∧ ρ =⇒ q′ ∨ (ϕ′ ∧ ∆ ≻ ∆′)

p =⇒ 1 q

Figure 5.2: Deductive Rule Basic-Response

The rule calls for the identification of an auxiliary assertion ϕ and a ranking

function ∆ over the well-founded domain A. Assertion ϕ is intended to be an

over-approximation of the set of pending states w.r.t. assertions p and q. It is

possible to view this rule as stating that the property ψ : p =⇒ 1 q is valid

over D whenever the transition relation ρ, when restricted to the pending

states (or their over-approximation ϕ), forms a well-founded bi-assertion.

The well-founded ranking ∆ is a ranking that proves the well foundedness of

the bi-assertion derived from ρ.

In practice, it is often useful to partition ϕ into several disjoint assertions

that cover different cases. This leads to rule Response, which is presented

in Fig. 5.3. This rule, as well as Basic-Response, has been adapted from

[MP91a].
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Rule Response

For a well-founded domain A : (W,≻),
assertions p, q = ϕ0, ϕ1, . . . , ϕm,

and ranking functions ∆0 ,∆1 , . . . ,∆m where each ∆i : Σ 7→ A

R1. p =⇒
∨m
j=0 ϕj

For each i = 1, . . . ,m,
R2. ϕi ∧ ρ =⇒

∨m
j=0(ϕ

′
j ∧ ∆i ≻ ∆′

j)

p =⇒ 1 q

Figure 5.3: Deductive Rule Response

The rule uses assertions ϕ0, . . . , ϕm, where ϕ0 = q. It is not difficult to see

that if we can find a set of constructs (assertions and ranking functions)

satisfying the premises of rule Response, we can immediately construct the

appropriate constructs necessary for rule Basic-Response. This can be

done by taking

ϕ : ϕ1 ∨ · · · ∨ ϕm

∆ : case

ϕ1 : ∆1

· · ·

ϕm : ∆m

otherwise : 0

end-case

It is customary to refer to assertions ϕ0, . . . , ϕm as the helpful assertions.

In the rest of the section we will show how the constructs needed for rule

Response, i.e. the ranks ∆0, . . . ,∆m and helpful assertions ϕ0, . . . , ϕm, can
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be extracted from a successful application of the ranking abstraction method.

5.1.3 Extracting the Ranking Functions

Let D and α be a concrete system and an abstraction mapping, respectively.

Let R : {δ1, . . . , δℓ} be a ranking core. Assume that the specification of D

is given by the response property ψ : p =⇒ 1 q. Let DR,α be the abstract

system and ψα be the abstract property, and assume that we have established

by model checking that DR,α |= ψα. We now wish to extract the ranking

functions required by rule Response.

The extraction process proceeds in two steps, where in the first step we

extract the ranking functions 0 = ∆0,∆1, . . . ,∆m and, in the second step,

we construct the assertions q = ϕ0, ϕ1, . . . , ϕm. The well-founded domain A

will be constructed incrementally together with the construction of the ∆i’s.

We start by constructing a transition graph G : 〈N,E〉, whose set of nodes

is N = pend ∪ {g}, where pend is the set of all pending states of DR,α,

and g is a special goal node representing all qα-states that are reachable

from a pending state in one step. Recall that the pending states are all the

states that are reachable by a qα-free path from a reachable pα-state. The

edges consist of all transitions connecting one pending state to another. We

also include an edge connecting n ∈ pend to g, if there exists a transition

connecting state n to any non-pending state. We will refer to the nodes of

the graph as N = {g, S1, . . . , Sm}, where g is the goal node and S1, . . . , Sm

are the abstract pending states. We refer to G as the pending graph of system
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DR,α.

The ranking function will be represented as a mapping Rank : N →

Tuples, where Tuples is the type of lexicographic tuples whose elements

are either natural numbers or ranking functions present in the ranking core

R. The ranking Rank is initialized as Rank [n] = ⊥ for each n ∈ N , where ⊥

is the empty tuple. Then the recursive procedure Rank-Graph(G), shown

in Fig. 5.4, is invoked. The algorithm is based on partitioning the transition

graph into maximal strongly connected components (MSCCs) and recursively

dealing with each MSCC. For an MSCC C and a state n, we say that n is a

C-state when n ∈ C. We denote by |C| the number of nodes in C.

In each iteration, G is decomposed into a sorted set of MSCCs (line 1),

where sortedness means that for two components Ci and Cj in the set, i > j

if there is an edge from a Ci-node to a Cj-node. The algorithm updates the

mapping Rank by concatenating natural numbers or elements of the ranking

core to the right end of tuples, denoted by the notations Rank(n) ∗ i and

Rank(n) ∗ δj, respectively. In line 4, each node is assigned a rank based on

the index of the MSCC it belongs in.

In line 6, for each non-singleton MSCC C a compassion requirement

〈Decj > 0,Decj < 0〉 is found that is violated by C. This means that

there exists n ∈ C such that n |= (Decj > 0) and that for any n ∈ C,

n 6|= (Decj < 0). This search is guaranteed to succeed under the assumption

that the model checker has already verified that DR,α |= ψα, the reasoning

being that, by contradiction, if some component C violates no compassion



Chapter 5. Deriving Proofs from Abstractions 69

Algorithm Rank-Graph(G, C,R)
Input: Graph G = (N,E) of pending states for DR,α

Compassion requirements of DR,α, given by C =





〈Dec1 > 0,Dec1 < 0〉,
. . . ,

〈Decℓ > 0,Decℓ < 0〉





Ranking core R = {δ1, . . . , δℓ}

Output: Rank , an array N → Tuples

Initially: For every n ∈ N , Rank(n) = ⊥.

Rank(G):
1 : Decompose G into a sorted set of MSCCs G = C0, ..., Ck;
2 : Forall i ∈ [0..k] do

3 : Forall n ∈ Ci do

4 : Rank [n] := Rank [n] ∗ i;
5 : Forall i ∈ [0..k] such that |Ci| > 1 do



6 : Let j ∈ [0..ℓ] such that

(
∃n ∈ Ci . n |= (Decj > 0) ∧
∀n ∈ Ci . n 6|= (Decj < 0)

)

in


7 : Forall n ∈ Ci do

8 : Rank [n] := Rank [n] ∗ δj ;
9 : Let D be the subgraph obtained by removing every edge in

Ci leading into a (Decj > 0)-node
in

10 : Call Rank(D);







Figure 5.4: Procedure Rank-Graph

requirement, i.e., is fair, then a computation of DR,α exists that enters C

and never leaves it. Since all states in C are pending, then the computation

does not satisfy ψα. Hence any MSCC is necessarily unfair.

In line 8 the rank of every state of the current MSCC Ci is updated

with the ranking core element δj associated with the compassion requirement

found in line 6. Finally, Ci is broken (line 9), and the procedure is recursively

applied to the resulting subgraph.

When Algorithm Rank-Graph terminates, it produces a list of rank-
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ing functions ∆0,∆1, . . . ,∆m, where ∆0 is the rank associated with node

g (usually 0), while ∆1, . . . ,∆m correspond to abstract states S1, . . . , Sm,

respectively.

X,Y : {0, 1} init Y = 0,X = 0
Decy,Decx : {−1, 0, 1}

compassion {(Decx > 0,Decx < 0), (Decy > 0,Decy < 0)}


0 : (X,Decy,Decx) := (1, 0,−1)
1 : while X do



2 : (Y,Decy,Decx) := (1,−1, 0)
3 : while Y do[

4 : (Y,Decy,Decx) := ({0, 1}, 1, 0)
]

5 : (X,Decy,Decx) := ({0, 1}, 0, 1)




6 :




Figure 5.5: Abstract Nested-Loops, Augmented with Ranking Core {y, x}

Example 5.2 (Extracting a Ranking Function for Nested-Loops)

We illustrate the algorithm by extracting the ranking function for the de-

ductive proof of termination of program Nested-Loops, given the abstract

program shown in Fig. 5.5. This is a version of the augmented abstract

version from Fig. 3.2, after refinement with the additional ranking function

δ2 : x. The response property we wish to verify is that of termination, which

can be specified by the formula at−0 =⇒ 1 at−6, where, as usual at−i is an

abbreviation of the assertion π = i.

Fig. 5.6 visualizes iterations in the progress of the algorithm, as a series

of graphs of the pending states of the abstract fds, with nodes representing

states and directed edges representing transitions. The goal state for the

property appears as a graph node that is labeled with Π = 6 at the bottom
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iterations 4 and 5

Figure 5.6: Progress of Algorithm Rank-Graph for Nested-Loops
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Figure 5.7: End Result of Rank-Graph for Nested-Loops

of each diagram.

As the algorithm proceeds, each node is associated with a tuple that

denotes the ranking generated thus far.

Table 5.1 summarizes the process as a table. The ranking procedure

proceeds as follows: Initially the graph of Fig. 5.6 is decomposed into com-

ponents 0, . . . , 4, and nodes are assigned ranks according to the index of

their MSCC. This is shown in Fig. 5.6(a) and in the “Iteration 1” column of

Table 5.1. Since nodes {S2, . . . , S8} form an MSCC that violates the compas-

sion requirement 〈Decx > 0,Decx < 0〉, the corresponding ranking function

x is appended to their ranking tuples, as shown in Fig. 5.6(b) and in the
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node Iteration Iteration Iteration Iteration Iteration Final
1 2 3 4 5 Ranking

S10 (4) (4, 0, 0, 0, 0)
S9 (3) (3, 0, 0, 0, 0)
S8 (2) (2, x) (2, x, 5) (2, x, 5, 0, 0)
S7 (2) (2, x) (2, x, 4) (2, x, 4, 0, 0)
S6 (2) (2, x) (2, x, 3) (2, x, 3, 0, 0)
S5 (2) (2, x) (2, x, 2) (2, x, 2, y) (2, x, 2, y, 1) (2, x, 2, y, 1)
S4 (2) (2, x) (2, x, 2) (2, x, 2, y) (2, x, 2, y, 0) (2, x, 2, y, 0)
S3 (2) (2, x) (2, x, 1) (2, x, 1, 0, 0)
S2 (2) (2, x) (2, x, 0) (2, x, 0, 0, 0)
S1 (1) (1, 0, 0, 0, 0)
g (0) (0, 0, 0, 0, 0)

Table 5.1: Iterative Ranking for Nested-Loops

“Iteration 2” column. The ranking procedure is now applied recursively to

the subgraph that consists of nodes {S2, . . . .S8} and all edges except for the

one entering the (Decx > 0) node (S8). The subgraph, which is no longer

strongly connected due to edge removal, is re-decomposed into MSCCs, and

each tuple is updated (by concatenation to the right) with the new MSCC

indices (shown in Fig. 5.6(c) and in the “Iteration 3” column). The com-

ponent consisting of nodes S4 and S5 is now a non-singleton MSCC, and it

violates the compassion requirement 〈Decy > 0,Decy < 0〉. Therefore, the

corresponding ranking function y is appended to the rankings of nodes S4

and S5, as shown in Fig. 5.6(d) and in the “Iteration 4” column. Again, the

procedure is applied recursively to the subgraph with nodes S4 and S5 that

has all edges but the one leading into the (Decy > 0) node (S5). The rank-

ings of nodes S4 and S5 are appended index values corresponding to a new

sorting (Fig. 5.6(d) and column “Iteration 5”). At this point there are no
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non-singleton MSCCs left in the graph and the procedure terminates. The

final ranking, with zeroes padded to the right where appropriate, is shown

in Fig. 5.7 and in the “final ranking” column.

Correctness of the Algorithm

In order to state the correctness of the algorithm we require new terminology.

Let ∆i = (a1, . . . , ar) and ∆j = (b1, . . . , br) be two ranks. The formula

gt(∆i,∆j) :
r∨

k=1

(a1 = b′1) ∧ · · · ∧ (ak−1 = b′k−1) ∧ (ak ≻ b′k)

formalizes the condition for ∆i ≻ ∆′
j in lexicographic order. In general, we

cannot determine whether the formula gt(∆i,∆j) is true or false, because

some of the ak, bk can be functions such as x or y. Let E be a consistent

conjunction whose conjuncts are expressions of the form δk = δ′k or δk ≻ δ′k

for some δk ∈ R.

Definition 5.2. We say that ∆i dominates ∆j under E, written ∆i ≻E
∆j,

if the implication E→gt(∆i,∆j) is valid.

Thus, E lists some assumptions about the relations between δk, E, and δ′k

under which gt(∆i,∆j) can be evaluated. For example, for ∆i : (2, x, 2, y, 0),

∆j : (2, x, 2, y, 1) and E : x = x′ ∧ y > y′, ∆i dominates ∆j under E,

that is, ∆i ≻E
∆j. A special environment is E0 =

∧
δk∈R

(δk = δ′k), which

assumes that all core-ranking components are equal. If ∆i dominates ∆j
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under E0, we denote this fact by ∆i > ∆j. Each abstract state S induces an

environment, denoted E(S), which, for each δk ∈ R, contains the equality

δk = δ′k iff S[Deck] = 0, and contains the inequality δk ≻ δ′k iff S[Deck] = 1.

We denote the fact that Si dominates Sj under the environment E(S) by

writing Si ≻S
Sj.

For example, consider the abstract states S4 : 〈Π:4, X:1, Y :1, Decx:0, Decy:0〉

and S5 : 〈Π:3, X:1, Y :1, Decx:0, Decy:1〉, and the ranks ∆4 : (2, x, 2, y, 0)

and ∆5 : (2, x, 2, y, 1) associated with them. According to the definition

E(S5) = (x = x′ ∧ y > y′) and E(S4) = (x = x′ ∧ y = y′). It follows that

both ∆4 ≻S5
∆5 and ∆5 ≻S4

∆4 are true.

Partial correctness of procedure Rank-Graph is stated by the following

lemma, which is the basis for the main correctness theorem given in Subsec-

tion 5.1.5.

Lemma 5.3 (Correctness of Rank-Graph). The following properties of

pending graphs and their final rankings are valid:

P1. There is a rank decrease ∆i ≻
Sj

∆j across every edge (Si, Sj), with

associated ranks ∆i and ∆j.

P2. If ∆i and ∆j are the ranks associated with states Si and Sj, respectively,

then Si 6= Sj implies ∆i 6= ∆j.

P3. The relation > between ranks is a total order over the set of final ranks

computed by Algorithm Rank-Graph.
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P4. If ∆i ≻Sj
∆j and ∆j > ∆k, then ∆i ≻Sj

∆k.

P5. If states Si and Sj agree on the values of their non-Dec variables (i.e.,

those not contributed by augmentations with progress monitors), then

they have the same set of successors.

Proof. Property P4 follows from the definition of ≻
Sj

and >. Property P5

follows from the construction of progress monitors and abstract fds’s.

As for properties P1, P2, and P3, we prove the claim by induction

on the maximal number of nested recursive steps in a call to Rank, that

ψ : P1 ∧ P2 ∧ P3 is a postcondition of Rank. In the base case, when a

call to Rank entails no recursive calls, we conclude that G consists only of

singleton MSCC’s. Thus, ψ holds on termination of the loop of line 2.

In the general case, we again consider the loop of line 2. On termination

of the loop, it is easy to see that ψ holds in G, when restricted to state

pairs (S, S ′) belonging to disjoint MSCC’s. From the inductive hypothesis,

following a recursive call in line 10, ψ holds in D, i.e., in the subgraph Ci in

which all edges leading into a (Decj > 0)-state have been removed. Thus ψ

holds in Ci, excluding states that satisfy (Decj > 0). We thus show that ψ

holds for an edge (S, S ′) in Ci such that S ′ |= (Decj > 0). This follows from

the fact that for some ranking prefix σ, due to the assignment in line 8, for

every S ∈ Ci, Rank [S] has the prefix σ ∗ δj. Thus for any such S, S ≻
S′
S ′.

Since the loop of line 5 makes a recursive call for every non-singleton

component of G, then on termination of this loop, ψ holds for all pairs of
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G-states.

To complete the correctness proof of Procedure Rank-Graph, we prove:

Theorem 5.4. Procedure Rank-Graph terminates.

Proof. The claim follows from the fact that there is a strict decrease in the

size of the input graph on every recursive call to Rank. This is easy to see

from the definition of the graph D (line 9), which breaks a component Ci

into at least two MSCC’s.

5.1.4 Forming an Abstract Verification Diagram

The ranked pending graph still contains too many details. In particular,

it assigns different ranks to two abstract states that agree on all non-Dec

variables. The states S5 : 〈Π:3, X:1, Y :1, Decx:0, Decy:1〉 and

S6 : 〈Π:3, X:1, Y :1, Decx:0, Decy: − 1〉, which are assigned different ranks

in Fig. 5.7, are an example of this. In the next step, we group together all

abstract states that agree on the values of all non-Dec variables.

To eliminate this redundant distinction, we form an abstract verification

diagram in the spirit of [MP94]. This is a directed graph whose nodes are

labeled with assertions Φ0,Φ1, . . . ,Φm and are also ranked by a well-founded

ranking. Such diagrams are often used to provide a succinct representation

of the auxiliary constructs needed for a proof rule such as Response.

The abstract verification diagram is constructed as follows:
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1. For each set of states in the ranked pending graph that agree on the

values of their non-Dec variables we construct a node and label it by

an assertion Φ. Assertion Φ is a conjunction that specifies the values

of all non-Dec variables.

Thus, the set consisting of state S5 : 〈Π:3, X:1, Y :1, Decx:0, Decy:1〉

and state S6 : 〈Π:3, X:1, Y :1, Decx:0, Decy: − 1〉 will be represented

by a single node labeled by the assertion Φ : Π = 3 ∧X = 1 ∧ Y = 1.

For simplicity, we write S ∈ Φ as synonymous to S |= Φ.

2. We draw an edge from the node (labeled by the assertion) Φi to node

Φj, whenever there are states Si ∈ Φi and Sj ∈ Φj such that Si is

connected to Sj in the ranked pending graph.

3. A node Φ is ranked by a rank ∆ that is the >-minimum among the

ranks associated with the states that are grouped in Φ.

Thus, the rank assigned to node Φ : Π = 3∧X = 1∧Y = 1, which has

been obtained by grouping together states S5 and S6 with associated

ranks (2, x, 2, y, 1) and (2, x, 3), is (2, x, 2, y, 1), which is the smaller of

the two ranks.

In Fig. 5.8(a) we present the abstract verification diagram obtained for pro-

gram Nested-Loops.

We state the correctness of the construction in the following lemma.
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Lemma 5.5. If Φi is connected to Φj in the verification diagram and Sj ∈ Φj,

then ∆i ≻Sj
∆j, where ∆i,∆j are the ranks associated with Φi,Φj, respec-

tively.

Proof. From property P5 and from the construction of the abstract verifica-

tion diagram, Sj is the successor of any Si ∈ Φi. Thus we choose a state Si

that is associated in the pending graph with the ranking ∆i. From property

P1 we have ∆i ≻Sj
∆Sj

, where ∆Sj
is the ranking associated in the pend-

ing graph with Sj. From construction of the abstract verification diagram,

we have ∆Sj
> ∆j. Thus the claim follows from the “semi-transitivity” of

property P4.

5.1.5 Obtaining the Concrete Helpful Assertions

As the last step in the extraction of the auxiliary constructs needed by rule

Response, we compute the concrete helpful assertions ϕ0, . . . , ϕm. These

are obtained simply by concretization of the abstract assertions Φ0, . . . ,Φm.

That is, for each i = 0, . . . ,m, we let ϕi = α−1(Φi). Thus, for program

Nested-Loops, we obtain the helpful assertions presented in the table of

Fig. 5.8(b).

A property that leads to the overall correctness of the construction is

given by:

Lemma 5.6. If for some concrete pending states si and sj, si |= ϕi and

sj |= ϕj, and sj is a D-successor of si, then si[∆i] ≻ sj[∆j].
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Proof. Since sj is a D-successor of si, there exist s̃i, s̃j, pending states of

the augmented system D+R, such that s̃i |= ϕi, s̃j |= ϕj, and s̃j is a D+R-

successor of s̃i. Abstracting these states by α, we obtain abstract states

Si and Sj, such that Si |= Φi, Sj |= Φj, and Sj is a DR,α-successor of Si

(and hence Φi is connected to Φj in the abstract verification diagram). By

Lemma 5.5, it follows that ∆i ≻Sj
∆j. The definition of ≻

Sj
implies that ∆i ≻

∆j under the assumption that every ranking component δk ∈ R decreases

or increases as determined by the value of variable Deck in state Sj. Since,

by definition, the abstraction α preserves the value between Deck and its

concrete counterpart deck in s̃j, then Deck faithfully represents whether δk

decreases or increases on the transition from si to sj. It therefore follows

that si[∆i] ≻ sj[∆j].

We can now summarize the complete algorithm for extraction of the auxiliary

constructs necessary for a successful application of rule Response.

1. Construct the pending graph and apply Algorithm Rank-Graph in

order to assign well-founded ranks to the nodes in the graph.

2. Construct an abstract verification diagram by abstracting away the

Dec-variables.

3. Derive the helpful assertions by concretization of the assertions labeling

the nodes in the abstract verification diagrams.

Theorem 5.7 (Correctness of the Extraction Algorithm). Let ∆0, . . . ,∆m be

the ranking functions generated by Procedure Rank-Graph, and ϕ0, . . . , ϕm
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(a) Abstract Verification Diagram
for Nested-Loops

Index ϕi ∆i

8 π = 0 ∧ x = 0 ∧ y = 0 (3, 0, 0, 0, 0)
7 π = 1 ∧ x > 0 ∧ y = 0 (2, x, 4, 0, 0)
6 π = 2 ∧ x > 0 ∧ y = 0 (2, x, 3, 0, 0)
5 π = 3 ∧ x > 0 ∧ y > 0 (2, x, 2, y, 1)
4 π = 4 ∧ x > 0 ∧ y > 0 (2, x, 2, y, 0)
3 π = 3 ∧ x > 0 ∧ y = 0 (2, x, 1, 0, 0)
2 π = 5 ∧ x > 0 ∧ y = 0 (2, x, 0, 0, 0)
1 π = 1 ∧ x = 0 ∧ y = 0 (1, 0, 0, 0, 0)
0 π = 6 (0, 0, 0, 0, 0)

(b) Assertions and Rankings for
Nested-Loops

Figure 5.8: Simplified Result of Rank-Graph with Concrete Helpful Asser-
tions

the assertions resulting from concretization of Φ0, . . . ,Φm. For assertions p

and q, if D |= p =⇒ 1 q then premises R1 and R2 of rule Response are

valid.

Proof. Premise R1 requires to show that one of ϕ0, . . . , ϕm is implied by

p. This follows trivially from the soundness of abstraction and construction

of the pending graph, which, by definition, contains a state S such that

S |= α(p).

As for premise R2, by construction of the pending graph, for every succes-

sor of a concrete pending state there exists an edge to a corresponding node

(representing either an abstract pending state, or an abstract goal state).
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Therefore, from the construction of ϕ0, . . . , ϕm, we have ϕi ∧ ρ =⇒ ϕj, for

some j ∈ [0..m]. From Lemma 5.6 we then have ∆i ≻ ∆′
j if ϕi ∧ ρ.

5.2 Extracting Proofs for Systems with Jus-

tice Requirements

In the previous section we showed how to extract a deductive proof of re-

sponse properties for fairness-free fds’s, that are adequate for representing

sequential programs. In this Section we extend the method to fds’s con-

taining justice requirements that can, therefore, represent the majority of

concurrent programs.

Consequently, in this section we focus on the class of Just Discrete Sys-

tems (jds), that allow an arbitrary number of justice requirements, but no

native compassion requirements. The ranking abstraction method introduces

its own compassion requirements into the augmented system prior to abstrac-

tion, but we allow no compassion requirements in the original system D. A

further extension of the method will consider the most general case of fds’s,

which allows both justice and compassion requirements. This will be ad-

dressed in future research.
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5.2.1 A Deductive Rule for Response under Justice

In the case of fairness-free systems, we could require a well-founded ranking

that decreases on every execution step. This is no longer possible in the

presence of justice requirements. Here, we partition the space of pending

steps into regions characterized by assertions ϕ1, . . . .ϕm where for each i =

1, . . . ,m, ϕi → ¬Ji, so that any step from a ϕi-state that causes Ji to be

fulfilled should cause the ranking to decrease. However, as long as we remain

within ϕi, we may take an arbitrary number of steps and the rank need not

decrease.

In Fig. 5.9 we present proof rule Just-Response [MP91a], which estab-

lishes the response property p =⇒ 1 q for a jds D. Premise R1 of the rule

requires that any p-state is also a ϕi-state for some i = 0, . . . ,m. Premise R2

of the rule requires that any step from a ϕi-state (i > 0) either causes the

ranking to decrease or preserves the value of ∆i, provided we stay in the ϕi-

region. By premise R3, justice requirement Ji is not satisfied by any ϕi-state.

It follows that any infinite run that enters the pending domain without ever

leaving it, either causes the ranking to decrease infinitely many times, which

is impossible, or remains forever within some ϕi-region from a certain point

on. However, in the latter case, justice requirement Ji will be satisfied only

finitely many times. It follows that such a run cannot be a computation as it

violates the justice requirement Ji. We conclude that no computation stays

contained forever within the domain of pending states. Hence a computation

that enters the pending domain must eventually exit, and satisfy q.
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Rule Just-Response

For a well-founded domain A : (W,≻),
assertions p, q = ϕ0, ϕ1, . . . , ϕm,

justice requirements J1, . . . , Jm,

and ranking functions ∆0 ,∆1 , . . . ,∆m where each ∆i : Σ 7→ A

R1. p =⇒
∨m
i=0 ϕi

For each i = 1, . . . ,m,
R2. ϕi ∧ ρ =⇒ (ϕ′

i ∧ ∆i = ∆′
i) ∨

∨m
j=0(ϕ

′
j ∧ ∆i ≻ ∆′

j)

R3. ϕi =⇒ ¬Ji

p =⇒ 1 q

Figure 5.9: Deductive Rule Just-Response

5.2.2 Ranking Abstraction and Concurrent Programs

The method of ranking abstraction can be applied, with no change, to jds’s.

We illustrate this application on program Up-Down, presented in Fig. 5.10,

for which we wish to prove the response property (π1 = 0 ∧ π2 = 0) =⇒

1 (π1 = 4), where π1 and π2 are the location counters for P1 and P2 respec-

tively. To distinguish between locations of processes P1 and P2, we denote

them by ℓi, and mj, respectively. We also use the notation at−ℓi to denote

π1 = i, and, similarly, we use at−mj to denote π2 = j. The justice require-

ments of this program are given by J = {¬at−ℓ0,¬at−ℓ1,¬at−ℓ2,¬at−ℓ3,¬at−m0}.

Thus, every statement at location ℓ (i.e., ℓi or mj) is associated with a justice

requirement of the form ¬at−ℓ, guaranteeing that the statement is eventually

executed, and execution does not remain stuck at ℓ forever.

Employing the predicate base P : {x > 0, y > 0} and the ranking core
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x, y : natural init x = 0, y = 1

P1 ::




ℓ0 : while x = 0 do[
ℓ1 : y := y + 1

]

ℓ2 : while y > 0 do[
ℓ3 : y := y − 1

]

ℓ4 :




P2 ::

[
m0 : x := 1
m1 :

]

Figure 5.10: Program Up-Down

R : {δy : y}, we obtain the abstraction

α : Π1 = π1, Π2 = π2, X = (x > 0), Y = (y > 0), Decy = decy,

Augmenting and abstracting program Up-Down, we obtain the abstract

program Abstract-Up-Down, presented in Fig. 5.11.

X,Y : natural init X = 0, Y = 1
Decy : {−1, 0, 1}

compassion (Decy > 0,Decy < 0)

P1 ::




ℓ0 : while X = 0 do[
ℓ1 : (Y,Decy) := (1,−1)

]

ℓ2 : while Y = 1 do[
ℓ3 : (Y,Decy) := (Y ·− 1, (Y > 0))

]

ℓ4 :




P2 ::

[
m0 : X := 1
m1 :

]

Figure 5.11: Program Abstract-Up-Down

In the program, the operation ·− is defined by Y ·− 1 = max(Y − 1, 0).

The justice requirements of the abstract program are the same as for the

concrete program – J = {¬at−ℓ0,¬at−ℓ1,¬at−ℓ2,¬at−ℓ3,¬at−m0}, except

that at−ℓi and at−mj are now interpreted as Π1 = i and Π2 = j, respectively.
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Model checking the abstracted property Ψα : (Π1 = 0 ∧ Π2 = 0) =⇒

1 (Π1 = 4) over program Abstract-Up-Down, we find out that it is valid.

We conclude that the concrete program Up-Down terminates.

5.2.3 Extracting a Deductive Proof

We proceed to outline the algorithm by which we can extract the necessary

ingredients for a deductive proof by rule Just-Response from a successful

application of the ranking abstraction method. As in the fairness-free case,

the process proceeds in three steps. Initially we construct the pending graph,

and assign ranks to the abstract states belonging to this graph. This step also

assigns a helpful justice requirement to each abstract state (as required by

rule Just-Response). The second step constructs an abstract verification

diagram, which contains abstracted versions of the helpful assertions. In the

third and final step we construct the (concrete) helpful assertions.

Once again, we start by constructing a transition graph G : 〈N,E〉, which

represents the set of pending states plus a goal state. In the just version of the

construction, it is important to label the edges by a label that can be viewed

either as the transition that leads from one state to the next, or the justice

requirement that the transition causes to be satisfied. This correspondence

results from the fact that every transition τ in the program can be associated

with a justice requirement Jτ that holds iff τ is disabled. To illustrate this

construction, we present in Fig. 5.12 the labeled transition graph correspond-

ing to the pending states of program Abstract-Up-Down. As seen in the
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diagram, we represent the justice requirements ¬at−ℓi and ¬at−mj simply

by the locations ℓi and mj, respectively.

Figure 5.12: Pending Graph for Program Abstract-Up-Down

Having constructed the pending transition graph G we proceed to ana-

lyze it and determine the ranks associated with the abstract states. A basic

process in the algorithm for rank determination is the decomposition of sub-

graphs into their MSCC’s (maximally strongly connected components). An

MSCC C is said to be just with respect to justice requirement Ji if C contains

a state satisfying Ji. Component C is defined to be just if it is just with

respect to all justice requirements. In Fig. 5.13, we present the algorithm for
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computing the ranks for a pending graph produced for a jds.

Algorithm Rank-Just-Graph(G,J , C,R)
Input: Graph G = (N,E) of pending states for DR,α

Justice requirements J of DR,α

Compassion requirements of DR,α, given by C =





〈Dec1 > 0,Dec1 < 0〉,
. . . ,

〈Decℓ > 0,Decℓ < 0〉





Ranking core R = {δ1, . . . , δℓ}

Output: Rank , an array N 7→ Tuples

helpful , an array N 7→ J
Initially: For every n ∈ N , Rank(n) = ⊥.

Just-Rank(G):
1 : Decompose G into a sorted set of MSCCs G = C0, ..., Ck;
2 : Forall i ∈ [0..k] do

3 : Forall n ∈ Ci do

4 : Rank(n) := Rank(n) ∗ i;
5 : Forall i ∈ [0..k] such that ∃J ∈ J , n ∈ Ci . n 6|= J do

6 : helpful(Ci) := J ;
7 : Forall i ∈ [1..k] such that ∀J ∈ J ∃n ∈ Ci . n |= J do



8 : Let j ∈ [0..ℓ] such that

(
∃n ∈ Ci . n |= (Decj > 0) ∧
∀n ∈ Ci . n 6|= (Decj < 0)

)

in


9 : Forall n ∈ Ci do

10 : Rank(n) := Rank(n) ∗ δj ;
11 : Let D be the subgraph obtained by removing every edge in

Ci leading into a (Decj > 0)-node
in

12 : Call Just-Rank(D);







Figure 5.13: Procedure Rank-Just-Graph

In the table of Fig. 5.14, we present the progress of algorithm Rank-Just-Graph

when applied to the pending graph of program Abstract-Up-Down, which

is given in Fig. 5.12. The last column in the table lists, for each node, the

justice requirement identified as helpful for that node. These entries are

determined in line 6 of Algorithm Rank-Just-Graph.
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Node Iteration 1 Iteration 2 Iteration 3 Final Ranking
Helpful Justice
Requirement

S10 8 (8, 0, 0) m0

S9 7 (7, 0, 0) m0

S8 7 (7, 0, 0) m0

S7 6 (6, 0, 0) ℓ1
S6 5 (5, 0, 0) ℓ0
S5 4 (4, 0, 0) ℓ0
S4 3 (3, 0, 0) ℓ2
S3 2 (2, y) (2, y, 1) (2, y, 1) ℓ2
S2 2 (2, y) (2, y, 0) (2, y, 0) ℓ3
S1 1 (1, 0, 0) ℓ2
g 0 (0, 0, 0)

Figure 5.14: Progress of Algorithm Rank-Just-Graph

In the first iteration, the MSCC decomposition yields a sorted list as follows:

g, S1, {S2, S3}, S4, S5, S6, S7, {S8, S9}, S10

Consequently, we assign to nodes g, S1, . . . , S10 the sequence of ranks:

0, 1, 2, 2, 3, 4, 5, 6, 7, 7, 8

Next, we examine each of the components, excluding g. We find that the only

just component is {S2, S3}. This is because each of the other components is

unjust w.r.t some justice requirement, as shown by

Component S1 S4 S5 S6 S7 {S8, S9} S10

Violates ¬at−ℓ2 ¬at−ℓ2 ¬at−ℓ0 ¬at−ℓ0 ¬at−ℓ1 ¬at−m0 ¬at−m0

Since component {S2, S3} is just, we search for a compassion requirement
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that it violates. Indeed, we observe that (Decy > 0,Decy < 0) is violated

because State S3 has a positive value of Decy, but no state in this component

assigns a negative value to Decy . We therefore augment the ranks of S2 and

S3 by the ranking element δy : y, remove the edges entering S3, and invoke the

procedure Just-Rank with a graph D whose nodes are {S2, S3} and which

has the single edge (S3 → S2). Decomposing the subgraph D, we obtain

the decomposition S2, S3. Consequently, in the 3rd (and last) iteration, we

append to nodes S2, S3 the ranks 0, 1, respectively.

Note that, once we identify that some components are unjust, we do not

process them any further. Note also that, while the sequential version of the

ranking computation algorithm always terminates with a graph consisting of

singleton components, the just version may leave several components intact,

such as {S8, S9}.

In Fig. 5.15(a), we present a ranked version of the pending graph. Edges

labeled with the helpful justice requirements are drawn in bold type.

The partial correctness of Rank-Just-Graph is stated by the following

lemma, the proof of which is similar to that of properties P1, P2, and P3

in Lemma 5.3.

Lemma 5.8 (Correctness of Rank-Just-Graph). Let Si and Sj be states

in the pending graph, and ∆i and ∆j be their associated ranks produced by

Algorithm Rank-Just-Graph. Then on termination of the algorithm, the

following hold:

C1. If Si is connected to Sj and both states do not belong in the same unjust
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(a) A ranked version of the Pending graph
for program Abstract-Up-Down.

(b) Abstract verification diagram for
program Abstract-Up-Down.

Figure 5.15: Ranking and Verification Diagram for Abstract-Up-Down

MSCC, then there is a rank decrease ∆i ≻Sj
∆j.

C2. ∆i = ∆j iff Si and Sj belong in the same unjust MSCC.

C3. ∆i > ∆j or ∆i < ∆j iff Si and Sj do not belong in the same unjust

MSCC.

In addition, properties P4 and P5 of Lemma 5.3 continue to hold here.
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5.2.4 Forming an Abstract Verification Diagram

In the second step of the extraction process, we form the abstract verification

diagram by merging each MSCC of the pending graph into a single assertion.

1. In the first step we merge abstract states that differ only in their Dec

variables. This is done by identifying two such abstract states Si and

Sj, retaining the representative with the smaller rank, and redirecting

edges previously connecting to the node with higher ranks into the node

with the lower rank.

Thus, in the graph of Fig. 5.12, we can merge S10 into S8, S6 into S5,

and S4 into S3.

2. Next, we construct for each unjust MSCC of the graph resulting from

the previous step a single assertion Φ that is a disjunction of the valua-

tions of the non-Dec variables of all the states contained in the MSCC.

Thus, the assertion corresponding to the MSCC that contains the two

states S8 : 〈Π1:0, Π2:0, X:0, Y :1, Decy:−1〉 and S9 : 〈Π1:1, Π2:0, X:0, Y :1, Decy:0〉

is Φ : Π1 ∈ {0, 1} ∧ Π2 = 0 ∧X = 0 ∧ Y = 1.

3. We draw an edge labeled by J connecting node Φi to node Φj, whenever

there are states Si ∈ Φi and Sj ∈ Φj such that Si is connected to Sj by

a J-labeled edge in the ranked pending graph.

4. A node Φ is ranked by a rank ∆, which is the common rank associated

with the states that belong to the MSCC.
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In Fig. 5.15(b), we present the abstract verification diagram obtained from

the graph of Fig. 5.15(a).

An important property of the abstract verification diagram is the following:

Lemma 5.9. If Φi is connected to Φj in the verification diagram and Sj ∈ Φj,

then ∆i ≻Sj
∆j, where ∆i,∆j are the ranks associated with Φi,Φj, respec-

tively.

Proof. We first show that ∆i ≻Sj
∆Sj

. Let Si ∈ Φi such that Si is connected

to Sj in the pending graph and let ∆Si
be the rank associated with Si. Then

from property C1 we have ∆Si
≻

Sj
Sj. If ∆Si

= ∆i then we have ∆i ≻Sj
∆Sj

.

Otherwise, assume ∆Si
6= ∆i. Then from step 1 of the construction of the

abstract verification diagram we conclude that there exists a state S ∈ Φi

that agrees with Si on the values of all non-Dec variables, such that the rank

associated with S is ∆i. From property P5 we conclude that Sj is a successor

of S. Thus from property C1 we have ∆i ≻Sj
∆Sj

.

By construction, either ∆Sj
= ∆j, or ∆Sj

> ∆j. Thus, by property P4

we have ∆i ≻Sj
∆j.

5.2.5 Obtaining the Concrete Helpful Assertions

As the last step in the extraction of the auxiliary constructs needed by rule

Just-Response, we compute the concrete helpful assertions ϕ0, . . . , ϕm.

As in the sequential case, these are obtained simply by concretization of

the abstract assertions Φ0, . . . ,Φm. In the table presented in Table 5.2, we
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present the auxiliary constructs extracted for program Up-Down.

i ϕi ∆i Ji

6 at−ℓ0,1 ∧ at−m0 ∧ x = 0 ∧ y > 0 (7, 0, 0) ¬at−m0

5 at−ℓ1 ∧ at−m1 ∧ x > 0 ∧ y > 0 (6, 0, 0) ¬at−ℓ1
4 at−ℓ0 ∧ at−m1 ∧ x > 0 ∧ y > 0 (4, 0, 0) ¬at−ℓ0
3 at−ℓ2 ∧ at−m1 ∧ x > 0 ∧ y > 0 (2, y, 1) ¬at−ℓ2
2 at−ℓ3 ∧ at−m1 ∧ x > 0 ∧ y > 0 (2, y, 0) ¬at−ℓ3
1 at−ℓ2 ∧ at−m1 ∧ x > 0 ∧ y = 0 (1, 0, 0) ¬at−ℓ2
0 at−ℓ4

Table 5.2: Extracted Auxiliary Constructs for Program Up-Down

As in the sequential case, the following property, whose proof is similar

to that of Lemma 5.6, leads to the overall correctness of the construction:

Lemma 5.10. If for concrete states si and sj, si |= ϕi, sj |= ϕj, and sj is a

D-successor of sj, then si[∆i] ≻ sj[∆j].



Chapter 6

Shape Analysis by Ranking

Abstraction

In this chapter the generic ranking abstraction method is specialized to deal

with heap-manipulating programs. The chapter is organized as follows: Sec-

tion 6.1 describes the formal model of finite heap systems, which is a special-

ization of the fair discrete systems defined in Section 2.1. Section 6.2 deals

with predicate abstraction of heap systems, and the symbolic computation of

abstractions. It states and proves a small model property, and describes how

to apply it to construct the finite-state fds representing the abstraction of a

finite heap system. Section 6.3 deals with proving liveness of heap systems.

Sections 6.1–6.3 use a list reversal program as a running example. Section 6.4

presents a more involved example of a nested loop bubble sort, and shows its

formal verification using the new method.

95
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6.1 Finite Heap Systems

In this section the computational model of Section 2.1 is specialized to model

systems that manipulate heaps. To allow the automatic computation of ab-

stractions, we place further restrictions on the systems we study, leading

to the model of finite heap systems (fhs), that is essentially the model of

bounded discrete systems of [APR+01] specialized to the case of heap pro-

grams. For brevity, we describe here a simplified two-type model; the exten-

sion for the general multi-type case is straightforward.

We allow the following data types parameterized by the positive integer

H, intended to specify the heap size:

1. bool: boolean and finite-range scalars; With no loss of generality, we

assume that all finite domain values are encoded as booleans.

2. index: [0..h];

3. Arrays of the types index 7→ bool (bool array) and index 7→ index

(index array).

We assume a signature of variables of all of these types. Constants are

introduced as variables with reserved names. Thus, we admit the boolean

constants False and True, and the index constant 0. In order to have all

functions in the model total, we define both bool and index arrays as having

the domain index. A well-formed program should never assign a value to

Z[0] for any (bool or index) array Z. On the other hand, unless stated
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otherwise, all quantifications are taken over the range [1..h].

We often refer to an element of type index as a node. If the interpretation

of an index variable x in a state s is ℓ, then we say that in s, x points to the

node ℓ. An index term is an index variable or an expression Z[y], where Z

is an index array and y is an index variable.

Atomic formulae are defined as follows:

• If x is a boolean variable, B is a index 7→ bool array, and y is an

index variable, then x and B[y] are atomic formulas.

• If t1 and t2 are index terms, then t1 = t2 is an atomic formula.

• A Transitive closure formula (tcf ) of the form Z∗(x1, x2), denoting that

x2 is Z-reachable from x1, where x1 and x2 are index variables and Z

is an index array.

We find it convenient to include “preservation statements” for each tran-

sition, that describe the variables that are not changed by the transition.

There are two types of such statements :

1. Assertions of the form pres({v1, . . . , vk}) =
∧k
i=1 v

′
i = vi where all vi’s

are scalar (bool or index) variables;

2. Assertions of the form presH({a1, . . . , ak}) =
∧k

i=1 ∀h 6∈ H . a′i[h] =

ai[h] where all ai’s are arrays and H is a (possible empty) set of index

variables. Such an assertion denotes that all but finitely many (usually
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a none or a single) entries of arrays indexed by certain nodes remain

intact.

Note that preservation formulae are at most universal. We abuse notation

and use the expression presEx (v1, . . . , vk) to denote the preservation of all

variables, excluding the terms v1, . . . , vk, which are either variables or array

terms of the form A[x].

TCF-assertions are assertions of the form ∀~y . P (~u, ~y) where ~u and ~y

are disjoint sets of variables, and for an index 7→ index array Z, P (~u, ~y) is

a positive combination of formulae of the form ¬Z∗(u, y) or B(y)) where u

is an index variable and B is a boolean combination of formulae of the form

Bk[y] where Bk is a bool array.

Definition 6.1 (Restricted EA-Assertion). A restricted EA-assertion has

the form ∃~x . ψ(~u, ~x), where ~u and ~x are disjoint sets of index variables; ψ

is a boolean combination of atomic assertions, TCF-assertions under positive

polarity, and the following two types of preservation formulae, both of which

appear under positive polarity:

• presH(Z), where Z is an index array;

• presH(B), where B is a bool array

where in each case H denotes a (possibly empty) set of index variables.

Note that in restricted EA-assertions, universally quantified variables may

occur in a TCF only as the second parameter. As the initial condition Θ we
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x, y : [0..h] init y = 0
Nxt : array [0..h] → [0..h]



1 : while x 6= 0 do

2 : (x, y,Nxt [x]) := (Nxt [x], x, y)
end

3 :




Figure 6.1: Program List-Reversal

allow restricted EA-assertions, and in the transition relation ρ and fairness

requirements we only allow restricted EA-assertions without TCFs. Prop-

erties of systems are restricted EA-assertions. Abstraction predicates are

existentially-quantified boolean combinations of atomic formulae and TCF-

assertions under positive polarity. The restriction on predicates ensures that

their language is closed under negation, an assumption needed for abstraction

computation.

The definition of restricted EA-assertions allows for programs that ma-

nipulate heap elements strictly via a constant set of reference variables, which

is in accordance with many programming languages (e.g., Pascal and Java).

The set of operations that are allowed is however greatly restricted. For ex-

ample, arithmetic operations are not allowed. While the present definition

doesn’t allow inequalities, it is not hard to extend it to support them.

Example 6.1 (List Reversal) Consider program List-Reversal in Fig. 6.1,

which is a simple list reversal program. The array Nxt describes the pointer

structure. We ignore the actual data values, but they can easily be added as

bool type variables.
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Fig. 6.2 describes the fhs corresponding to program List-Reversal.

The expression pres(V1) is an abbreviation for
∧
v∈V1

(v′ = v), i.e., pres(V1)

means that all the variables in V1 are not changed by the transition. The

expression pres-array(Nxt , U) is an abbreviation for ∀u ∈ index.u /∈ U →

(Nxt ′[u] = Nxt [u]). Note that all the clauses in Fig. 6.2 are restricted asser-

tions. The justice requirement states that as long as the program has not

terminated, its execution continues.

V :





x, y : [0..h]
Nxt : array [0..h] → [0..h]
π : [1..3]

Θ : π = 1 ∧ y = 0

ρ :




π = 1 ∧ x = 0 ∧ π′ = 3 ∧ presEx (π)
∨ π = 1 ∧ x 6= 0 ∧ π′ = 2 ∧ presEx (π)
∨ π = 2 ∧ x′ = Nxt [x] ∧ y′ = x ∧ Nxt ′[x] = y ∧ π′ = 1 ∧

presEx (Nxt [x])
∨ π = 3 ∧ π′ = 3 ∧ presEx (π)




J : {π 6= 1, π 6= 2}
C : ∅

Figure 6.2: fhs for Program List-Reversal

6.1.1 Predicate Abstraction of Finite Heap Systems

The assertional language for fhs’s allows for abstraction predicates that are

defined by boolean combinations of atomic formulae. This allows one to

abstract the system according to a user-specified set of graph-theoretic prop-

erties over the heap and index variables. As an example of this approach
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we show how to apply abstraction to our running example.

Example 6.2 (List Reversal Abstraction) Consider program List-

Reversal of Example 6.1. One of the safety properties one wishes to prove

is that no elements are removed from the list, i.e., that every element initially

reachable from x is reachable from y upon termination. This property can

be expressed by:

∀t.(π = 1 ∧ t 6= 0 ∧ Nxt∗(x, t)) → 2(π = 3 → Nxt∗(y, t)) (6.1)

We augment the program with a generic variable t, which is a variable whose

initial value is unconstrained and remains fixed henceforth. Then validity of

Formula (6.1) reduces to the validity of:

(π = 1 ∧ t 6= 0 ∧ Nxt∗(x, t)) → 2(π = 3 → Nxt∗(y, t)) (6.2)

Following the above discussion, to prove the safety property of Formula (6.2),

the set P consists of x = 0, t = 0, Nxt∗(x, t), and Nxt∗(y, t), which we denote

as the abstract variables x 0, t 0, r xt , and r yt respectively.

The abstract program is Abstract-List-Reversal, shown in Fig. 6.3,

and the abstract property corresponding to Formula (6.2) is:

ψα : (Π = 1 ∧ ¬t 0 ∧ r xt) → 2(Π = 3 → r yt)
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where Π is the program counter of the abstract program.

x 0, t 0, r xt , r yt : bool

init x 0 = t 0 = False, r xt = True, r yt = t 0


1 : while ¬x 0 do

2 :




(r xt , r yt) := case

¬r xt ∧ ¬r yt : (False,False)

¬r xt ∧ r yt :

{
(False,True),
(True,True)

}

otherwise :





(False,True),
(True,False),
(True,True)





esac

x 0 := if r xt then False else {False,True}
end

3 :




Figure 6.3: Program Abstract-List-Reversal

It is now left to check whether Sα |= ψα, which can be done, e.g., using a

model checker. Here, the initial abstraction is precise enough, and program

Abstract-List-Reversal satisfies ψα. In Section 6.4 we present a more

challenging example requiring several iterations of refinement.

6.2 Symbolic Computation of Abstractions

This section describes a methodology for symbolically computing an abstrac-

tion of an fhs. The methodology is based on a small model property that

establishes that satisfiability of a restricted assertion can be checked on a

small instantiation of a system.

Let V be a vocabulary of typed variables, whose types are taken from the
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restricted type system allowed in an fhs, as well as the primed version of

said variables. Furthermore, assume that there is a single unprimed index

array in V as well as a single primed one. A model M for V consists of the

following elements:

• A positive integer h > 0.

• For each boolean variable b ∈ V, a boolean valueM [b] ∈ {False,True}.

It is required that M [False] = False and M [True] = True.

• For each index variable x ∈ V, a natural value M [x] ∈ [0..h]. It is

required that M [0] = 0.

• For each boolean array B ∈ V, a boolean function M [B] : [0..h] 7→

{False,True}.

• For each index array Z ∈ V, a function M [Z] : [0..h] 7→ [0..h].

We define the size of model M to be h + 1. Let ϕ(~u) be a restricted

EA-assertion which we fix for this section, and assume, for the time being,

that ϕ has no existentially quantified variables. ~u is the set of free variables

appearing in ϕ. We require that, for the unprimed and primed index ar-

rays Z and Z ′, if a term of the form Z ′[u] occurs in ϕ where u is a free or

existentially quantified variable in ϕ, then ϕ also contains the preservation

formula associated with Z. Note that this requirement is satisfied by any

reasonable ϕ — assertions that contain primed variables occur only in proofs

for abstraction computation (rather than in properties of systems), and are
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generated automatically by the proof system. In such cases, the assertion

generated includes also the transition relation, which includes all preserva-

tion formulae. We include this requirement explicitly since the proof of the

small model theorem depends on it. The requirement is formalized by the

following definition:

Definition 6.2 (Uniformity). Let ϕ be a restricted A-assertion. A model M

is called a Z-uniform model (uniform model for short), if for every k ∈ [0..h]

and every index arrays Z and Z ′ such that M [Z](k) = k1 and M [Z ′](k) = k2

for k1 6= k2, then k and at least one of k1 or k2 are M-interpretations of a free

term of ϕ. A restricted A-assertion is called a Z-uniform assertion (uniform

assertion for short) if all its models are Z-uniform.

Throughout the rest of this chapter, we assume that all assertions are uni-

form.

For a given ~u-model M , we can evaluate the formula ϕ over the model

M . Model M is called a satisfying model for ϕ if M |= ϕ. An index term

t ∈ {x, Z[x]} is called a free term in ϕ.

Definition 6.3 (History Closure). A set of index terms T is said to be

history closed if it has the following properties:

• For every array Z ∈ V and index variable u ∈ V, if Z[u] ∈ T then

u ∈ T ;

• For a primed index array Z ′ ∈ V and index variable u, if Z ′[u] ∈ T

then Z[u] ∈ T .
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The following is a direct consequence of history closure:

Lemma 6.4 (Strong Uniformity). For any uniform assertion ϕ, model M

of ϕ, nodes k, k1, and k2, and a history-closed term set T that contains all

free terms in ϕ, if M [Nxt ](k) = k1 6= k2 = M [Nxt ′](k), then all of k, k1, and

k2 are pointed to by terms in T .

For an assertion ϕ, let Tϕ denote the minimal set that satisfies the following:

• Tϕ contains the term 0 and all free terms in ϕ;

• Tϕ is history-closed.

Let M be a model of ϕ and N be the set of [0..h] values assigned by M

to terms in Tϕ. Assume that N = {n0, . . . , nα} where 0 = n0 < · · · < nα.

Obviously, α ≤ |Tϕ|. Let i ∈ [1..α], and Z be a index 7→ index array.

Definition 6.5 (Representative Node). If for some ℓ > 0, M [Z]ℓ(ni) ∈ N ,

then we say that ni has a Z-representative (in M). Let ℓ be the minimal such

that M [Z]ℓ(ni) ∈ N . We then say that M [Z]ℓ−1(ni) is the Z-representative

of ni (in M) and denote it by rZM(ni), or simply rZ(ni) when M is apparent

from the context.

Note that if rZM(ni) is defined, then it is either ni itself or some node not

in N .

Definition 6.6 (Escape Node). If for some ℓ, for every j ≥ ℓ, M [Z]ℓ(ni) 6∈

N , then we say that ni is Z-escaping (in M). Let ℓ be the minimal such that
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M [Z]j(ni) 6∈ N for every j ≥ ℓ. We then say that M [Z]ℓ(ni) is the Z-escape

of ni (in M) and denote it by eZM(ni), or simply eZ(ni) when M is apparent

from the context.

Let Rϕ be the set of pairs (Z, t) such that Z∗(t, y) occurs in ϕ and y is

universally quantified in ϕ. If the set

{eZM(t) : (Z, t) ∈ Rϕ and t is Z-escaping}

is empty, then define S = {nα+1} where nα+1 is the M -minimal node not in

N . Else, denote the above set by S and assume that S = {nα+1, . . . , nα+β}.

Note that |S| ≤ |Rϕ|. For every i ∈ [0..α + β], define Γ(ni) = i. Define

f(ϕ) = |Tϕ| + max(|Rϕ|, 1). We construct a model whose size is at most

|N | + |S| ≤ f(ϕ).

Definition 6.7 (Model Reduction). The reduction of model M of ϕ is the

model M defined as follows:

• M [h] = α+ β;

• For each bool variable b, M [b] = M [b];

• For each (type) variable u ∈ Tϕ, M [u] = Γ(M [u]);

• For each Z : type 7→ type and i ∈ [0..α + β], we define M [Z](i) as

follows, where each case assumes that none of the previous ones are
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true.

M [Z](i) =





0 i = 0,

Γ(rZM(ni)) i ∈ [1..α] and ni has a Z-representative

Γ(eZM(ni)) i ∈ [1..α] and for some t ∈ Tϕ, (Z, t) ∈ Rϕ

and M [Z]∗(t, ni) or M [Z]∗(ni, t))

α+ 1 i ∈ [1..α], and for no t, (Z, t) ∈ Rϕ

Γ(ni) i ∈ [α+ 1..β] and for every ℓ ≥ 1,

M [Z]ℓ(ni) 6∈ S

Γ(M [Z]ℓ(ni)) i ∈ [α+ 1..β] and ℓ ≥ 1 is the minimal

such that M [Z]ℓ(ni) ∈ S

• For every bool array B and j ∈ [1..(α + β)], M [B](j) = M [B](nj).

The following theorem states that if ϕ has a satisfying model, then it has a

small satisfying model.

Theorem 6.8. Let ϕ(~u) be a restricted EA-assertion without existentially

quantified variables. Then ϕ has a satisfying model iff it has a satisfying

model of size not exceeding f(ϕ) = |Tϕ| + max(|Rϕ|, 1).

Before approaching the proof, we first prove:

Observation 6.9. The following are properties of the construction:

P0. Given two nodes ni, nj ∈ N that are Z-reachable from one another (in

whichever direction), then if one is Z-escaping then so is the other, and

they both have the same Z-escapes.
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P1. For every i and j that are both in [0..α] or both in [(α + 1)..β], for

every index 7→ index array Z,

M [Z](ni) = nj =⇒ M [Z](i) = j and M [Z](i) = j =⇒ M [Z]∗(ni, nj)

P2. For every i and j that are both in [0..α] or both in [(α + 1)..β], for

every index 7→ index array Z,

M [Z]∗(ni, nj) ⇐⇒ M [Z]∗(i, j)

P3. For every i ∈ [1..α] and j ∈ [(α + 1)..β], for every pair (Z, t) ∈ Rϕ, if

M [Z]∗(ni, t) or M [Z]∗(t, ni), then

M [Z]∗(i, j) ⇐⇒ M [Z]∗(ni, nj)

Proof. Properties P0 and P1 follow immediately from the construction.

As for P2, in one direction assume that (M [Z])∗(ni, nj). Thus, there

exists a Z-chain σ from ni to nj in M . Project the path onto its N -nodes

if i, j ≤ α, or onto its S-nodes if i, j > α. Let ni = v1, . . . , vk = nj be

the remaining nodes. From the definition of M [Z] it follows that for every

ℓ = 1, . . . , k−1,M [Z](γ(vi)) = γ(vi+1), and, therefore, (M [Z])∗(γ(v0), γ(vk)).

Since γ(v0) = i and γ(vk) = j, the claim follows. In the other the claim

follows directly from the construction and property P1.
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As for P3, in one direction, assume that M [Z]∗(i, j). From the construc-

tion, there exists an Z-chain ni1 , . . . , nik in M such that i1 = i, ik = j.

Moreover, for some ℓ > 1, for every k ≤ ℓ, nik ≤ α, and for every k ≥ ℓ,

nik > α. From P1 it follows that it suffices to show that M [Z](niℓ) = niℓ+1
.

From the construction is follows that niℓ+1
= eZM(niℓ) = eZM(t). The claim now

follows trivially. In the other direction, assume that M [Z]∗(ni, nj). Thus,

there exists an Z-chain ni = u1, . . . , uk = nj in M such that for some ℓ > 1,

uℓ ∈ N and uℓ+1 ∈ S. Since M [Z]∗(ni, uℓ), and uℓ is reachable from some

t such that (Z, t) ∈ Rϕ, it follows from P0 that eZM(ni) = eZM(uℓ) = uℓ+1,

and therefore M [Z](Γ(uℓ)) = Γ(uℓ+1). The claim now follows from P1 since

M [Z]∗(ni, uℓ) and M [Z]∗(uℓ+1, nj).

We can now prove the small model property, i.e., that M |= ϕ iff M |= ϕ.

Proof. To prove the theorem, it suffices to show that if M |= ϕ and M ’s size

is greater than |N | + |S|, then M |= ϕ. The proof is by induction on the

structure of ϕ. Recall that ϕ is a positive boolean combination of atomic

assertions and their negation, preservation assertions, and TCF-assertions.

Atomic Assertions We first deal with atomic assertions. For an atomic

assertions ψ, we have to show that M |= ψ iff M |= ψ. There are three base

cases:

ψ is a bool variable b or bool term B[u]. The claim follows trivially from

the construction of M ;
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ψ is of the form t1 = t2 for free type terms t1 and t2. Since t1, t2 ∈ Tϕ,

it follows from the construction that M |= t1 = t2 iff M |= t1 = t2.

ψ is a TCF formula Z∗(t1, t2) where t1, t2 ∈ Tϕ. The claim follows imme-

diately from property P2.

The inductive step follows immediately.

Preservation Assertions Next we deal with preservation assertions. Since

such an assertion, say ψ, can only appear in positive polarity, we have to

show that if M |= ψ then M |= ψ. We distinguish between preservation of

index 7→ index arrays and preservation of index 7→ bool arrays. In the

first case, ψ is of the form

ψ : ∀y.Z ′[y] = Z[y] ∨
n∨

i=j

(y = yi)

where y1, . . . , yn are index variables in Tϕ and Z is an index 7→ index array.

Denote by Y the set {y1, . . . , yn}. Denote by M [Y ] and by Γ(M [Y ]) the sets

{M [y1], . . . ,M [yn]} and {Γ(M [y1]), . . . ,Γ(M [yk])}, respectively. Thus ψ can

be rewritten as

ψ : ∀y.Z ′[y] = Z[y] ∨ y ∈ Y

Assume that M |= ψ. We have to show that for every i ∈ [0..α + β],

M [Z]′(i) = M [Z](i) or i ∈ Γ(M [Y ]). Assume, by way of contradiction, that

for some i ∈ [0..α + β], M [Z ′](i) 6= M [Z](i) and i 6∈ Γ(M [Y ]). Consider
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the Z- and Z ′-chains in M originating with ni, given by ni = u0, u1, . . .

and ni = v0, v1, . . . respectively. Since we assumed that i 6∈ Γ(M [Y ]), and

M |= ψ, it follows that M [Z]′(u0) = M [Z](v0). Hence v1 = u1. Proceeding

like this, we obtain that either

1. For all j ≥ 0, uj = vj (and then M [Z ′](i) = M [Z](i)), or

2. For some ℓ ≥ 1, uℓ = vℓ ∈M [Y ], and for all j = 0, . . . , ℓ− 1, uj = vj 6∈

M [Y ].

Since N -nodes are unreachable from S-nodes, and since M [Y ] ⊆ N , we con-

clude that ni 6∈ S, or equivalently i ≤ α. Since uℓ = vℓ ∈ M [Y ], then we

obtain that ni has identical Z- and Z ′-representatives, and thus by construc-

tion we have M [Z](i) = M [Z ′](i), which contradicts our assumption that

M [Z ′](i) 6= M [Z](i).

Assume now that ψ is a preservation formula of a bool array B. Following

the notation of the previous part, assume p is of the form ∀y . B′[y] =

B[y] ∨ y ∈ Y where Y is a set of index variables in Tϕ. Since, by construction

M [B′](i) = M [B′](i) and M [B](i) = M [B](i), for any i ∈ [0..(α + β)], the

claim follows trivially.

TCF-assertions For a TCF-assertion ψ : ∀~y . P , since P is a positive

boolean combination of formulae of the form ¬Z∗(u, y) and B(y), it suffices

to show that if M satisfies a clause φ which has either of the two forms, then

M satisfies φ.
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Assume, therefore that M |= φ. To interpret the formula P over M ,

we consider an arbitrary assignment η to the quantified variables ~y that

assigns to each variable y in ~y a value η[y] ∈ [0..α + β]. For convenience,

as η we choose the assignment η(y) = Γ−1(η(y)). Denote by Mη the joint

interpretation (M, η) which interprets all quantified variables according to

η and all other terms according to M . Similarly, denote by Mη the joint

interpretation (M, η). It remains to prove thatMη |= φ under the assumption

that Mη |= φ. Assume that Mη |= φ and let iy be Mη[y].

Assume first that φ is the formula B(y). Let B[y] be a clause in B. Then

Mη[y] = niy by definition. From the construction of M we have Mη[B[y]] =

M [B](iy) = Mη[B[y]] = M [B](niy).

Assume that φ is the formula ¬Z∗(u, y). Since u is a free term in ψ, it

follows that M [u] ≤ α. It then follows from Properties P2 and P3 that

Mη 6|= Z∗(u, y).

Corollary 6.10 (Small Model Property). Let ϕ : ∃~x . ψ(~u, ~x) be a restricted

EA-assertion, where ~x and ~u are disjoint sets of index variables. If M |= ϕ

then ϕ is satisfiable by a model of size at most |Tψ| + 1.

Proof. Let M be a model of ϕ, and (M, η) be the augmentation of M with an

interpretation η of the existential variables ~x. Then M |= ϕ iff there exists

some η such that (M, η) |= ψ. Since ψ is a restricted EA-assertion without

existentially-quantified variables, the claim follows from Theorem 6.8.

For example, consider a formula ϕ and a set T = {0, v1, v2, v3} that in-
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cludes Tϕ. Let M be a uniform model with H = 7; M [v1] = 1;M [v2] =

3,M [v3] = 5,M [Nxt ] = [6, 6, 7, 5, 5, 5, 7]. Then, according to the construc-

tion, H = 4;M [0] = 0;M [v1] = 1;M [v2] = 2;M [v3] = 3;M [Nxt ] = [3, 4, 3, 4].

Given a restricted EA-assertion ϕ and a positive integer h0, we define the

h0-bounded version of ϕ, denoted ⌊ϕ⌋h0
, to be the conjunction ϕ ∧ ∀y . y ≤ h0.

Corollary 6.10 can be interpreted as stating that ϕ is satisfiable iff ⌊ϕ⌋|T | is

satisfiable.

Next, we would like to extend the small model theory to the computation

of abstractions. Consider first the case of a restricted A-assertion ϕ which

only refers to unprimed variables. As explained in Section 2.4, the abstraction

of ϕ is given by α(ϕ) = ∃V . (V
A

= E
A
(V )) ∧ ϕ(V ). Assume that the set

of (finitely many combinations of) values of the abstract system variables

V
A

is {U1, . . . , Uk}. Let sat(ϕ) be the subset of indices i ∈ [1..k], such that

Ui = Eα(V ) ∧ ϕ(V ) is satisfiable. Then, it is obvious that the abstraction

α(ϕ) can be expanded into

α(ϕ)(V
A
) =

∨

i∈sat (ϕ)

(V
A

= Ui) (6.3)

Consider the assertion ψ0 : Ui = Eα(V ) ∧ ϕ(V ). Let h0 = |Tψ0
|. Our

reinterpretation of Corollary 6.10 states that ψ0 is satisfiable iff ⌊ψ0⌋h0
is sat-

isfiable. Therefore, sat(⌊ϕ⌋h0
) = sat(ϕ). Thus, α(ϕ)(V

A
) ↔ α(⌊ϕ⌋h0

)(V
A
).

This can be extended to abstraction of assertions that refer to primed vari-

ables, such as a transition relation ρ. Recall that the abstraction of such an
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assertion involves a double application of the abstraction mapping, an un-

primed version and a primed version. Consider such an assertion ρ(V, V ′), as

well as ψ1 : (Ui = E
A
(V )) ∧ (Uj = E

A
(V ′)) ∧ ρ(V, V ′). Let h1 = |Tψ1

|. By the

same reasoning, we have α(ρ)(V
A
, V ′

A
) ↔ α(⌊ρ⌋h1

(V
A
, V ′

A
)). This reasoning is

summarized by the following theorem:

Theorem 6.11. Let ϕ be an assertion that refers to unprimed variables and

possible primed variables and α : V
A

= E
A
(V ) be an abstraction mapping.

Let ψ be the formula (Ui = EA(V )) ∧ ϕ(V ) in the case that ϕ refers only to

unprimed variables, or (Ui = EA(V )) ∧ (Uj = E
A
(V ′)) ∧ ϕ(V, V ′) if ϕ also

refers to primed variables. Let T be a set of free terms that contains Tψ, and

h0 = |T |. Then

α(ϕ) ↔ α(⌊ϕ⌋h0
)

Next we generalize these results to entire systems. For an fhs S =

〈V,Θ, ρ,J , C〉 and positive integer h0, we define the h0-bounded version of

S, denoted ⌊S⌋h0
, as 〈V ∪ {H}, ⌊ρ⌋h0

, ⌊J ⌋h0
, ⌊C⌋h0

〉, where ⌊J ⌋h0
= {⌊J⌋h0

|

J ∈ J } and ⌊C⌋h0
= {(⌊p⌋h0

, ⌊q⌋h0
) | (p, q) ∈ C}. Let h0 be the maximum

size of the sets of free terms for all the abstraction formulas necessary for

computing the abstraction of all the components of S. Then we have the

following theorem:

Theorem 6.12. Let S be an fhs, α be an abstraction mapping, and h0 the

maximal size of the relevant sets of free terms as described above. Then the

abstract system Sα is equivalent to the abstract system ⌊S⌋αh0
.
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We use tlv [PS96] to compute the abstract system ⌊S⌋αh0
. Note that h0 is

linear in the number of system variables. The only manual step in the process

is the choice of the state predicates. The exact manner by which predicates

themselves are derived (e.g., by user input or as part of a refinement loop) is

orthogonal to the method presented here.

Example 6.3 Consider again program List-Reversal of Example 6.1. In

Example 6.2 (of Section 2.4) we described its abstraction, which was manually

derived. In order to obtain an automatic abstraction for the system whose

set of free terms is T = {0, H, x, y, t, x′, y′,Nxt ′[x]}, we bounded the system

by h0 = 8.

We compute the abstraction in tlv by initially preparing an input file

describing the concrete truncated system. We then use tlv’s capabilities for

dynamically constructing and updating a model to construct the abstract

system by separately computing the abstraction of the concrete initial con-

dition, transition relation, and fairness requirements.

Having computed the abstract system, we check the safety property ψα,

which, of course, holds. All code is in http://www.cs.nyu.edu/acsys/shape-

analysis.
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6.3 Liveness

A finitary state abstraction such as predicate abstraction often does not

suffice to verify liveness properties and needs to be complemented with some

form of transition abstraction. To this end we use the modular ranking

augmentation of Section 3.1. Let (D,≻) be a partially ordered well founded

domain, and assume a ranking function δ : Σ → D. Define a function decrease

by:

decrease =





1, if δ ≻ δ′

0, if δ = δ′

−1, otherwise

Following the ranking abstraction method, the transitions of a system are

abstracted into changes in the value of δ by synchronously composing the

system with a progress monitor [KP00] as shown in Fig. 6.4. The compassion

dec : {-1, 0, 1}
compassion (dec = 1, dec = −1)[

loop forever do

1 : dec := decrease

]

Figure 6.4: Progress Monitor M(δ) for a Ranking δ

requirement corresponds to the well-foundedness of (D,≻): the ranking can-

not decrease infinitely many times without increasing infinitely many times.

To incorporate this in a state abstraction α, we add the defining equation
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(Dec = dec) to α.

Example 6.4 (List Reversal Termination) Consider program List-Reversal

and the termination property 1 (π = 3). The loop condition x 6= nil in line

1 implies that the set of nodes starting with x is a measure of progress.

This suggests the ranking δ = {i | Nxt∗(x, i)} over the well founded domain

(2N,⊃). That is, the rank of a state is the set of all nodes which are cur-

rently reachable from x. As the computation progresses, this set loses more

and more of its members until it becomes empty. Using a sufficiently precise

state abstraction, one can model check that the abstract property 1 (Π = 3)

indeed holds over the program.

Computing the Augmented Abstraction

We aim to apply symbolic abstraction computation of Section 6.2 to sys-

tems augmented with progress monitors. However, since progress monitors

are not limited to restricted A-assertions, such systems are not necessarily

fhs’s. Thus, for any ranking function δ, one must show that Theorem 6.12 is

applicable to such an extended form of fhs’s. Since all assertions in the defi-

nition of an augmented system, with the exception of the transition relation,

are restricted A-assertions, we need only consider the augmented transition

relation ρ ∧ ρδ, where ρ is the unaugmented transition relation and ρδ is

defined as dec′ = decrease. Consider the formula ρ ∧ ρδ. Let T be a history-

closed term set that contains Tρ ∧ ρδ
, as well as all free terms in Eα(V ) and
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Eα(V
′). Then Theorem 6.12 holds if it is the case that

sat(⌊ρ ∧ ρδ⌋|T |) = sat(ρ ∧ ρδ) (6.4)

Since proving Formula (6.4) for an arbitrary ranking is potentially a signif-

icant manual effort, we specifically consider the following commonly used

ranking functions over the well founded domain (2N,⊃):

δ1(x) = {i | Nxt∗(x, i)} (6.5)

δ2(x, y) = {i | Nxt∗(x, i) ∧ Nxt∗(i, y)} (6.6)

In the above, x and y are index variables and Nxt is an index array. Ranking

δ1 is used to measure the progress of a forward moving pointer x, while

ranking δ2 is used to measure the progress of pointers x and y toward each

other. Throughout the rest of this section we assume that the variables x

and y appearing in δ1 or δ2 are free terms in the unaugmented transition

relation.

The following theorem establishes the soundness of our method for prov-

ing liveness for the two ranking functions we consider.

Theorem 6.13. Let S be an unaugmented fhs with transition relation ρ, δi

be a ranking with i ∈ {1, 2}, M be a uniform model satisfying ρ ∧ ρδ, and T

be a history-closed term set that contains Tρ ∧ ρδ
as well as the free terms in

Eα(V ) and Eα(V
′). Let M be the appropriate reduced model of size h0 = |T |.
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Then M |= ρδi only if M |= ρδi.

We first make the following observation:

Observation 6.14. For any j ∈ [(α+1)..(α+β)] and unprimed and primed

index arrays Nxt and Nxt ′:

P4. M [Nxt ](nj) = M [Nxt ′](nj), and

P5. M [Nxt ](j) = M [Nxt ′](j).

Proof. To prove property P4 assume, by contradiction, that M [Nxt ](nj) 6=

M [Nxt ′](nj). Then, from uniformity, we conclude that there exists a term

t ∈ T such that nj = M [t], and hence nj ∈ N . This contradicts the fact that

N ∩ S = ∅.

As for property P5, if, by way of contradiction,M [Nxt ](j) = i 6= M [Nxt ′](j) =

i′, then ℓ ∈ [(α + 1)..(α + β)]. From the construction of M , we conclude

that there exist M [Nxt ]– and M [Nxt ′]-chains nj = u0, u1, . . . , uℓ = ni and

nj = v0, v1, . . . , vℓ′ = ni′ , respectively, that diverge at some index k > 0; I.e.,

k is the minimal index such that M [Nxt ](uk) 6= M [Nxt ′](vk). From unifor-

mity, we conclude, as above, that uk = vk ∈ N , and apply the same reasoning

as in the proof of property P4 to lead to a contradiction.

Proof. We prove the claim for a ranking δ1 of the form δ1(x) = {i | Nxt∗(x, i)}

specified in equation (6.5). The case of δ2 is justified by similar arguments.

The evaluation of δ1 inM , writtenM [δ1], is the set {i |M [Nxt∗](M [x], i)},

i.e, the set of all M -nodes which are reachable from M [x] by M [Nxt ]-links.

The evaluation of δ1 in M and of δ′1 in M and M are defined similarly.
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First note the following property of terms in T : It follows directly from

Property P3 of Theorem 6.8 that, for any term t in T and δ ∈ {δ1, δ
′
1},

M [t] ∈M [δ] iff M [t] ∈M [δ].

To prove the claim it is enough to show that both properties δ1 ⊃ δ′1

and δ1 = δ′1 are satisfied by M iff they are satisfied by M . First assume

M |= δ1 ⊃ δ′1. It is easy to show that δ1 ⊇ δ′1 is satisfied in M . This is true

since by construction, any node i ∈ [0 . . . N ] is pointed to in M by a term in

T , and membership in δ1, δ
′
1 is preserved for such terms.

It is left to show that δ1 6= δ′1 is satisfied in M . We do this by identifying

a term in T that M interprets as a node in M [δ1]−M [δ′1]. Such a term must

point to a node in M that is a member of M [δ1] −M [δ′1]. To perform this

identification, let ℓ be a node in M [δ1] −M [δ′1]. Let M [x] = r1, . . . , rq = ℓ

denote the shortest Nxt-path in M from the node M [x] to ℓ, i.e., for i =

1, . . . , q−1, M [Nxt ](ri) = ri+1. Let j be the maximal index in [1..q] such

that rj ∈ {n0, . . . , nm}, i.e., rj is the M -image of some term t ∈ T . If

rj 6∈M [δ′1], our identification is complete.

Assume therefore that rj ∈ M [δ′1]. According to our construction, there

exists an M [Nxt ]-chain connecting rj to ℓ, proceeding along rj+1, rj+2, . . . , ℓ.

Consider the chain of M [Nxt ′]-links starting from rj. At one of the interme-

diate nodes: rj, . . . , ℓ, the M [Nxt ]-chain and the M [Nxt ′]-chain must diverge,

otherwise ℓ would also belong to M [δ′1]. Assume that the two chains diverge

at rk, for some j ≤ k < q. Then, according to strong uniformity (Lemma 6.4),

rk+1 ∈ {n0, . . . , nm}, contradicting the assumed maximality of j.
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In the other direction, assume that M satisfies δ1 ⊃ δ′1. We first show

that M satisfies δ1 ⊇ δ′1. Let n be a node in M [δ′1], and consider a Nxt ′-

path from M [x′] to n in M . Let m be the ancestor nearest to n that is

pointed to by a term in T . By assumption, m ∈ M [δ1]. From property P2

of Observation 6.9 it follows that m ∈ M [δ1]. The fact n ∈ M [δ1] follows

by induction on path length from m to n and by uniformity of M and M .

Therefore M [δ1] ⊇ M [δ′1]. We now show that M satisfies δ1 ⊃ δ′1. Let j

be a node such that j ∈ M [δ1] −M [δ′1]. By construction, either for some

term t ∈ T , j = M [t], or j ∈ [α..(α + β)]. In the first case, t points

to a node nj in M , such that nj ∈ M [δ1] − M [δ′1], and we are done. In

the latter case, from Observation 6.14 we have M [Nxt ](j) = M [Nxt ′](j).

Therefore, if j is not Nxt ′-reachable from M [x′], there must exist an M -node

i ≤ α, such that i ∈ M [δ1] −M [δ′1] and M [Nxt ](i) 6= M [Nxt ′](i). From the

construction of M and Observation 6.9, we have ni ∈ M [δ1] − M [δ′1] and

M [Nxt ](ni) 6= M [Nxt ′](ni).

It is left to show that M |= (δ1 = δ′1) iff M |= (δ1 = δ′1). This is done by

similar arguments.

The case of δ2, while not presented here, is shown by generalization: While

δ1 involves nodes reachable from a single distinguished pointer x, δ2 involves

nodes on a path between x and a pointer y. Thus, given node ℓ satisfying

some combination of properties of membership in δ2 and δ′2, we identify a

node satisfying the same properties, that is also pointed to by a term in T .

Here, however, we consider not only distant ancestors of ℓ on the path from
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x, but also distant successors on the path to y.

Example 6.5 (List Reversal Termination, concluded) In Example 6.4

we propose the ranking δ1 to verify termination of program List-Reversal.

From the Theorem 6.13 it follows that there is a small model property for

the augmented program. The bound of the truncated system, according to

Theorem 6.12, is

h0 = |T | = |{0, x, y, x′, y′,Nxt ′[x],Nxt [x]}| = 7

We have computed the abstraction, and proved termination of List-Reversal

using tlv.

6.4 Example: Bubble Sort

We present our experience in verifying a bubble sort algorithm on acyclic,

singly-linked lists. The program is given in Fig. 6.5. The requirement of

acyclicity is expressed in the initial condition Nxt∗(x, 0) on the array Nxt .

In Subsection 6.4.1 we summarize the proof of some safety properties. In

Subsection 6.4.2 we discuss issues of computational efficiency, and in Subsec-

tion 6.4.3 we present a ranking abstraction for proving termination.
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x, y, yn, prev, last : [0..h]
Nxt : array [0..h] → [0..h] init Nxt∗(x, 0)
D : array [0..h] → bool



0 : (prev, y, yn, last) := (0, x,Nxt [x], 0);
1 : while last 6= Nxt [x] do



2 : while yn 6= last do


3 : if (D[y] > D[yn]) then


4 : (Nxt [y],Nxt [yn]) := (Nxt [yn], y);
5 : if (prev = 0) then

6 : x := yn

else

7 : Nxt [prev] := yn;
8 : (prev, yn) := (yn,Nxt [y])




else

9 : (prev, y, yn) := (y, yn,Nxt [y])







10 : (prev, y, yn, last) := (0, x,Nxt [x], y);
11 :




Figure 6.5: Program Bubble Sort

6.4.1 Safety

Two safety properties of interest are preservation and sortedness, expressed

as follows:

∀t.(π = 0 ∧ t 6= nil ∧ Nxt∗(x, t)) → 2(Nxt∗(x, t)) (6.7)

∀t, s.(π = 11 ∧ Nxt∗(x, t) ∧ Nxt∗(t, s)) ⇒ D[t] ≤ D[s] (6.8)

As in Example 6.2 we augment the program with a generic variable for

each universal variable. The initial abstraction consists of predicates collected

from atomic formulas in properties (6.7) and (6.8) and from conditions in the
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program. These predicates are

last = Nxt [x], yn = last , D[y] > D[yn], prev = 0, t = 0,

Nxt∗(x, 0), Nxt∗(x, t), Nxt∗(t, s), D[t] ≤ D[s]

This abstraction is too coarse for either property, requiring several itera-

tions of refinement. Since we presently have no heuristic for refinement, new

predicates must be derived manually from concretized counterexamples. In

shape analysis typical candidates for refinement are reachability properties

among program variables that are not expressible in the current abstraction.

For example, the initial abstraction cannot express any nontrivial relation

among the variables x, last , y, yn, and prev . Indeed, our final abstraction

includes, among others, the predicates Nxt∗(x, prev) and Nxt∗(yn, last). In

the case of prev, y, and yn, it is sufficient to use 1-step reachability, which is

more efficiently computed. Hence we have the predicates Nxt [prev] = y and

Nxt [y] = yn.

6.4.2 Optimizing the Computation

When abstracting Bubble Sort, one difficulty, in terms of time and mem-

ory, is in computing the bdd representation of the abstraction mapping.

This becomes apparent as the abstraction is refined with new graph reacha-

bility predicates. Naturally, computing the abstract program is also a major

bottleneck.
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One optimization technique used is to compute a series of increasingly

more refined (and complex) abstractions α1, . . . , αn, with αn being the desired

abstraction. For each i = 1, . . . , n− 1, we abstract the program using αi and

compute the set of abstract reachable states. Let ϕi be the concretization of

this set, which represents the strongest invariant expressible by the predicates

in αi. We then proceed to compute the abstraction according to αi+1, while

using the invariant ϕi to limit the state space. This technique has been

invaluable in limiting state explosion, almost doubling the size of models we

have been able to handle.

6.4.3 Liveness

Proving termination of Bubble Sort is more challenging than that of List-

Reversal due to the nested loop. While a deductive framework would re-

quire constructing a global ranking function, the current framework requires

only to identify individual rankings of each loop. Our aim is to automate the

proof using the counter-example guided abstraction refinement algorithm of

Fig. 4.3. The inputs to the algorithm are, in addition to the fds to be ver-

ified and property specification, an initial predicate base and ranking core.

The algorithm is parameterized by a heuristic for synthesizing new predi-

cates (used in Case 1 ), and another for synthesizing new ranking functions

(used in Case 3 ). As an initial predicate base we use the predicates used in

Subsection 6.4.1 to verify safety, which turn out to be sufficient (hence we

avoid the need to deal with predicate refinement).



126 6.4. Example: Bubble Sort

In order to provide a heuristic for synthesis of new ranking functions, we

adapt the simple heuristic discussed in Section 4.4 of searching for simple

linear constraints to the domain of heaps with single successors, with the

relation Nxt+(v1, v2) : Nxt∗(v1, v2) ∧ v1 6= v2 imposing a partial order over

heap nodes. Here, however, we must overcome the fact that Nxt+ does not

remain constant throughout a computation, due to updates performed by

the fhs to the Nxt array.

Given the loop part of an abstract counterexample, the heuristic attempts

to show that there exists a path between two index variables that becomes

shorter after an iteration of the loop. Let L : Sk, . . . , Sm be such an abstract

loop, and let βk,m, or βL for short, be a bi-assertion as defined in Section 4.1.

Then two variables v1 and v2 are sought such that the following constraint

holds:

iter v1,v2 : βL → Nxt+(v1, v
′
1) ∨ Nxt+(v′2, v2)

Intuitively, this constraint captures the notion of iteration of either pointer

toward the other, or possibly the removal of nodes inside the path from v1

to v2 (via edge deletion).

Since the fhs is allowed updates to the Nxt array, the Constraint iter v1,v2

on its own is not sufficient to ensure the decrease of the nodes on the path

from v1 to v2. Thus we impose the following additional conditions:
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• Nxt∗(v1, v2) ∧ Nxt∗(v2, 0) is a loop invariant, i.e.,

ϕv1,v2 : βL → Nxt∗(v1, v2) ∧ Nxt∗(v2, 0) ∧

Nxt ′∗(v′1, v
′
2) ∧ Nxt ′∗(v′2, 0)

• No nodes are added to the path from v1 to v2. Assuming that ϕv1,v2

holds1, then this is expressed by

ψv1,v2 : βL → ∀i . (Nxt ′∗(v′1, i) ∧ ¬Nxt ′∗(v′2, i) →

Nxt∗(v1, i) ∧ ¬Nxt∗(v2, i))

Then it can be shown that if the conjunction iter v1,v2 ∧ ϕv1,v2 ∧ ψv1,v2 holds,

then the loop L is well-founded, as proven by the ranking function δ2(v1, v2).

Formally,

iter v1,v2 ∧ ϕv1,v2 ∧ ψv1,v2 ∧ βL → (δ2(v1, v2) ⊃ δ2(v
′
1, v

′
2))

In the case that v2 is the constant 0 then the function δ1(v1) is adequate as

well.

Returning to termination of Bubble Sort, we begin the abstraction re-

finement loop with the aforementioned predicate base and an empty ranking

core. On the first iteration a counterexample is generated in which the inner

loop does not terminate. The ranking heuristic suggests the ranking δ1(yn)

1Our language is not expressive enough to denote the general property that a node v3
lies between nodes v1 and v2. Hence we restrict to the case of acyclic chains.
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(which is a simplified version of δ2(yn, 0)). In this example, the more com-

plex function δ2(yn, last) is another candidate. The next iteration results in

a counterexample with a nonterminating outer loop, for which the heuristic

suggests the ranking δ2(x, last).



Chapter 7

Complex Heap Shapes

In Chapter 6 a framework is proposed for shape analysis of singly-linked

graphs based on a small model property of a restricted class of first order

assertions with transitive closure. Extending this framework to allow for

heaps with multiple links per node entails extending the assertional language

and proving a stronger small model property. At this point, it is not clear

whether such a language extension is decidable (see [GOR97, IRR+04a] for

relevant results).

This chapter deals with verification of programs that perform destructive

updates of heaps consisting only of trees of bounded or unbounded arity, to

which we refer as multi-linked heaps. We bypass the need to handle trees

directly by transforming heaps consisting of multiple trees into structures

consisting of singly-linked lists (possibly with shared suffixes). This is ac-

complished by “reversing” the parent-to-child edges of the trees populating

129
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(a) A Multi-Linked
Heap

(b) The Corre-
sponding Single-
Parent Heap

Figure 7.1: Multi-Linked to Single-Parent Heap Transformation

the heap, as well as associating scalar data with nodes. We refer to the

transformed heap as a single-parent heap. Fig. 7.1(a) and Fig. 7.1(b) to-

gether demonstrate the transformation of a multi-linked heap that consists

of a binary tree to its single-parent counterpart. In the latter graph, edges are

directed from children to parents, and each child is annotated with boolean

information denoting whether it is a left or right child.

Verification of temporal properties of multi-linked heap systems can be

performed as follows: Given a multi-linked system and a temporal property,

the system and property are (automatically) transformed into their single-

parent counterparts. Then, the shape analysis framework of Chapter 6 is

applied. If a counter-example (on the transformed system) is produced, it is

automatically mapped into a counter-example of the original (multi-linked)

system.

The chapter is organized as follows: Section 7.1 defines systems over

single-parent heaps and Section 7.2 describes their model reduction. Sec-
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tion 7.3 defines systems over multi-linked heaps, and Section 7.4 shows how

to transform them to single-parent heap systems.

7.1 Single-Parent Heaps

A single-parent heap system is an extension of the model of finite heap sys-

tems (fhs) of Chapter 6 specialized for representing trees. Such a system is

parameterized by a positive integer h, which is the heap size. Some auxiliary

arrays may be used to specify more complex structures (e.g., ordered trees).

However, each node u has a single link to which we refer as its “parent,” and

denote it by parent(u).

Example 7.1 (Tree Insertion) For example, we present in Fig. 7.2 a

program that inserts a node into a binary sort tree rooted at a node r. If

the data contained in node n is not already contained in the tree, then n is

inserted as a new leaf. Otherwise the tree is not modified. Obviously, n is

to be an isolated node, i.e., to be both a root and a leaf. To allow for the

presentation of a sorted binary tree, we use an array ct (child-type) such that

ct [u] equals left or right if node u is, respectively, the left or right child of its

parent. We also require that any two children of the same parent must have

different child-types. In Subsection 7.1.2 we expand on the notion of sibling

order. One may wish to show, for example, that program Tree-Insert
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satisfies the following for every x:

no-loss : parent∗(x, r) → 0 parent∗(x, r)

no-gain : x 6= n ∧ ¬parent∗(x, r) → 0 ¬parent∗(x, r)

r, t : [1..h] init t = r

n : [0..h] init n > 0
parent : array [0..h] of [0..h] init parent [n] = parent [r] = 0 ∧ parent [0] = 0 ∧

∀u . parent [u] 6= n

ct : array [0..h] of {left , right} init ∀i 6= j . parent [i] = parent [j] 6= 0 → ct [i] 6= ct [j]
data : array [0..h] of [1..k]
done : bool init done = False
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1 : while ¬done do
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2 : if data[n] = data[t] then

3 : done := True

4 : elseif data[n] < data[t] then
2

6

6

6

4

5 : if ∀j.parent [j] 6= t ∨ ct [j] 6= left then

6 : (parent [n], ct [n]) := (t, left)
7 : done := True

else

8 : t := ǫ j . parent [j] = t ∧ ct [j] = left

3

7

7

7

5

9 : elseif ∀j.parent [j] 6= t ∨ ct [j] 6= right then

10 : (parent [n], ct [n]) := (t, right)
11 : done := True

else

12 : t := ǫ j . parent [j] = t ∧ ct [j] = right
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Figure 7.2: Program Tree-Insert

The ǫ-expressions, ǫ j . cond in lines 8 and 12 denote “choose any node

j that satisfies cond.” For both statements in this program, it is easy to see

that there is exactly one node j that meets cond. However, this is not always

the case, and then such an assignment is interpreted non-deterministically.

In case cond is unsatisfiable we arbitrarily fix the chosen node to be 0. We

also allow for universal tests, as those in lines 5 and 9, that test for existence

of a particular node’s left or right child.
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error ∧ error ′ ∧ presEx(error)
∨

¬error ∧
2
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π = 1 ∧ ¬done ∧ π′ = 2 ∧ presEx(π)
∨ π = 1 ∧ done ∧ π′ = 13 ∧ presEx(π)
∨ π = 2 ∧ data[t] = data[n] ∧ π′ = 3 ∧ presEx(π)
∨ π = 2 ∧ data[t] 6= data[n] ∧ π′ = 4 ∧ presEx(π)
∨ π = 3 ∧ π′ = 1 ∧ done′ ∧ presEx(π, done)
∨ π = 4 ∧ data[n] < data[t] ∧ π′ = 5 ∧ presEx(π)
∨ π = 4 ∧ data[t] ≤ data[n] ∧ π′ = 9 ∧ presEx(π)
∨ π = 5 ∧ π′ = 6 ∧ (∀j.parent [j] 6= t ∨ ct [j] 6= left) ∧ presEx(π)
∨ π = 5 ∧ π′ = 8 ∧ (∃j.parent [j] = t ∧ ct [j] = left) ∧ presEx(π)
∨ π = 6 ∧ n = 0 ∧ error ′ ∧ presEx(error)
∨ π = 6 ∧ π′ = 7 ∧ n 6= 0 ∧ parent ′[n] = t ∧ ct ′[n] = left ∧

presEx(π, parent [n], ct [n])
∨ π = 7 ∧ π′ = 1 ∧ done′ ∧ presEx(π, done)
∨ π = 8 ∧ π′ = 1 ∧ (∃j . parent [j] = t ∧ ct [j] = left ∧ t′ = j) ∧ presEx(π, t)
∨ π = 9 ∧ π′ = 10 ∧ (∀j.parent [j] 6= t ∨ ct [j] 6= right) ∧ presEx(π)
∨ π = 9 ∧ π′ = 12 ∧ (∃j.parent [j] = t ∨ ct [j] = right) ∧ presEx(π)
∨ π = 10 ∧ n = 0 ∧ error ′ ∧ presEx(error)
∨ π = 10 ∧ π′ = 11 ∧ n 6= 0 ∧ parent ′[n] = t ∧ ct ′[n] = right ∧

presEx(π, parent [n], ct [n])
∨ π = 11 ∧ π′ = 1 ∧ done′ ∧ presEx(π, done)
∨ π = 12 ∧ π′ = 1 ∧ (∃j . parent[j] = t ∧ ct [j] = right ∧ t′ = j) ∧ presEx(π, t)
∨ π = 13 ∧ π′ = 13 ∧ presEx(π)
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Figure 7.3: Transition Relation of Tree-Insert

7.1.1 Unordered Single-Parent Heaps

We define the class of single-parent heap systems as an extension of the

fhs model of Chapter 6, with extensions to the assertional language. To

allow for backward and forward traversal of tree-like structures, we extend

the definition of Section 6.1 and define a restricted EA-assertion to be of

the form ∃~x . ψ(~u, ~x) where ψ is a positive boolean combination of atomic

assertions and their negations, preservation assertions, TCF-assertions, and

the following forms, which we label Z-assertions:

• ∀y . Z[y] 6= u,

• ∀y . Z[y] 6= u ∨ B[y], and
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• ∀y . Z[y] 6= u ∨ ¬B[y],

Fig. 7.3 presents the transition relation associated with the program of

Fig. 7.2. The implied encoding introduces an additional bool variable error

which is set to True whenever there is an attempt to assign a value to A[0],

for some array A. Consequently, the transitions corresponding to statements

6 and 10 set error to True if n = 0, which is tested before assigning values

to parent [n] and to ct [n].

7.1.2 Ordered Single-Parent Heaps

We now formalize the notion of order among siblings, as seen in Example 7.1.

An ordered single-parent heap system is one that includes a distinguished

ct : index → [1..k] array, for some constant k, that denotes for each heap

node its place among its siblings. This allows the subtrees of a given root

node to be distinguished by their ct order. We now extend the assertional

language with a new type of atomic formula: For each i ∈ [1..k], the formula

i-subtreeZ(x1, x2) denotes that x1 is in the ith subtree of x2, where x1 and x2

are index variables and Z is an index array. This is formally expressed by

the formula

i-subtreeZ(x1, x2) : ∃u . Z[u] = x2 ∧ ct [u] = i ∧ Z∗(x1, u)

We support these predicates explicitly rather than as derived forms because,

due to the transitive closure over a quantified variable, they would otherwise
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be outside of the assertional language allowed for abstraction predicates.

Throughout the paper, when the index array Z is apparent from the con-

text, we use the short form i-subtree(x1, x2). For example, in the context

of program Tree-Insert of Example 7.1, the predicates left-subtree and

right-subtree denote the left and right subtree relations among nodes of the

parent array, whereas left-subtree ′ and right-subtree ′ denote subtree relations

among nodes of the parent ′ array.

7.2 Computing Symbolic Abstractions of Single-

Parent Heaps

In order to apply the methodology of Chapter 6 to compute the abstraction

of a single-parent heap system symbolically, we must show a small model

property establishing that satisfiability of a restricted EA-assertion is check-

able on a small instantiation of a system. The main effort here is dealing with

the extensions to the assertional language introduced for single-parent heap

systems. For simplicity, it is assumed that all scalar values are represented

by multiple boolean values.

Let ϕ be a restricted EA-assertion without any existentially quantified

variables. To justify this limitation, the reader is referred to Corollary 6.10,

which generalizes the small property to existentially quantified assertions.

We define a set of terms Tϕ to be the minimal set that satisfies the following:
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• Tϕ contains the term 0 and all free terms in ϕ;

• For every bool array B ∈ V, if B[u] ∈ ϕ, then if B is unprimed,

parent [u] ∈ Tϕ, and if B is primed, parent ′[u] ∈ Tϕ;

• Tϕ is history-closed.

In comparison to the term sets that are dealt with in Chapter 6, here for

every free boolean term B[u], the corresponding index term (parent [u] or

parent ′[u]) is also taken into consideration. The increase in the size of Tϕ will

entail a slight increase in the small model bound presented in this section.

Let M be a model that satisfies ϕ with size greater then f(ϕ) = |Tϕ| +

max(|Rϕ|, 1). We show how to construct a reduced model M of a size that

is linear in f(ϕ), and then proceed to show that if ϕ is satisfiable, then it is

satisfiable by a model of such bounded size.

Let N and S be the sets of nodes {n0, . . . , nα} and {nα+1, . . . , nα+β} as

defined in Section 6.2. As defined there, let Γ be the N ∪ S 7→ [0..{α + β}]

mapping Γ(ni) = i. The construction of the reduced model is given by the

definition below.

Definition 7.1 (Single-Parent Model Reduction). The reduction of a model

M of ϕ is the model M , which is constructed as in Definition 6.7, with the

following exception:

• For every unprimed bool array B and j ∈ [1..α], if nj has a parent-

representative, then M [B](j) = M [B](rparent
M (nj)). Otherwise M [B](j) =
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M [B](nj). For every primed bool array B and j ∈ [1..α], if nj has

a parent ′-representative, then M [B](j) = M [B](rparent ′

M (nj)). Other-

wise M [B](j) = M [B](nj). Finally, for every j ∈ [α + 1..α + β],

M [B](j) = M [B](nj).

Example 7.2 (Model Reduction)

(a) A single-parent heap
model M

(b) The reduc-
tion M of M

Figure 7.4: Model Reduction

Let parent and data be index and bool arrays respectively, and let ϕ be

the assertion:

ϕ : u 6= v ∧ ∀y . (parent [y] 6= u ∨ data[y])

Since no array term refers to the uth or vth element, it follows that Tϕ consists

only of the index terms 0, u, and v. LetM be a model of ϕ of size 7, as shown

in Fig. 7.4(a). The interpretations by M of terms in Tϕ are the highlighted

nodes. Each node y is annotated with the value M [data](y) (e.g., the node

pointed to by u has a data value of False). M , which is the reduction of M

with respect to Tϕ, is given in Fig. 7.4(b). The M representative of parent
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for M [v] is given by the node highlighted by a dashed line in Fig. 7.4(a). As

shown here, the node pointed to by v in M takes on the properties of this

representative node.

Theorem 7.2. Let ϕ be a restricted EA-assertion without existentially quan-

tified variables. If M |= ϕ then ϕ is satisfiable by a model of size at most

f(ϕ).

Proof. We begin by observing that the properties P1, P2, and P3 of the

model construction given in Observation 6.9 continue to hold over the small

model M defined above. We make an additional observation, which follows

immediately from the construction:

P6. If B′[u] occurs in ϕ for some u ∈ Tϕ and a bool array B ∈ V, then u,

parent [u], and parent ′[u] are all in Tϕ.

Assume that M |= ϕ. As in the proof of Theorem 6.8, to show that

M |= ϕ we show that (1) every atomic formula ψ is true in M iff it is true in

M , and (2) every universal sub-formula ψ, which only appears under positive

polarity, that is satisfied in M is also satisfied in M . We only present the

cases for which the proof differs from that of Theorem 6.8.

ψ is an atomic assertion of the form i-subtreeZ(x1, x2). Z, x1, and x2

are assumed to be an index array and index variables, respectively.

In this case, we are dealing with an ordered heap as defined in Sub-

section 7.1.2, and assume the presence of an array ct : index → [1..k],
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with i ∈ [1..k]. In one direction, assume that M |= ψ. Expanding the

definition of ψ to ∃u .Z[u] = x2 ∧ ct [u] = i ∧ Z∗(x1, u), we conclude

that M |= Z∗(x1, x2).

We first identify the Z-chain from x1 to x2 in M , i.e. the node sequence

M [x1] = u1, . . . , uℓ, uℓ+1 = M [x2] such that M [Z](uj) = uj+1, for every

j = 1, . . . , ℓ. Let nj be the node ua, for the maximal a ∈ [1..ℓ], such

that nj ∈ N . Then uℓ is the Z-representative of nj. Since M [Z](uℓ) =

uℓ+1 = M [x2], it must be the case that M [ct ](uℓ) = i. By construction,

M [ct ](j) = M [ct ](uℓ) = i, and M [Z](j) = Γ(M [Z](uℓ)) = Γ(M [x2]).

Furthermore, from property P3 we conclude that node j is Z-reachable

from node M [x1] in M . Thus, x1 is in the ith subtree of x2 in M , i.e.,

M |= ∃u .Z[u] = x2 ∧ ct [u] = i ∧ Z∗(x1, u), and the claim holds.

In the other direction, assume that M |= ψ. Let M [x1] = j ≤ α and

M [x2] = ℓ ≤ α. The claim is proven by considering the Z-chain in

M from j to ℓ and, based on the construction of M , constructing a

corresponding Z-chain in M from M [x1] = nj to M [x2] = nℓ in which

nj is in the ith subtree of nℓ.

ψ is an atomic assertion of the form B[u]. u is an index variable and

B is a bool array. It then follows that parent [u] or parent ′[u] is in

Tϕ, according to whether B is unprimed or primed, and then it follows

from the construction that M [B](u) = M [B](u).

ψ is a Z-assertion. Thus ψ has one of the forms ∀y.Z[y] 6= u, ∀y.Z[y] 6=
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u ∨ B[y], or ∀y.Z[y] 6= u ∨ ¬B[y]. We show here the second case; The

other two are similar. Recall that u must be in Tϕ, and assume that

M(u) = nj. Assume, by way of contradiction, that M |= ∀y.Z[y] 6=

u ∨ B[y] and for some i ∈ [0..m+1], M |= Z[i] = j ∧ ¬B[i]. If i = m+1,

then obviously M(Z)[i] = m+1, and thus M 6|= Z[i] = u. Hence,

i 6= m+1. From property P1 it follows that M [Z](ni) 6= nj. Thus,

there exists a Z-representative v 6= ni for i inM . From the construction

it follows that M(Z)[i] = γ(M(Z)[v]) and that M(B)[i] = M(B)[v].

From the assumption that M |= ¬B[i], it follows that ¬M(B)[v], and

from the assumption that M |= p it then follows that M(Z)[v] 6= nj,

contradicting the assumption that M(Z)[i] = j.

ψ is a preservation formula of a bool array. Assume p is of the form

∀y.B′[y] = B[y] ∨ y ∈ Y where Y is a set of index variables in Tϕ.

Assume that M |= ψ, and that M 6|= ψ, i.e., for some i ∈ [0..α + β],

M |= B′[i] 6= B[i] ∧ i 6∈ γ(Y ). Since M [B](α + j) = M [B](nα+j),

M [B′](α + j) = M [B′](nα+j), and nα+j 6∈ Y , for every j ∈ [1..β], it

follows that i ≤ α.

Similar to the case of preservation of index arrays, we consider the

M [Z]-chain ni = u0, . . . and M [Z ′]-chain ni = v0, . . . in M , and con-

clude that M [B′](i) = M [B](i). The only difference is in the inductive

step: Let k ≥ 0, and assume that for all j ≤ k, uj = vj and uj 6∈ Y .

If M [Z ′](vk) = M [Z](vk), then obviously vk+1 = uk+1. Otherwise,
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M [Z ′](vk) 6= M [Z](vk). From property P6 it follows that vk, uk+1, and

vk+1 are the interpretations of some terms in Tϕ, and hence are N -

nodes. It thus follows that ni has the same Z– and Z ′-representative

in M (which is either v0, vj for some j < k, or vk) and therefore

M(B)[i] = M(B′)[i].

ψ is a TCF-assertion of the form ψ : ∀~y . P . Recall that P is a posi-

tive boolean combination of formulae of the form ¬Z∗(u, y) and B(y).

Therefore it suffices to show that if M satisfies a clause φ which has

either of the two forms, then M satisfies φ. As when proving Theo-

rem 6.8, we interpret P by considering an arbitrary assignment η to

the quantified variables ~y that assigns to each variable y in ~y a value

η[y] ∈ [0..α + β]. We now choose an assignment η defined as follows:

η(y) =





rZ(Γ−1(η[y])), if η[y] < α and Γ−1(η[y]) has a
Z-representative

Γ−1(η[y]), otherwise

Denote by Mη the joint interpretation (M, η) that interprets all quan-

tified variables according to η and all other terms according to M .

Similarly, denote by Mη the joint interpretation (M, η). It remains to

prove that Mη |= φ under the assumption that Mη |= φ. Let iy be

Mη[y]. Assume first that φ is the formula B(y). Let B[y] be a clause

in B. If iy > α or if niy has no Z-representative, then Mη[y] = niy

by definition. Then from the construction of M we have Mη[B[y]] =

M [B](iy) = Mη[B[y]] = M [B](niy). If iy ≤ α, then first assume that

niy has a Z-representative in M . Thus, Mη[B](iy) = M [B](rZM(niy)),
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and, from the definition of η, it follows that Mη[B](iy) = M [B](y).

Thus, Mη |= B(y) iff Mη |= B(iy).

Assume that φ is the formula ¬Z∗(u, y). Since u is a free term in ψ,

it follows that M [u] ≤ α. It then follows from Properties P2 and P3

that Mη 6|= Z∗(u, y).

7.3 Multi-Linked Heap Systems

In this section we define multi-linked heap systems with a bounded out-degree

on nodes. A multi-linked heap is represented similar to a single-parent heap,

only, instead of having a single index array, we allow for some k > 1 index

arrays, each describing one of the links a node may have. We denote these

arrays by link 1, . . . , linkk. Thus, each link i is an array [0..h] → [0..h]. We

are mainly interested in non-sharing heaps, defined as follows:

Definition 7.3. A non-sharing heap is one that satisfies the following re-

quirements:

1. For every i = 1, . . . , k, link i[0] = 0.

2. For every bool array B, ¬B[0].

3. No two distinct positive nodes may share a common positive child. This
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requirement can be formalized as

∀j, ℓ ∈ [1..h], i, r ∈ [1..k] . (j 6= ℓ) ∧ (link i[j] = link r[ℓ]) → link i[j] = 0

4. No two distinct links of a positive node may point to the same positive

child. This can be formalized as

∀j ∈ [1..h], s, t ∈ [1..k] . (s 6= t) ∧ (link s[j] = link t[j]) → link s[j] = 0

We refer to the conjunction of the requirements in Definition 7.3 by the

formula no sharing . A state violating one of these three requirements is

called a sharing state.

A multi-linked system is called sharing-free if none of its computations

ever reaches a sharing state, nor does a computation ever attempt to assign

a value to A[0] for some array A.

Let D : 〈V,Θ, ρ,J , C〉 be a k-bounded multi-linked heap system. Ta-

ble 7.1 describes a BNF-like syntax of the assertions used in describing D,

which we refer to as m-assertions. There, Ivar denotes an unprimed index

variable, Iarr denotes an unprimed index array, Bvar denotes an unprimed

bool variable, and Barr denotes an unprimed bool array. The expression

reach(x, y) abbreviates (x, y) ∈ (
⋃k
i=1 link i)

∗, and the expression cycle(x) ab-

breviates (x, x) ∈ (
⋃k
i=1 link i)

+. The Preservation assertion is just like in
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the single-parent case and we require that if Assign appears in τ , then the

Preservation assertion that is conjoined with it includes preservation of all

variables that don’t appear in the left-hand-side of any clause of Assign.

MCond1 ::= True | Bvar | Barr[Ivar] | Ivar = Ivar |
Ivar = 0 | Iarr[Ivar] = Ivar | Iarr[Ivar] = 0 |
mCond1 ∨ mCond1 | ¬mCond1

MCond2 ::= mCond1 | reach(Ivar,Ivar) | cycle(Ivar) |
¬MCond2 | MCond2 ∨ MCond2

Assign ::= ǫ | Bvar′ | ¬Bvar′ | Barr′[Ivar] | ¬Barr′[Ivar] |
Bvar′ = Bvar | Ivar′ = 0 | Ivar′ = Ivar |
Iarr′[Ivar] = Ivar | Iarr′[Ivar] = 0 | Assign ∧ Assign

Θ ::= MCond2 ∧ no sharing

ρ ::= True | MCond1 ∧ Assign ∧ Preservation | ρ ∨ ρ

J ::= ∅ | J ∪ { mCond1}

C ::= ∅ | C ∪ {(mCond1,mCond1)}

Table 7.1: Grammar for Assertions for Multi-Linked Systems

For example, consider a binary tree, which is a multi-linked heap with

bound 2 and no sharing. Each of left and right is a link . Program Tree-

Insert in Fig. 7.5 is the standard algorithm for inserting a new node, n, into

a sorted binary tree rooted at r.
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left , right : array [0..h] of [0..h] init no sharing

data : array [0..h] of bool

r, n : [1..h] init ¬reach(r, n) ∧ ¬cycle(r) ∧
left [n] = 0 ∧ right [n] = 0

t : [0..h] init t = r

done : bool init done = False
2
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6
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6
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6
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1 : while ¬done do
2

6

6

6

6

6

6

6

6

6
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6

6

6

6
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2 : if data[n] = data[t] then

3 : done := True

4 : elseif data[n] < data[t] then
2

6

6

6

4

5 : if left [t] = 0 then

6 : left [t] := n

7 : done := True

else

8 : t := left [t]

3

7

7

7

5

9 : elseif right [t] = 0 then

10 : right [t] := n

11 : done := True

else

12 : t := right [t]
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13 :
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Figure 7.5: Multi-Linked Tree Insertion Algorithm

7.4 Reducing Multi-Linked into Single-Parent

Heaps

We now show how to transform multi-linked heap systems into single-parent

heap systems.

7.4.1 The Transformation

Let Dm : 〈Vm,Θm, ρm,Jm, Cm〉 be a k-bounded multi-linked heap system.

Thus, Vm includes the index arrays link 1, . . . , linkk. We transform Dm into

a single-parent heap system Ds : 〈Vs,Θs, ρs,Js, Cs〉 as follows:

The set of variables Vs consists of the following:
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1. Vm \ {link 1, . . . , linkk}, i.e., we remove from Vm all the link arrays;

2. An index array parent : [0..h] 7→ [0..h] that does not appear in Vm;

3. A bool array ct : [0..h] 7→ [0..k] that does not appear in Vm (recall our

convention that “bool” can be any finite-domain type);

4. A new bool variable error ; error is set when Dm contains an erroneous

transition such as one that introduces sharing in the heap, or attempts

to assign values to A[0] for some array A.

Intuitively, we replace the index link arrays with a single index parent

array that reverses the direction of the links, and assign to ct [i] (child type)

the “birth order” of i in the heap. The variable error is boolean and is

set when Dm cannot be transformed into a singe-parent system. This is

caused by either an assignment to A[0] or by a violation of the non-sharing

requirements. When such an error occurs, error is raised, and remains so,

i.e., ρs implies error → error ′.

Definition 7.4. A single-parent state is said to be well formed if the parent

of 0 is itself, all the bool arrays B ⊂ Vs associate 0 with the value False,

and no parent has two distinct children with the same birth order, i.e.,

wf : parent [0] = 0 ∧
∧
B∈B(¬B[0]) ∧

∀i 6= j . (parent [i] = parent [j] 6= 0 → ct [i] 6= ct [j])
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To transform ρm, Jm, and Cm into their Ds counterparts, it suffices to

transform m-assertions over Vm∪V
′
m into restricted EA-assertions over Vs∪V

′
s.

To transform Θm, which is of the form no sharing∧ϕ, where ϕ is an mCond2,

into Θs, we take the conjunction of wf and the transformation of ϕ. It thus

remains to transform m-assertions. Recall that ρm is a disjunction of clauses

(see Section 7.3), each one of the form

ϕ ∧ τ ∧ presEx (Vm − {V })

where V ⊆ Vm, ϕ is an mCond over Vm, and τ is an Assign statement of the

form
∧
v∈V v

′ = Ev(Vm) (where Ev is some expression). When we transform

such a ρm-disjunct, we sometimes obtain several disjuncts. We assume that

each has its obvious presEx assertions over Vs. At times, for simplicity of

representation, we do not express the transformation directly in DNF. Yet,

in those cases, the DNF form is straightforward.

It thus remains to show how to transform m-assertions into restricted EA-

assertions. This is done by induction on the m-assertions, where we ignore

the preservation part (which, as discussed above, is defined by the transition

relation for both Dm and Ds.)

Let ψ be an m-assertion. In the following cases, ψ remains unchanged in

the transformation:

1. ψ contains no reference to index variables and arrays;

2. ψ is of the form x1 = x2 where x1 and x2 are both primed, or both
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unprimed, index variables;

3. ψ is of the form x1 = x2 where x1 is a primed, and x2 is an unprimed,

index variable;

4. ψ is of the form x = 0 where x is a (either primed or unprimed) index

variable;

5. ψ is of the form B[x], where B is an unprimed bool array.

The other cases are treated below. We now denote primed variables explicitly,

e.g., x1 refers to an unprimed variable, and x′1 refers to a primed variable:

1. An assertion of the form link j[x2] = x1 is transformed into

(x2 = 0 ∧ x1 = 0)
∨ (x2 6= 0 ∧ x1 = 0 ∧ ∀z . (parent [z] 6= x2 ∨ ct [z] 6= j))
∨ (x2 6= 0 ∧ x1 6= 0 ∧ parent [x1] = x2 ∧ ct [x1] = j)

In the case that x2 6= 0 and x1 = 0, x2 should have no jth child. If

x2 6= 0 and x1 6= 0, then x1 should have x2 as a parent and the child

type of x1 should be j.

2. A transitive closure formula reach(x1, x2) is transformed into

(x1 6= 0 ∧ x2 6= 0 ∧ parent∗(x2, x1)) ∨ (x2 = 0)

The first disjunct deals with the case where x1 and x2 are both non-0

nodes, and then the reachability direction is reversed, reflecting reversal

of heap edges in the transformation to a single-parent heap. The second
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disjunct deals with the case that x2 = 0, and then, since k > 0, there

is a path from any node into 0.

3. A transitive closure formula cycle(x), where x is an index variable, is

transformed into parent∗(parent [x], x).

4. An assertion of the form x′1 = link j[x2] is transformed into:

(x2 = 0 ∧ x′1 = 0)
∨ (x2 6= 0 ∧ x′1 = 0 ∧ ∀y . (parent [y] 6= x2 ∨ ct [y] 6= j))
∨ (x2 6= 0 ∧ ∃y . (parent [y] = x2 ∧ ct [y] = j ∧ x′1 = y))

In case x2 = 0, this transition sets x1 to 0 since we assume that in

non-sharing states link j[0] = 0 for every j = 1, . . . , k. Otherwise, if x2

has no jth child, then x1 is set to 0. Otherwise, there exists a y which

is the jth child of x2, and then x1 is set to y.

5. An assertion of the form B′[x], where B is an unprimed bool array,

is transformed differently based on its polarity. If it appears under

positive polarity, it is transformed into:

(x = 0 ∧ error ′) ∨ (x 6= 0 ∧ B′[x])

The error condition reflects an attempt to assign True to B[0]. If

the assertion B′[x] appears under negative polarity, then no erroneous

assignment is possible, and the assertion remains unchanged by the

transformation.

6. An assertion of the form link ′
j[x1] = x2 is transformed into:
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Err ∧ error ′ ∨
¬Err

∧ (x2 = 0 ∨ (x2 6= 0 ∧ parent ′[x2] = x1 ∧ ct ′[x2] = j))

∧

(
∀z . (parent [z] 6= x1 ∨ ct [z] 6= j)

∨ ∃z . (parent [z] = x1 ∧ ct [z] = j ∧ (z = x2 ∨ parent ′[z] = 0))

)

Where Err is defined by:

(x1 = 0 ∧ x2 6= 0) ∨ (x2 6= 0 ∧ parent [x2] 6= 0 ∧ (parent [x2] 6= x1 ∨ ct [x2] 6= j))

I.e., the assignment may cause an error by either attempting to assign

a nonzero value to link j[0], or by introducing sharing (when x2 either

has a parent that is not x1, or is x1’s i
th child for some i 6= j).

When there is no error, x2 should become the jth child of x1 unless it

is 0, which is expressed by the first conjunct of the non-error case; in

addition, any node that was the jth child of x1 before the transition

should become “orphaned,” which is expressed by the second conjunct

of the non-error case.

The following observation follows trivially from the construction above:

Observation 7.5. The transformation of an m-assertion is a restricted EA-

assertion.

Having defined the system transformation, we can now demonstrate the
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complete verification process of the tree insertion program.

Example 7.3 (Verification of Tree-Insert)

Θ: parent [0] = 0 ∧ ∀i 6= j . (parent [i] = parent [j] 6= 0 → ct [i] 6= ct [j]) ∧
¬parent∗(n, r) ∧ ∀i . (parent [i] 6= n) ∧ t = r ∧ ¬parent∗(parent [r], r) ∧ ¬done

ρ: error ∧ error ′ ∧ presEx(error)
∨

¬error ∧
2

6

6

6

6

6

6

6

6

6

6

6

4

π = 1 ∧ ¬done ∧ π′ = 2 ∧ presEx(π)
∨ π = 1 ∧ done ∧ π′ = 13 ∧ presEx(π)
∨ π = 2 ∧ data[t] = data[n] ∧ π′ = 3 ∧ presEx(π)
∨ π = 2 ∧ data[t] 6= data[n] ∧ π′ = 4 ∧ presEx(π)
∨ π = 3 ∧ π′ = 1 ∧ done′ ∧ presEx(π, done)
∨ π = 4 ∧ t 6= 0 ∧ data[n] < data[t] ∧ π′ = 5 ∧ presEx(π)
∨ π = 4 ∧ (t = 0 ∨ data[t] ≤ data[n]) ∧ π′ = 9 ∧ presEx(π)
∨ try(5, left) ∨ try(9, right)
∨ π = 13 ∧ π′ = 13 ∧ presEx(π)
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try(link , π0): 2
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π = π0 ∧ π′ = π0 + 1 ∧ presEx(π) ∧
(t = 0 ∨ (t 6= 0 ∧ ∀j . parent [j] 6= t ∨ ct [j] 6= left))

∨ π = π0 ∧ π′ = π0 + 3 ∧ t 6= 0 ∧ presEx(π)
(∃j . parent [j] = t ∧ ct [j] = left)

∨ π = π0 + 1 ∧ error ′ ∧ presEx(error) ∧
(t = 0 ∨ (t 6= 0 ∧ parent [n] 6= 0 ∧ (parent [n] 6= t ∨ ct [n] 6= left))) ∧

∨ π = π0 + 1 ∧ π′ = π0 + 2 ∧ t 6= 0 ∧
(parent [n] = 0 ∨ (parent [n] = t ∧ ct [n] = left)) ∧
parent ′[n] = t ∧ ct ′[n] = left ∧ presEx(π, parent [n], ct [n]) ∧
„

∀j . (parent [j] 6= t ∨ ct [j] 6= left)
∨ ∃j . (parent [j] = t ∧ ct [j] = left ∧ (j = n ∨ parent ′[j] = 0))

«

∧

∨ π = π0 + 2 ∧ π′ = 1 ∧ done′ ∧ presEx(π, done)
∨ π = π0 + 3 ∧ π′ = 1 ∧ presEx(π, t) ∧

0

@

t = 0 ∧ t′ = 0
∨ t 6= 0 ∧ t′ = 0 ∧ ∀j . (parent [j] 6= t ∨ ct [j] 6= left)
∨ t 6= 0 ∧ ∃j . (parent [j] = t ∧ ct [j] = left ∧ t′ = j)
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Figure 7.6: Single-Parent Counterpart of Multi-Linked Tree Insertion

We wish to verify that the multi-linked tree insertion program given in

Fig. 7.5 satisfies the following specification:

no-loss : ∀x . reach(r, x) → 0 reach(r, x)

no-gain : ∀x . x 6= n ∧ ¬reach(r, x) → 0 ¬reach(r, x)

insertion : (∀u . reach(r, u) → data[u] 6= data[n]) → 0 at−13 → reach(r, n)
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We begin by eliminating the universal quantifiers in the no-loss and no-gain

properties by introducing a skolem constant x. This is done by augmenting

the program with a generic input constant x – a variable with an undeter-

mined initial value that stays constant throughout a computation. This is a

purely syntactic transformation.

As for the insertion property, unfortunately the abstraction computation

method of Section 7.2 disallows any occurrence of reach predicates under

universal quantification. Therefore, we heuristically instantiate the universal

variable u to derive the following (stronger) property:

insertion :
(∧

u∈{r,n,t} reach(r, u) → data[u] 6= data[n]
)
→ 0 at−13 → reach(r, n)

We proceed by applying the system transformation, resulting in the single-

parent heap system1 shown in Fig. 7.6. We now apply predicate abstraction.

We use the predicate base given by the following set of assertions:

P :





p1 : ∀j . parent [j] 6= n,
p2 : left-subtree(n, r),
p3 : right-subtree(n, r),
p4 : parent∗(t, r),
p5 : ∃j . parent [j] = t,
p6 : data[t] = data[n],
p7 : parent∗(x, r)





Note that the predicate p1 is in fact an inductive invariant, a fact that can be

decided (without the use of abstraction) by directly applying Theorem 7.2

1 Note that this automatically-derived version is less optimal than the manually-
constructed single-parent system given in Fig. 7.2.



Chapter 7. Complex Heap Shapes 153

to check validity of the verification conditions

I1. Θ → p1

I2. p1 ∧ ρ→ p′1

Having decided the invariance of p1, it is possible to optimize the abstraction

computation by removing p1 from the predicate base, and by constraining

the concrete state space to p1-states only.

In the following section we establish the soundness of the transformation.

7.4.2 Correctness of Transformation

In order for the above transformation to fit into the verification process pro-

posed at the head of this chapter, we have to show that the result of the

verification, as carried out on the transformed system and property, holds

with respect to the untransformed counterparts. Such a result is provided by

Theorem 7.13 below. To show that the abstraction computation method of

Section 7.2 is sound with respect to a transformed program and property, we

use Observation 7.5 and Theorem 7.14 below. For simplicity of presentation,

in this section we do not take into account fairness requirements. However, it

is straightforward to extend the results, i.e., show that the heap transforma-

tion preserves satisfiability of justice requirements, and that the computation

transformation preserves compassion.

Let Dm : 〈Vm,Θm, ρm,Jm, Cs〉 be a k-bounded multi-linked heap system

over the set of variables Vm, with k > 1, and let Ds : 〈Vs,Θs, ρs,Js, Cs〉 be its
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transformation into a single-parent heap system. The transformation into a

single-parent heap system induces a mapping S : Σm → Σs. The mapping S

is formally defined below.

Definition 7.6. Let S be a mapping from Σm into Σs, such that for every

sm ∈ Σm, if ss = S(sm), then the following all hold:

1. For every bool variable v ∈ Vm, ss[v] = sm[v];

2. For every bool array B ∈ Vm and x ∈ [0..h], ss[B](x) = sm[B](x);

3. For every index variable x ∈ Vm, ss[x] = sm[x]

4. ss[parent ](0) = 0 and ss[ct ](0) = 1.

5. Let y ∈ [1..h]. If for all z ∈ [1..h] and i ∈ [1..k], sm[link i](z) 6= y,

then ss[parent ](y) = 0 and ss[ct ](y) = 1. Otherwise, ss[parent ](y) = x

and ss[ct ](y) = j where (x, j) is the lexicographically minimal pair in

{(z, i) : z ∈ [1..h], i ∈ [1..k], and sm[link i](z) = y}.

6. sm[error] =





False, if sm |= no sharing

True, otherwise

We first make the following observation regarding S:

Observation 7.7. The inverse S−1 is well defined for any well formed non-

error state ss ∈ Σs. That is, if ss |= wf ∧ ¬error then there exists a state

sm ∈ Σk such that S(sm) = ss.
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Lemma 7.8. Let sm ∈ Σm, and let ss = S(sm). Then sm |= no sharing ⇐⇒

ss |= wf ∧ ¬error.

Proof. The reverse direction holds trivially. We now assume that sm |=

no sharing , and show that ss satisfies wf, i.e.,

¬error ∧ parent [0] = 0 ∧
∧
B∈B(¬B[0]) ∧

∀i 6= j . (parent [i] = parent [j] 6= 0 → ct [i] 6= ct [j])

where B ⊂ Vs is the set of bool arrays of Ds. ss[error ] = False, ss[parent ](0) =

0, and ss[B](0) = False, for all B ∈ B, all follow from the definition of S.

The universal condition follows from two properties:

• The links in a multi-linked heap are functional, i.e., for every i ∈ [1..k],

every node has at most one link i-child.

• From Item 5 of the definition of S, we have that for any nodes u

and v, and i ∈ [1..k], we have ss[parent ](u) = v and ss[ct ](u) = i

iff sm[link i](v) = u.

Lemma 7.9. Let sm ∈ Σm be a state that satisfies the no sharing constraint,

and let ss = S(sm). Let ϕm be a boolean combination of m-atomic formulae

over Dm, and let ϕs be its transformation into an assertion over Ds. Then:

sm |= ϕm ⇐⇒ ss |= ϕs
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Proof. The claim follows immediately from Lemma 7.8 for the case that ϕm

is an m-atomic non-reach and non-cycle formula. For the other cases, we

distinguish between:

ϕm is of the form reach(x1, x2). Then, ϕs is of the from

(x1 6= 0 ∧ x2 6= 0 ∧ parent∗(x2, x1)) ∨ (x2 = 0)

From the definition of S it follows that ss[x1] = sm[x1] and ss[x2] =

sm[x2]. In one direction, assume that sm |= ϕm. If sm[x2] = 0, then

obviously ss |= ϕs. Otherwise, assume that sm[x2] 6= 0. Hence, for some

n ≥ 1 there exist nodes sm[x1] = u1, . . . , un = sm[x2] such that for every

i = 1, . . . , n, there exists some ji ∈ [1..k] such that sm |= link ji [ui] =

ui+1, and sm[ui] 6= 0. Since Dm |= no sharing , it follows that for every

i = 1, . . . , n − 1, ss[parent ](ui+1) = ui. Thus, ss |= parent∗(un, u1).

Thus ss |= ϕs.

In the other direction, assume that ss |= ϕs. If ss[x1] = 0, then ss[x2] =

0, and then sm |= ϕm trivially follows. Assume therefore that ss[x1] 6=

0. If ss[x2] 6= 0, an argument, similar to the one used for this case in

the other direction, shows that sm |= ϕm. If ss[x2] = 0, then let u 6= 0

be such that there is a ss[parent ]-path from u to ss[x1], and for some

i ∈ [1..k], and for every y either ss[parent ](y) 6= u or Mk[ct ](y) 6= i.

Thus, sm[link i](u) 6= y for every y. It thus follows that sm[link i](u) =

0. Similar arguments to the previous direction show that there is a
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(
⋃k
i=1 link i)-path from sm[x1] to u. We can therefore conclude that

sm |= reach∗(x1, x2).

ϕm is of the form cycle(x). This case is similar to the previous case.

Since the initial condition of Dm is not a restricted A-assertion, it needs

to be dealt with separately:

Lemma 7.10. Let sm ∈ Σm such that sm |= no sharing. Let ss = S(sm).

Then: sm |= Θm ⇐⇒ ss |= Θs

Proof. As a consequence of the grammar in Table 7.1, Θm is of the form

ψ ∧ no sharing where ψ is a boolean combination of m-atomic formulae.

Section 7.4 defines Θs as ψs ∧ wf, where ψs is the transformation of ψ by the

rules of Section 7.4 and wf is given in Definition 7.4. From Lemma 7.9 we

have that if sm |= no sharing , then sm |= ψ iff ss |= ψs. From Definition 7.6

we have ss |= ¬error , and from Lemma 7.8 we have sm |= no sharing iff

ss |= ¬error ∧ wf. Thus sm |= Θm iff ss |= Θs.

We now extend Lemma 7.9 to show that transformation of the transition

relation preserves the mapping S:

Lemma 7.11. Let sm ∈ Σm and ss = S(sm), such that sm |= no sharing.

Then for any state s′m ∈ Σm, S(s′m) is a ρs-successor of ss if s′m is a ρm-

successor of sm. Furthermore, if s′m |= no sharing, then the reverse direction

holds as well.
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Proof. Let s′m ∈ Σm be a state such that s′m |= no sharing . Since ρm is a dis-

junction of clauses, Let ϕ(Vm) ∧ τ(Vm,V
′
m) ∧ preserve(Vm,V

′
m) be one such

arbitrary clause. Then the transformed clause is given by ϕs(Vs) ∧ τs(Vs,V
′
s),

where ϕs(Vs) is the transformation of ϕ(Vm) and τs(Vs,V
′
s) is the transfor-

mation of τ(Vm,V
′
m) (recall that the preservation conjunct, present in the

original clause, is discarded by the transformation, and that τs encapsulates

variable preservation clauses).

From Lemma 7.9 and Lemma 7.10 we have sm |= ϕ(Vm) iff ss |= ϕs(Vs).

Let s′s = S(s′m). It is left to show that (sm, s
′
m) |= τ(Vm,V

′
m) ∧ preserve(Vm,V

′
m)

iff (ss, s
′
s) |= τs(Vs,V

′
s). Since τ is a conjunction of Assign formulas, we show

that for each type of atomic Assign formula ψ(Vm,V
′
m) and its transforma-

tion ψs(Vs,V
′
s), (sm, s

′
m) |= ψ(Vm,V

′
m) =⇒ (ss, s

′
s) |= ψs(Vs,V

′
s), and if

s′m |= no sharing then the reverse direction holds as well.

ψ has the form x′1 = t2 where t2 is either an index variable or 0. In this

case the claim holds trivially for both directions.

ψ has the form B′[x] or ¬B′[x], where B is a bool array and x is an

index variable. In the case of ¬B′[x], the claim follows trivially. In the case

of B′[x], ψs is the formula (x = 0 ∧ error ′) ∨ (x 6= 0 ∧ B′[x]).

1. s′m |= no sharing . Then s′m |= ¬B[0], and s′s |= ¬error . If (sm, s
′
m) |=

B′[x], then x cannot be 0 in sm, nor in ss. From S we have (ss, s
′
s) |=

x 6= 0 ∧ B′[x]. Otherwise, if (ss, s
′
s) |= ψs, then the claim follows from
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the definition of S and the fact that error is False in s′s.

2. s′m 6|= no sharing . Then s′s |= error . If sm[x] = 0, then from the

definition of S we have (ss, s
′
s) |= x = 0 ∧ error ′. Thus (sm, s

′
m) |=

ψ =⇒ (ss, s
′
s) |= ψs.

Otherwise, sm[x] = ss[x] 6= 0. Since, by definition of S, s′m[B](sm[x]) =

s′s[B](ss[x]), then (sm, s
′
m) |= x 6= 0 ∧ B′[x] iff (ss, s

′
s) |= x 6= 0 ∧ B′[x].

ψ has the form x′1 = link j[x2]. We focus on the nontrivial case that

sm[x2] 6= 0 and s′m[x′1] 6= 0. First assume that x2 is a leaf, i.e., sm[link j](sm[x2]) =

0. In this case s′m[x1] = 0, and by definition of S, s′s[x1] = 0. From

the assumption, we have sm |= link j[x1] = 0. Then by Lemma 7.9, ss |=

∀y . (parent [y] 6= x2 ∨ ct [y] 6= j). Otherwise, assume that x2 is not a

leaf, i.e., sm[link j](sm[x2]) 6= 0. Then by definition of S, there exists a

node u 6= 0 such that s′m[x1] = u and s′m[link j](sm[x2]) = u. Then by def-

inition of S, ss[parent ](u) = ss[x2], ss[ct ](u) = j, and s′s[x1] = u. Thus

(ss, s
′
s) |= ∃y . (parent [y] = x2 ∧ ct [y] = j ∧ x′1 = y). In the reverse

direction, if sm and s′m both satisfy the no sharing constraint, then the claim

follows trivially from the definition of S.

ψ has the form link ′
j[x1] = x2. Then ψs is the formula
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Err ∧ error ′ (1)
∨



¬Err
∧ (x2 = 0 ∨ (x2 6= 0 ∧ parent ′[x2] = x1 ∧ ct ′[x2] = j))

∧




∀z . (parent [z] 6= x1 ∨ ct [z] 6= j)
∨ ∃z . (parent [z] = x1 ∧ ct [z] = j ∧

(z = x2 ∨ parent ′[z] = 0))







(2)

First assume (sm, s
′
m) |= ψ. Let u1 = sm[x1] and u2 = sm[x2]. We consider

two cases:

1. Node u2 has multiple parents in s′m, one of which must be u1. In this

case, we have s′m |= no sharing . Furthermore, by definition of S, we

have s′s[error ] = True and ss |= Err . Thus (ss, s
′
s) |= ψs.

2. Node u2 has a single parent in s′m, which must be u1. In this case it must

be the case that ss |= ¬Err . We now show that (ss, s
′
s) satisfies the

other two conjuncts in disjunct (2) of ψs. The conjunct (x2 = 0 ∨ (x2 6=

0 ∧ parent ′[x2] = x1 ∧ ct ′[x2] = j)) follows from the definition of S.

As for the third conjunct, consider first the case that u1 has no j-child

in sm. Then by definition of S, ss |= ∀z . parent [z] 6= x1 ∨ ct [z] 6= j.

Otherwise, there exists a node z that is the j-child of u1 in sm. If z is

not u2, then it is no longer the j-child of u1 in s′m. It follows from the

definition of S that (ss, s
′
s) |= ψs.

It is left to show the reverse direction, under the assumption that s′m |=

no sharing . It follows that s′s[error ] = False. Thus, it must be the case that



Chapter 7. Complex Heap Shapes 161

(ss, s
′
s) satisfies disjunct (2) of ψs. Let u1 = ss[x1] and u2 = ss[x2]. From

the definition of S and the conjunct (x2 = 0 ∨ (x2 6= 0 ∧ parent ′[x2] =

x1 ∧ ct ′[x2] = j)) we conclude that if u2 6= 0, then u2 is a j-child of u1 in

s′m. If u2 = 0, then from the third conjunct we conclude that u1 has no child

in s′m. Therefore, (sm, s
′
m) |= ψ.

Corollary 7.12. Let µ : s0
m, s

1
m, . . . be a (finite or infinite) sequence of states

that consists only of non-sharing states. Then µ is a run of Dm iff S(µ) :

S(s0
m),S(s1

m) . . . is a run of Ds without error states.

Proof. The proof is by induction on the run length. At the base case, from

Lemma 7.10 we have that S(s0
m) |= Θs iff s0

m |= Θm. Since Θm is defined to

include the conjunct no sharing , then s0
m satisfies the non-sharing constraint,

and by definition of S we have S(s0
m) |= ¬error .

For the inductive step, let s0
m, . . . , s

n
m be a run of Dm that is without

sharing, and let S(s0
m), . . . ,S(snm) be a run of Ds that is without error

states. By Lemma 7.11 and the definition of S, a Dm-state sn+1
m without

sharing is a ρm-successor of snm iff S(sn+1
m ) is a ρs-successor of ss such that

S(sn+1
m )[error ] = False.

From Lemma 7.9, Corollary 7.12, and Observation 7.7 we can now prove:

Theorem 7.13 (Soundness). Assume that for every reachable Dm-state sm ∈

Σm, s |= no sharing. Let ϕm be a temporal property over m-restricted A-

assertions over Vm, and let ϕs be ϕm, where every assertion over Vm is
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replaced with its transformation into a restricted EA-assertion over Vs. Then:

Ds |= ϕs ⇐⇒ Dm |= ϕm

While Theorem 7.13 shows that validity of temporal formulae carries from

multi-linked systems into single-parent ones only when the former satisfy

non-sharing, we prove that if the latter never reaches an error state, then the

former never violates non-sharing:

Theorem 7.14 (Non-sharing). If Ds |= 0 ¬error then Dm |= 0 no sharing.

Proof. Assume that Dm has a computation with a prefix s0
m, . . . , s

n
m, where

for any 0 ≤ i < n, sim |= no sharing and snm 6|= no sharing . Following

Corollary 7.12, the sequence S(s0
m), . . . ,S(sn−1

m ) is an error-free run of Ds.

From Lemma 7.11, S(snm) is a successor in Ds of S(sn−1
m ). From the definition

of S we have S(snm) |= error .

Thus, to verify Dm |= ϕm, one would initially perform a “sanity check”

by verifying Ds |= 0 ¬error . If this is successful, then the process outlined

at the head of this chapter can be carried out. Theorem 7.13 guarantees

not only that correctness of Ds implies correctness of Dm, but also that a

counterexample over Ds is mappable back into Dm.

7.5 Examples of Verified Systems

We now describe two further examples on which the method has been tested,

both of which are graph traversals. The first is a traversal algorithm that
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assumes no order between out-going edges of nodes. We demonstrate that,

when the graph is a tree, edges can be reversed and the algorithm trans-

formed so that it maintains its correctness. The second example is of a

similar algorithm, with the restriction that out-going edges are ordered and

the traversal should be done according to the “birth order” of nodes. These

two examples demonstrate how we transform (1) algorithms that operate on

non-sharing (unbounded) multi-linked heaps and (2) properties of the algo-

rithms, into (1) translated algorithms operating on single-parent heaps and

(2) translated properties so that a translated algorithm satisfies a translated

property iff the original algorithm satisfies the original property.

7.5.1 Unordered Trees

Consider the algorithm of Fig. 7.7 that traverses a directed graph. Assume

that the graph has no self-loops. Intuitively, the algorithm is similar to a

strandard depth first search implementation. However, to “compensate” for

its lack of stack, each edge is reversed when traversed, and since each edge is

traversed twice, on termination the edges are all in their original orientation.

To maintain this bookkeeping, each edge is associated with a counter that

counts how many times it has been traversed (and reversed). This counter,

called visited, is kept at the node into which the edge enters. This is possible

since the assumption of no-sharing guarantees that every node has at most

one incoming edge — a property that is preserved throughout the algorithm.

When at a node x, the algorithm first searches for an untraversed edge, which
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would be identified by a node k ∈ Children[x] such that visited[k] = 0. If no

such edge is found, the algorithm searches for an edge that has been traversed

once. If such a traversable edge is found in one of these two searches, its

counter is incremented and the edge’s direction is reversed. If no traversable

edge is found, the algorithm terminates. In the algorithm of Fig. 7.7, the

ℓ0 : x := root

ℓ1 : Repeat


ℓ2 : child := ǫ k ∈ Children[x] . visited[k] = 0
ℓ3 : If child = 0 then

ℓ4 : child := ǫ k ∈ Children[x] . visited[k] = 1
ℓ5 : If child > 0 then



ℓ6 : Children[x] := Children[x] − {child}
ℓ7 : Children[child] := Children[child] ∪ {x}
ℓ8 : visited[x] := visited[child] + 1
ℓ9 : x := child







ℓ10 : Until child = 0
ℓ11 :

Figure 7.7: Algorithm Traversal-by-Reversal

variable x is initialized to some designated node root (line ℓ0). The search

for a new child is at lines ℓ2–ℓ4. If found, child is removed from the list of

x’s children (line ℓ6) and x is added to the list of child’s children (line ℓ7).

These two actions transform the edge x → child into an edge child → x. At

ℓ8 the counter associated with this edge is incremented. This statement also

relocates the site of this counter from its old site child to the new edge’s tip

at x. Finally x is set to child directing the next search to start at child (line

ℓ9).
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Correctness of the algorithm is specified by the following:

at−ℓ0 ∧ reach(root, x) ∧ x 6= root → 0 (at−ℓ11 → visited[x] > 0) (S1)

at−ℓ0 ∧ y ∈ Children[x] → 0 (at−ℓ11 → y ∈ Children[x]) (S2)

at−ℓ0 → 1 (at−ℓ11) (L1)

where x and y are generic nodes.

Property (S1) states that when the algorithm terminates, every node

that is initially reachable from root is visited; (S2) states that when the

algorithm terminates, each edge is in its initial orientation; (L1) states that

the algorithm eventually terminates.

Suppose we wish to apply the algorithm to trees with unbounded arity.

By reversing the edges directions, such trees will be transformed into an

single-parent structures, letting each child point to its parent. Since edges

are chosen non-deterministically, without assuming any order, the algorithm

fits well into our framework.

In the transformed representation, instead of having the set Children[x]

pointing from node x to its descendants, each descendant i points, by link [i],

to its parent x.

The transformed algorithm is described in Fig. 7.8.

The correctness of the transformed algorithm can described by the fol-
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ℓ0 : x := root

ℓ1 : Repeat


ℓ2 : child := ǫ k . link[k] = x ∧ visited[k] = 0
ℓ3 : If child = 0 then

ℓ4 : child := ǫ k . link[k] = x ∧ visited[k] = 1
ℓ5 : If child > 0 then



ℓ6 : link [child] := 0
ℓ7 : link [x] := child

ℓ8 : visited[x] := visited[child] + 1
ℓ9 : x := child







ℓ10 : Until child = 0
ℓ11 :

Figure 7.8: Algorithm Traversal-by-Reversal for the single-parent heap
representation

lowing:

at−ℓ0 ∧ reach(root, x) ∧ x 6= root → 0 (at−ℓ11 → visited[x] > 0) (S1)

at−ℓ0 ∧ link [y] = x → 0 (at−ℓ11 → link [y] = x) (S2)

at−ℓ0 → 1 (at−ℓ11) (L1)

7.5.2 Ordered Trees

The transformation in the previous section was enabled due to the fact that

the trees (or there, general singly-linked structures) have unordered children,

and each node is accessed by the choose operator, regardless of its “birth

order.”

This is, however, not always the case. Consider a variant of the previous

algorithm, presented in Fig. 7.9, where nodes are accessed according to their

order.
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ℓ0 : (x, done,Children[root]) := (root, 0,Children[root] ∗ (root))
ℓ1 : Repeat



ℓ2 : (child,Children[x]) := (hd(Children[x]), tl(Children[x]))
ℓ3 : If child = x then[

ℓ4 : done := 1
]

else[
ℓ5 : Children[child] := Children[child] ∗ (x)
ℓ6 : x := child

]




ℓ7 : Until done=1
ℓ8 :

Figure 7.9: Algorithm Ordered-Traversal

In this presentation, each node x is associated with Children[x] which is

a list (rather than a set) of descendants. In statement ℓ0, x is initialized to

the start node root, and node root is appended to the end of its own children

list. We use the fact that in a legitimate graph no node is a child of itself, and

this special self-loop is created in order to detect termination of the search.

Statement ℓ2 removes the first child from the children list of x and places it

in child. If child equals x then the search should terminate, and we set done

to 1. Otherwise x is appended to the end of the children list of node child

at statement ℓ5. This completes the reversal of the edge x → child. Finally,

x is set to child to indicate that this is where the search will continue. The

algorithm terminates when a node is encountered that is its own first child,

which happens only on coming back to node root after having visited all

nodes that are reachable from root.

We encode the unbounded arity tree as a binary tree, as suggested by
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Figure 7.10: An Ordered Unbounded Tree and its Binary Encoding

Knuth [Knu69], and reverse the orientation of links so as to have a single-

parent heap. Formally, consider a (directed) tree, where each node has un-

boundedly many ordered children. For simplicity of exposition, assume that

if a node has a (k + 1)st child, then it also has a kth child. We add a

new bool array type, whose range is {p, s}, where the value p denotes that

the link outgoing the node is a parent link, and s that the link outgoing

the node is a sibling link. If, in the original tree, a node x has children

y1, . . . , yk, then the transformed model includes the following: type[y1] = p

and link [y1] = x, denoting that y1 has a parent link leading into x. For

i = 2, . . . , k, type[yi] = s and link [yi] = yi−1, denoting that yi has a sibling

link leading into yi−1. Fig. 7.10 shows an example of the transformation,

with which we can now treat ordered unbounded trees as binary trees and

apply the methods we apply to single-parent heaps to them. For example,

the algorithm of Fig. 7.9 now becomes the algorithm in Fig. 7.11, with prop-

erties similar to (S1), (S2), and (L1). The algorithm of Fig. 7.11 uses the

procedure append child(x, child), presented in Fig. 7.12, which appends node

child to the end of the children list of node x.

The algorithm of Fig. 7.11 and procedure append child both use the func-



Chapter 7. Complex Heap Shapes 169

ℓ0 : (x, done) := (root, 0); append child(root, root)
ℓ1 : Repeat



ℓ2 : child := down link(x, p)
ℓ3 : sister := down link(child, s)
ℓ4 : If sister > 0 then[

ℓ5 : (link [sister], type[sister]) := (x, p)
]

ℓ6 : If child = x then[
ℓ7 : done := 1

]

else[
ℓ8 : append child(child, x)
ℓ9 : x := child

]




ℓ10 : Until done = 1
ℓ11 :

Figure 7.11: Algorithm Ordered-Traversal over a single-parent heap
representation

tion down link(n, t), for node n and value t ∈ {p, s}, as an abbreviation for

down link(n, t) = choose i. link [i] = n ∧ type[i] = t

down link(n, t) returns 0 if there exists no node i such that link [i] = n ∧

type[i] = t.

7.6 Composite Data Structures

Up to this point, it has been assumed that the data associated with heap

nodes is of some constant (non-parameterized) domain. This precludes the

modeling of structures that are embedded as data referenced by “enclosing”

structures, for example a list of lists. This section advances the methodology
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procedure append child(x, child)


m0 : daughter := down link(x, p)
m1 : If daughter = 0 then

m2 : (link [child], type[child]) := (x, p)
else


m3 : next := daughter

m4 : While next > 0 do[
m5 : last := next

m6 : next := down link(last , s)

]

m7 : (link [child], type[child]) := (last , s)







Figure 7.12: Procedure append child

by accommodating multi-heap structures that refer to one another. The

multi-heap structures have a single restriction – the underlying graph of the

heap structure contains no non-trivial cycles. Such a structure is referred to

as cascading. Each of the heaps my be single-parent or non-sharing multi-

linked. A typical such structure is a multi-linked “main” heap and a stack

or a queue (or both) pointing to main heap elements.

The extension of the structure allows to model structures such as B+

trees, lists of lists, etc. Consequently, we can automatically verify algorithms

such as DFS, BFS, insertions and deletion in B+ trees, and more. This is

achieved by expressing these structures as cascading heaps. For example,

the verification of DFS uses a predicate that roughly says “every node on the

stack points to a heap node that is not reachable from node r.”
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7.6.1 Cascading Heap Systems: An Example

To illustrate the model, we encode a depth first traversal on single-parent

(main) heaps using a stack. We show how a stack can be encoded as a

single-parent heap where stack nodes point into the main heap nodes, thus

resulting in a cascading heap structure.

Consider a stack of at most n2 “stack nodes,” and a main heap with at

most n1 “main nodes.” A stack node j may point, by StackNext [j], to a stack

node, and by StackData[j] to a main node. Both pointers are initially 0. In

addition, stack node j has a boolean flag allocated [j] that is initially False,

denoting that it is not allocated. We also assume a stack node variable stack

pointing to the stack head, which is initially 0. The implementation of stack

push and pop operations is given in Fig. 7.13. For a stack push one must

first ensure that there is a free stack node and, if so, update stack to point to

it. With this data definition, it is possible to encode a depth first traversal

over a non-sharing multi-linked main heap, as given in Fig. 7.13(a). The

cascading single-parent encoding of the algorithm is given in Fig. 7.14.

The specification of Depth-First-Traversal is given by

(reach(x, t) ∧ 0 ¬error) → 0 (at−ℓ9 → visited[t])

where t refers to a generic node (modeled by an auxiliary variable). To

verify that Depth-First-Traversal meets its specification, we have used
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the following predicate base:





(x = 0), parent∗(x, 0), (t = x), parent∗(t, x),

∀i . (StackNext∗(stack , i) → parent∗(StackData[i], 0)),

∃i . (StackNext∗(stack , i) ∧ parent∗(t, StackData[i]))

StackNext∗(stack , 0), (StackData[stack ] = x)





where t refers to a generic node (modeled by an auxiliary variable).

7.6.2 Data Types

The cascading heap model results from an extension to the type system that

allows for multiple parameterized types, coupled with an extension to the

assertional language. We first present the type system.

Let n > 0, and assume n + 1 types, type0, . . . , typen, where type0 is the

boolean type (or any finite type), and for each i > 0, type i ranges over

[0i..h
mi

i ]. The n-tuple (m1, . . . ,mn) is called the parameter of the system.

A cascading heap system consists of a family n of single-parent heaps, say

H1, . . . , Hn, where for every i > 0, heap Hi’s nodes can point to a node of

any Hj, for j ≤ i, as well as have some type0 data. Formally, a cascading

heap system may have the following types of variables:

• For every i, 0 ≤ i ≤ n, type i scalar variables;

• For every i and j, 0 < j ≤ i ≤ n, arrays of type type i 7→ typej;

• For every i, 0 < i ≤ n, arrays of type type i 7→ type0.
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For simplicity of exposition we assume that n = 2. The definitions and

results can be easily extended to general case. We refer to type0 as bool, to

type1 as m- (for “main-heap”), and to type2 as a- (for “auxiliary-heap”). An

example of a cascading heap system is the system of Subsection 7.6.1, where

the “stack nodes” there are a-nodes here. The examples of previous sections

could all be categorized as 1-heap systems, consisting of type0 (bool) and

type1 (index) scalars, as well as type1 7→ type0 and type1 7→ type1 arrays.

7.6.3 Assertional Language

For every i ∈ {1, 2}, a type i term is the constant 0i, a type i variable, or Z[t],

where Z is a type i 7→ type i array and t is a type i term.

The language of restricted EA-assertions of the previous section is ex-

tended as follows, for i ∈ {1, 2} and a type2 7→ type1 array C:

• Unquantified atomic assertions and preservation assertions may freely

(though in a type-consistent manner) contain variables of the extended

type system;

• Z-assertions are allowed that have the form ∀y . (Z[C[y]]) 6= u ∨

B(C[y]), where u is a type1 term, Z is a type2 7→ type1 array.

• TCF-assertions have the extended form ∀~y . P (~u, ~y) where ~u and ~y are

disjoint sets of type1 and type2 variables, and for a pair of type1 7→ type1

and type2 7→ type2 arrays Z1 and Z2, P (~u, ~y) is a positive combination

of formulae of the form ¬Z∗
i (u, f(y)) or B(y)) where i ∈ {1, 2}, u is
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a type i variable, f(y) is either the term y or C[y], and B is a boolean

combination of formulae of the form Bk[y] where Bk is a bool array.

7.6.4 Cascading Heap Systems: A Small Model Prop-

erty

As in Section 7.2, in order to use cascading heap systems within our abstrac-

tion framework, we must show a small model property for the new assertional

language. To construct a small model for a cascading heap systems, we re-

duce each individual heap as suggested in Section 7.2, and restrict to dealing

with the “connecting” arrays, i.e., the arrays that connect the heaps to one

another. As before, we restrict discussion to the 2-heap system case, and

assume a single array, C, that connects them. That is, C : type2 7→ type1 and

V consists of V1 (the variables that belong exclusively to heap 1), V2, as well

as C and C ′.

Let ϕ be a restricted A-assertion over V . Define the set of terms in T 1
ϕ

and T 2
ϕ as in Section 7.2. To form Tϕ, we add to the above sets the minimal

set of terms such that for every free term t, if C[t] (resp. C ′[t]) is in Tϕ, then

parent [t] (resp. parent ′[t]) is in Tϕ.

For every i = 1, 2, define fi(ϕ) = |T i
ϕ|+ max(1, |Ri

ϕ|). Let M be a model

of ϕ of size greater than (f1(ϕ), f2(ϕ)). We reduce M to a model M of size no

greater than (f1(ϕ), f2(ϕ)) by reducing each heap according to the reduction

of Definition 7.1. As for the arrays C and C ′, we use the auxiliary functions
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ζ, ζ ′ : N2 ∪ S2 → [0..M [h1]] as follows:

ζ(n) =





M [C](rZ(n)), If n has a Z-representative

M [C](n), If n ∈ S2 or n has no Z-representative

and ζ ′ is defined like ζ, with every symbol C substituted by C ′, and Z

substituted by Z ′. Let M be the set of new type1-terms resulting from

applying ζ and ζ ′ to N2 and S2. I.e.,

M = (ζ(N2 ∪ S2) ∪ ζ
′(N2 ∪ S2)) − (N1 ∪ S1)

and assume M = {mβ1+1, . . . ,mδ}. We define mappings Γ1 : N1∪S1∪M 7→

[0..δ] and Γ2 : N2 ∪ S2 7→ [0..β2] in the obvious way.

The reduced model M is constructed as follows:

• type1, type2, and bool variables, and type2 7→ type2 and type2 7→ bool

arrays are interpreted as in Definition 7.1;

• For any j ∈ [02..β2], M [C](j) = Γ1(ζ(aj)), and M [C ′](j) = Γ1(ζ
′(aj));

• For any j ∈ [01..α1]∪[β1+1..δ] and unprimed type1 7→ type1 array Z and

type1 7→ bool array B, M [Z](j) = Γ1(M [Z](rZ(mj))) and M [B](j) =

M [B](rZ(mj)), if a Z-representative exists, or M [Z](j) = Γ1(e
Z(mj))

and M [B](j) = M [B](eZ(mj)) otherwise; For primed array Z ′ and B′

the reduction is similarly defined.

• For any j ∈ [α1 + 1..β1], and type1 7→ type1 array Z and type1 7→ bool
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array B, M [B](j) is defined, as in Definition 7.1, to be M [B](mj).

Similarly, M [Z](j) is defined to be Γ(M [Z]ℓ(mj)) for the minimal ℓ ≥ 0

such that M [Z]ℓ(mj) ∈ S1.

Theorem 7.15 (Cascading Small Model Theorem). Let ϕ be a restricted

EA-assertion. Then ϕ is satisfiable iff it is satisfiable by a model of size no

greater than (f1(ϕ), f2(ϕ)).

In addition to Properties P0–P3 for each heap, we also have:

Observation 7.16. The following properties are valid:

Q0. For a type2 node ai such that ai ∈ S2 or ai has no Z- (resp. Z ′-)

representative, M [C](ai) (resp. M [C ′](ai)) is in N1 ∪ S1 ∪ M, and

Γ1(M [C](ai)) = M [C](i) (resp. Γ1(M [C ′](ai)) = M [C ′](i));

Q1. For every i and j that are both in [0..α1]∪[(β1+1)..δ], for every type1 7→

type1 array Z, M [Z](ni) = nj =⇒ M [Z](i) = j and M [Z](i) =

j =⇒ M [Z]∗(ni, nj).

Q2. For every i and j that are both in [01..α1]∪[(β1+1)..δ] or both in [(α1+

1)..β1], for every type1 7→ type1 array Z, M [Z]∗(ni, nj) ⇐⇒ M [Z]∗(i, j).

We can now prove Theorem 7.15.

Proof. As in the proof of Theorem 6.8 we proceed by induction on the struc-

ture of ϕ. Here we deal with Z– and TCF-assertions, since the proof of

Theorem 7.2 holds for other types of subformulae.
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Assume that ψ is a Z-assertion of the form ∀y . Z[C[y]] 6= u ∨ B(C[y]),

for which we show that, under the assumption that M |= ψ, M |= ψ Since

u is a free term, it follows that M [u] ∈ N , hence, M [u] = ni for some

i ≤ α1. Assume, by way of contradiction, that M 6|= ψ. That is, for some

j ∈ [02..β2], M [Z](M [C](j)) = i and M [B](M [C](j)) = False. Since i ≤ α1,

then we have ℓ = M [C](j) ∈ [0..α1] ∪ [(β1 + 1)..δ]. Thus, nℓ has a Z-

representative. However, since M |= ψ, and since M [Z](rZM(nℓ)) = M [u], it

follows that M [B](rZM(nℓ)) = True. From the construction it now follows

that M [B](M [C](j)) = True, contradicting the assumption that M 6|= ψ.

If ψ is a Z-assertion of the form ∀y . Z[Y ] 6= u ∨ B(y) where u is a

type1-variable, then the claim follows, in addition to the model construction,

from property Q1. For other forms of Z-assertion, the proof of Theorem 7.2

holds in the new model reduction.

Assume now that ψ is a tcf-assertion of the form ∀~y . P (~u, ~y) over the

type1 7→ type1 and type2 7→ type2 arrays Z1 and Z2, respectively. Generaliz-

ing the technique in the proof of Theorem 6.8, we consider a pair of arbitrary

consistent assignments η1 and η2 to type1 and type2 ~y-variables, that respec-

tively assign type1 values in the range [01..δ] and type2 values in the range

[02..β2]. For convenience, we map η1 to the assignment η1, which ranges over

N1 ∪ S1 ∪M, and η2, which ranges over N2 ∪ S2, as follows:

η2(y) =

{
rZ2(Γ−1

2 (η(y))), If η(y) ≤ α2 and Γ−1
2 (η(y)) has a Z2-representative

Γ−1
2 (η(y)), otherwise
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η1(y) =





rZ1(Γ−1
1 (η(y))), If η(y) ≤ α1 ∨ β1 < η(y) and

Γ−1
1 (η(y)) has a Z1-representative

Γ−1
1 (η(y)), otherwise

We define the augmented models Mη and Mη to be (M, η) and (M, η1, η2),

respectively. Consider a clause φ of P . Assuming that Mη |= φ, we need to

show that Mη |= φ.

If φ is the formula B(y), then by the same reasoning as in the single-

heap case, it follows that Mη |= φ, as is true if φ is either of the formulae

¬Z∗
2(u, y) and ¬Z∗

1(u, y). Thus we focus on the case that φ is ¬Z∗
1(u,X[y]),

implying that y is a type2-variable. Let iy = η[y] and jy = M [X](iy). If

either iy > α2 or aiy has no Z2-representative, then from property Q0 it

follows that Γ1(Mη[X[y]]) = Γ1(M [X](aiy)) = Mη[X[y]] = jy. Since Mη[u]

is an N1-node, then it follows from property Q2 that Mη |= Z∗
1(u,X[y]) iff

Mη |= Z∗
1(u,X[y]).
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type T2 : [0..H2] type T1 : [0..H1]
stack : T2 x : T1

StackNext : T2 7→ T2 visited : T1 7→ bool

allocated : T2 7→ bool children,next : T1 7→ T1

StackData : T2 7→ T1 error : bool

init ¬error ∧ (∀i : T1 . ¬visited[i]) ∧
(∀j : T2 . ¬allocated [j])

ℓ0 : stack := 0
ℓ1 : push(x, stack)
ℓ2 : while stack 6= 0



ℓ3 : pop(x, stack)
ℓ4 : visited[x] := True

ℓ5 : x := children(x)
ℓ6 : while x 6= 0[

ℓ7 : push(x, stack)
ℓ8 : x := next(x)

]




ℓ9 :
(a) Depth-First-Traversal

pop(x, stack) ::[
m1 : x := StackData[stack ]
m2 : stack := StackNext [stack ]

]

(b) Stack pop operation

push(x, stack) ::


Let j = choose u . ¬allocated [u]
in


m1 : If j 6= 0 then


m2 : allocated[j] := True

m3 : StackNext [j] := stack

m4 : StackData[j] := x

m5 : stack := j




m6 : Else error := True







(c) Stack push operation

Figure 7.13: A Cascading Heap System
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type T2 : [0..H2] type T1 : [0..H1]
stack : T2 x : T1

StackNext : T2 7→ T2 visited : T1 7→ bool
allocated : T2 7→ bool parent : T1 7→ T1

StackData : T2 7→ T1 type : T1 7→ {children, next}
error : bool

init ¬error ∧ (∀i : T1 . ¬visited[i]) ∧ (∀j : T2 . ¬allocated [j]) ∧
(∀i, j : T1 . ¬(i 6= j ∧ parent [i] = parent [j] ∧ type[i] = type[j]))

ℓ0 : stack := 0
ℓ1 : push(x, stack)
ℓ2 : while stack 6= 0



ℓ3 : pop(x, stack)
ℓ4 : visited[x] := True

ℓ5 : x := choose j . parent [j] = x ∧ type[j] = c
ℓ6 : while x 6= 0[

ℓ7 : push(x, stack)
ℓ8 : x := choose j . parent [j] = x ∧ type[j] = s

]




ℓ9 :

Figure 7.14: Algorithm Depth-First-Traversal for the Cascading single-
parent Representation



Chapter 8

Conclusion

This dissertation opens with a presentation of ranking abstraction, a method

that combines predicate abstraction, program augmentation, and model-

checking, with the purpose of verifying safety and liveness properties of

sequential and concurrent systems. It extends the method of abstraction

refinement to the domain of ranking functions, allowing for an automatic

counterexample-driven process that incrementally eliminates not only spu-

rious traces, but spurious cycles as well. Having defined and demonstrated

the method, it is then shown that in most cases, following a successful veri-

fication effort, the model checker can be utilized to extract a proof that the

system meets its specification.

While the ranking abstraction method is domain-neutral, this dissertation

focuses on its application to shape analysis problems, i.e., verification of

programs that requires modeling of deep heap properties. To this end an
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automatic abstraction computation method is shown that depends only on a

symbolic model checker, or alternately a SAT solver. While numerous shape

analyses have been proposed in the past, this method is novel in its ability

to deal with arbitrary liveness properties.

Finally, the limitations of the abstraction method are transcended by a

combination of structure simulation as well as composition of separate heaps

into cascading structures. The former allows for representation of sharing-

free structures (e.g., trees), and the latter allows to model composite data

structures as in the case where an “auxiliary” structure contains pointers

into a “main” structure.

Our abstraction computation method relies on decidability results, in

the form of small model properties, for a family of restricted yet sufficiently

powerful combinations of first order logic with transitive closure. Two such

decidable logics are presented: One for expressing mutation and abstrac-

tion of singly-linked structures, and another for multi-linked but sharing-free

structures.

Future Work

The proof extraction framework discussed above is limited in that it does not

deal with systems with native compassion requirements (i.e., compassion re-

quirements beyond what is contributed by the ranking augmentation). Thus

a natural direction for future extension of this method is to allow for systems
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with native compassion.

In the context of abstraction of heap systems, we would like to explore

optimizations to our current (BDD-based) method, based on SAT or SMT

(e.g., [BB04]) solvers. Long term, we wish to expand as much as possible

the class of structures that can be modeled, which requires investigation of

richer transitive closure logics with small model properties. Finally, predicate

abstraction as defined here is limited in the shape of the invariants it can

express. We would like to explore richer abstractions in order to generate

quantified invariants. To this end we would combine the notion of user-

provided predicates, with invariant generation methods for parameterized

systems [APR+01], e.g., as in [LB04].
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