
Real/Expr : Implementation of an Exact

Computation Package

Kouji Ouchi

January 16, 1997

Abstract

The Real/Expr package is a C++ project to support the precision-driven

approach to exact computation of geometric algorithms. The package is built

on top of the class Real that encompasses a variety of numerical representations.

The class Expr captures a set of algebraic expressions on which any comparison

can be done precisely.

The software libraries described here are available via the Web page

http://simulation.nyu.edu/projects/exact/.

1 Introduction

Robust implementation of geometric algorithms is di�cult to achieve. The main prob-
lem arises from the use of �xed-precision arithmetic such as machine oating-point
arithmetic. To overcome this, the exact computation method which uses arbitrary-
precision arithmetic has been proposed. However, its naive interpretation, namely,
computing all numerical quantities exactly, is too ine�cient. Notice that what needs
to be exact is a combinatorial structure; but the numerical quantities associated with
the combinatorial structure need not be exact. This observation suggests another in-
terpretation of the exact computation, precision-driven computation, where numerical
quantities will be computed to be precise enough so that decisions for the related
combinatorial structure can be made exactly. As a tool for this approach of the exact
computation, we would like to introduce the Real/Expr package in which users can
perform the precision-driven computation over algebraic expressions.

Geometric algorithms characteristically involve geometric data structures. By a
geometric data structure, we mean a combinatorial data structure together with nu-
merical quantities. Moreover, there are implicit consistency constraints governing the
relation between the combinatorial structure and its associated numerical quantities.
This means that perturbing the numerical values without taking into account the
combinatorial structure can lead to qualitatively di�erent or inconsistent states, which
often result in catastrophic errors in algorithms.

Many researchers have devised methods to address non-robustness problems within
the �xed-precision arithmetic. We believe that non-robustness in geometric algorithms
is inherent when one is committed to �xed-precision, and the best general policy
for attacking non-robustness is the exact computation, to compute geometrical data
structures exactly.

Exact computation has a naive interpretation, namely, to compute every numerical
quantity exactly. This surely guarantees the robustness of algorithms. However, it is
too ine�cient in general because occasionally huge numerical quantities must be dealt
with.

We will take another approach, where computing exactly is taken to mean the
combinatorial structure must be mathematically correct, but the associated numerical
quantities may be approximations that are consistent with the combinatorial structure.
This interpretation of exact computation could be realized with much less expensive
cost than the naive one.

Now, we compare �xed-precision arithmetic and arbitrary-precision arithmetic.
In �xed-precision arithmetic (e.g. machine oating-point arithmetic), all the nu-

merical objects are limited to some universal �xed-precision. The arithmetic opera-
tions are fast, and often there are hardware supports. Since the size of an object is
�xed, the memory allocation for a brand new object can be statically done.

In arbitrary-precision arithmetic, there is no limitation for precisions of numerical
objects (o�cially, of course. In practice, there is a limitation based on the limited
available resources, etc). The arithmetic operations could be done without causing
overow or underow, but the speed is slow. From the view point of complexity, if the
size of objects becomes larger, the cost for the operations grows at least proportionally
to the size of objects (usually, much worse). At execution time, the memory allocation

1

for a newly constructed object is a much more serious problem: since the size of an
object is unknown, the memory allocation for the object should be done dynamically.

We must use arbitrary-precision arithmetic. So, somehow we would like to limit
the growth of the size of numerical objects. To achieve this goal, we introduce an
arbitrary-precision oating-number representation in the following format:

(mantissa � error)� BASEexponent;

where mantissa and exponent are integers of arbitrary length and error is a non-
negative integer. A triple hmantissa; error; exponenti is interpreted as any (real alge-
braic) number in the intervalh

(mantissa� error)� BASEexponent; (mantissa + error)� BASEexponent
i
:

Obviously, any (�xed-precision) oating-point number or an integer of arbitrary length
can be represented by some arbitrary-precision oating-point number. But, we need
more: to perform the exact computation, we must deal with rational numbers, or
much more generally, algebraic numbers. Here, an algebraic number is de�ned to be a
root of some integer coe�cient polynomial. Any rational or algebraic number can also
be represented by our arbitrary-precision oating-point number representation with
an error component error � 0. Note that the correspondence between rational (or
algebraic) numbers and our arbitrary-precision oating-point representations is not
bijective. In fact, any arbitrary-precision oating-point representation with non-zero
error contains in�nitely many rational (or algebraic) numbers.

Using this arbitrary-precision oating-point number representation, we could re-
alize our interpretation of exact computation with reduced size of numerical objects.
For example, to determine the sign of a non-zero rational number, we simply approxi-
mate it in terms of our arbitrary-precision oating-point representation which does not
contain 0. If the rational number has a numerator and a denominator of length O(n)
and O(d) bits, respectively, then we need consider a arbitrary-precision oating-point
number whose mantissa is of length 1 bit and exponent is of length O(lg jn� dj) bits.

Furthermore, to minimize ine�ciency, we restrict the range of error so that it
�ts some �xed-precision number representation (e.g. machine unsigned long integer).
Whenever an object happens to have error which is out of range, we truncate error as
well as mantisaa so that error will fall into the standard range. This way, we prevent
mantissa from growing rapidly.

Given this arbitrary-precision oating-point number representation, we now in-
troduce our Expr package which embodies our interpretation of exact computation:
\precision-driven computation". The Expr package captures a set of algebraic expres-
sions involving +, �, �, = and p over rational numbers. An expression is expressed

as a rooted DAG (directed acyclic graph), and maintains an approximation of the ex-
pression. When the precision of the root is speci�ed, we recursively drive the precision
of each of the children nodes, so that if the subexpression rooted at the child node is
approximated to that precision then we could get the approximation of the root to the
required precision. For these approximations, we use our arbitrary-precision oating-
point numbers, and thus, Expr package returns the interval to which the value of the

2

expression belongs while the width of the interval is controlled by the speci�ed preci-
sion. The precision could be set explicitly by users, or internal function calls such as
calls to the equality operators.

Many fundamental predicates of geometric algorithms are expressed by algebraic

expressions. For example, \P is left of the directed line segment
�!
QR" is expressed as a

sign of the signed volume (the determinant of the matrix whose entries are coordinates
of P , Q and R and 1's) of 4PQR. For these predicates, our Expr package is best
applicable. We construct the expression for the signed volume, and approximate its
value precisely enough so that we can determine its sign; but we never compute the
value itself.

In this paper, we describe the design, the algorithms, and the implementation
techniques of our package.

2 Overview

In this section, we introduce the basic elements in our Real/Expr package and raise
the issues to be addressed in this paper.

The package is written in the C++ language, and is realized as a set of C++ class
libraries. There are three major classes: the class Expr, the class Real and the class
BigFloat.

2.1 The Class Expr

The class Expr captures a set of algebraic expressions.
Formally, an instance of Expr is a rooted DAG where each leaf can store some value

in Q and each internal node represents one of the operations +, (unary and binary)
�, �, = and p . If every leaf of the tree rooted at e stores a value in Q then e can be
viewed as an element of a real algebraically closed �eld D which contains Q. We call
this element in D the exact value of e. Note that the exact value of e is not a data
member of Expr.

Each instance e of Expr maintains some real value x and precision p such that x
approximates the exact value of e to precision p. The precision p is set explicitly by
the user, or implicitly by the package. For example, the comparison operation e > 0
will set the necessary precision p to determine the sign of the exact value of e. To get
an approximation x of e to p, we drive the precision top-down from the node e to its
descendent leaves, and collect approximations bottom-up from leaves to the node e. In
this case, the precision of an instance is set by its parent node. Setting the necessary
precisions is the main algorithmic issue of Expr.

Another important issue is the semantics of Expr. We would like users to use our
package as a tool for symbolic computation. For this reason, we de�ne the special
semantics for assignments that is di�erent from the standard grammar of C++. Since
the \pass-by-value" rule cannot be taken, the realization of our scheme is a non-trivial
issue in the implementation of Expr.

3

2.2 The Class Real

Instances of the class Real are used for the approximate values of instances of Expr
and the exact values in leaves of some Expr trees.

The class Real encompasses a variety of number representations: machine integers
(int, long), machine (double-precise) oating-point numbers (double), integers of
arbitrary length (BigInt) and rational numbers (Rational), as well as our arbitrary-
precision oating-point representation BigFloat. Currently, we use GNU's Integer

and Rational for BigInt and Rational, respectively.
The main algorithmic issue here is how to de�ne the operations +, (unary and

binary) �, �, = and p . More speci�cally, the way to determine the type of the result
of binary operators applied to arguments of di�erent types and the way to de�ne
operations without causing overow or underow become important topics.

The implementation issue is how to realize the class that has an ability to capture
various types. We would like to implement Real operations in an object-oriented way,
that is, operations are implemented so that, given speci�c operand(s), the compiler
can choose the correct algorithm depending on the type(s) of the operand(s).

2.3 The Class BigFloat

The class BigFloat realizes arbitrary-precision oating-point number representation
with the error component. Instances of BigFloat are intended to approximate real
numbers. If an instance of BigFloat has a non-zero error then it is actually an interval
and approximates any real number which belongs to that interval.

There are two algorithmic issues for BigFloat.
One is the design of an approximation algorithm: given a rational number and

precision, �nd a BigFloat which approximates the rational number to that precision.
The other is the design of the arithmetic operations and the function p for

BigFloat. Since an instance of BigFloat represents an interval, the operations must
be de�ned so that they are valid for any real number in that interval.

The class BigFloat has a member mantissa which is declared to be an integer of
arbitrary length. Accessing mantissa slows down the execution speed of the package
seriously. We show how the use of the \letter-envelope" technique helps to reduce
unnecessarily accesses to the mantissa components.

3 BigFloat

In this section, we describe our arbitrary-precision oating-point package BigFloat

implemented as a class library in C++. In addition to the standard libraries of C++,
we assume that we have a class library of integers of arbitrary length such as GNU's
Integer.

Some basic ideas are described in [DY93].

4

3.1 De�nition

Fix any positive integer c and let B = 2c. For the implementation, it is convenient
to set c as follows; if the largest unsigned long is 2L � 1 then c =

j
L
2

k
� 2, e.g.,

L = 32) c = 14.
Each BigFloat number is a triple hm; err; expi where
� mantissa m 2 Z= f0;�1;�2; : : :g,
� error err 2 N = f0; 1; 2; : : :g,
� exponent exp 2 Z.

We say the BigFloat hm; err; expi is error-normalized (or simply normalized) if

err 2 f0; 1; : : : ; 4B � 1g :
Unless otherwise speci�ed, we assume BigFloat numbers are normalized.

BigFloat numbers are intended to be approximations for real numbers. A real
number X is said to belong to a BigFloat number hm; err; expi if

X 2 [(m� err)Bexp; (m+ err)Bexp] :

Let (r; a) 2 N � Z. A BigFloat hm; err; expi is said to have an error-bound [r; a] if

err � jmj 2�r
OR

errBexp � 2�a:

3.2 Approximation

Let X be a real number and (r; a) 2 N � Z.
We say a real number cX approximates X to precision [r; a] and write

cX �= X[r; a]

if ���X � cX��� � max
n
jXj 2�r; 2�a

o
:

Intuitively, this notation suggests that cX is the \output" for input X and [r; a]. Here,
r and a specify relative and absolute bounds on the error.

We say a BigFloat x = hmx; errx; expxi approximates X to precision [r; a] and
write

x �= X[r; a]

if X belongs to x and

errxB
expx � max

n
jXj 2�r; 2�a

o
:

If x approximates X then mxB
expx �= X[r; a], i.e.,

jX �mxB
expxj � max

n
jXj 2�r; 2�a

o
:

5

3.2.1 Approximation Algorithm

GivenR 2 Q and (r; a) 2 N�Z, we would like to compute a BigFloat x = hmx; errx; expxi
with the error-bound [r; a] such that R belongs to x. Suppose

R = N
D

where (N;D) 2 Z� Z6=0. Then, x will be computed by the function div (N;D; r; a).
We now describe the algorithm for div (N;D; r; a).
If N = 0 then it returns the BigFloat zero:

mx 0

errx 0

expx 0:

Now, assume N 6= 0. Basically, the mantissa mx is computed by performing the
division jN j = jDj (up to the sign of ND denoted sgn (ND)). The mantissa mx is
an integer which must be long enough to have the required error-bound. Thus, we
actually shift jN j left or right and invoke the integer division so that we may control
the length of the quotient. Shifting must be done chunk by chunk, that is, c bits by c
bits.

First, suppose jN j is shifted left s � 0 chunks. Then, the integer division jN jBs= jDj
yields the equality

jN jBs =
� jN jBs

jDj
�
jDj+ remainder where 0 � remainder < jDj:

Thus� jN jBs

jDj
�
B�s �

���N
D

��� = �� jN jBs

jDj
�
+ remainder

jDj
�
B�s <

�� jN jBs

jDj
�
+ 1

�
B�s:

Note remainder = 0 i� jDj divides jN jBs. Hence, we set

mx sgn (ND)

� jN jBs

jDj
�

errx
(

0 if jDj divides jN jBs

1 otherwise

expx �s:

Next, suppose jN j is shifted right t > 0 chunks. In this case, jN j is actually

truncated and the the quotient
j jN j
jDjBt

k
of the integer division

j jN j
Bt

k
= jDj satis�es

� jN j
jDjBt

�
� jN j

jDjBt <
� jN j
jDjBt

�
+ 1:

Thus � jN j
jDjBt

�
Bt �

���N
D

��� <
�� jN j
jDjBt

�
+ 1

�
Bt:

6

Hence, we set

mx sgn (ND)

� jN j
jDjBt

�
errx 1

expx t:

Note errx is always set to be 1 in this case. We could have a slightly more precise algo-
rithm if the integer division

j jN j
Bt

k
= jDj (i.e. truncate jN j by t chunks before dividing by

jDj) is replaced by the integer division jN j = jDjBt (i.e. divide jN j by jDjBt). Then,
like the previous case, errx might be set to be 0 if jDjBt divides jN j. Unfortunately,
this is ine�cient, since we must perform the integer division with larger operands.

It is convenient to put two cases together. We are able to do so by setting s = �t
in the �rst case. Therefore, we set

mx sgn (ND)

� jN j
jDjBt

�
errx

(
0 if t � 0 and jDj divides jN jB�t

1 otherwise

expx t:

Now, we need to determine the value of t (may or may not be non-negative) which
satis�es

errx � jmxj 2�r OR errx 2
ct � 2�a: (1)

Since errx = 0 OR 1, a su�cient condition for (1) is

1 �
� jN j
jDj2ct

�
2�r OR 2ct � 2�a:

We claim that it su�ces to set

t max
���r+blgjN jc�blgjDjc�1

c

�
;
j�a
c

k�
: (2)

To see that (2) is correct, �rst, suppose t =
j�r+blgjN jc�blgjDjc�1

c

k
. Then

c t � �r + blg jN jc � blg jDjc � 1

� �r + blg jN j � lg jDjc
= �r +

j
lg
���N
D

���k :
Since r � 0, c t �

j
lg
���N
D

���k � lg
���N
D

��� or equivalently
jN j
jDj2ct � 1:

It is not hard to show that lg bxc � blg xc 8x � 1. Using this fact,

r �
j
lg
���N
D

���k� c t =
�
lg
jN j
jDj2ct

�
� lg

� jN j
jDj2ct

�

7

or equivalently

1 �
� jN j
jDj2ct

�
2�r:

Next, suppose t =
j
�a
c

k
. Immediately

2ct � 2�a:

3.2.2 Properties

Fix R 2 Q and (r; a) 2 N � Z. Let x = hmx; errx; expxi be the BigFloat computed by
our approximation algorithm on input R and [r; a].

Proposition 1

1.

jmxjBexpx � jRj :

2.

x �= R[r; a]:

In particular, mxB
expx �= R[r; a], i.e., jR�mxB

expxj � max fjRj 2�r; 2�ag.

Proof.

1. The claim is obvious, since

jmxj =
� jRj
Bexpx

�
:

2. By de�nition
errxB

expx � max
n
jmxjBexpx 2�r; 2�a

o
;

and we have just seen jmxjBexpx � jRj.
Q.E.D.

Proposition 2 If mx 6= 0 then

blg jmxjc + c � expx = blg jRjc :

Proof. If mx 6= 0 then R 6= 0. Thus, the right hand side of the formula is well-
de�ned, and jmxj =

j jRj
2c�expx

k
. Hence

blg jmxjc =
�
lg
� jRj
2c�expx

��
=

�
lg

jRj
2c�expx

�
= blg jRjc � c � expx

where the second equality holds since jRj
2c�expx

� 1. Q.E.D.

8

3.3 Error-Normalization

To keep the representation e�cient, we would like to normalize our BigFloat number,
i.e., maintain the error err in the range 0 � err < 4B.

Let hm0; err0; exp0i be a BigFloat not necessarily normalized. We could de�ne the
normalization of hm0; err0; exp0i to be a BigFloat hm; err; expi which satis�es

(a) 0 � err < 4B,

(b) [(m� err)Bexp; (m+ err)Bexp] �
h
(m0 � err0)Bexp0; (m0 + err0)Bexp0

i
,

and

(c') errBexp is minimized subject to (a) and (b).

The condition (b) states that any real number which belongs to the original
BigFloat number must also belong to the normalized BigFloat number.

Since (c') is somewhat hard to guarantee, we shall o�cially replace it by:

(c) errBexp � 2 err0Bexp0.

3.3.1 Error-Normalization Algorithm

If err0 < 4B then there is nothing to do. Otherwise, let f � 1 be the integer which
satis�es

2Bf � err0 < 2Bf+1

or equivalently, f =
j blg err0c�1

c

k
. Set

m sgn (m0)
� jm0j
Bf

�
err

�
err0
Bf

�
+ 2

exp exp0 + f:

The requirement (a) is satis�ed, since�
err0
Bf

�
+ 2 < 2B + 2 < 4B:

For the requirement (b), if m0 � 0 then

(m� err)Bexp <
�� jm0j

Bf

�
�
��

err0
Bf

�
+ 1

��
Bexp0+f

< (m0 � err0)Bexp0

and

(m+ err)Bexp =
��� jm0j

Bf

�
+ 1

�
+
��

err0
Bf

�
+ 1

��
Bexp0+f

> (m0 + err0)Bexp0:

9

If m0 < 0 then

(m� err)Bexp =
�
�
�� jm0j

Bf

�
+ 1

�
�
��

err0
Bf

�
+ 1

��
Bexp0+f

< (m0 � err0)Bexp0

and

(m + err)Bexp >
��
�
� jm0j
Bf

��
+
��

err0
Bf

�
+ 1

��
Bexp0+f

> (m0 + err0)Bexp0:

Finally, the requirement (c) is satis�ed, because when err0 � 4B

errBexp =
��

err0
Bf

�
+ 2

�
Bexp0+f

�
�
err0 + 2Bf

�
Bexp0

� 2 err0Bexp0:

3.4 Unary Minus Operator

Let x = hmx; errx; expxi be a BigFloat. De�ne�x to be a BigFloat y = hmy; erry; expyi
such that if a real X belongs to x then �X belongs to y.

Set

my �mx

erry errx

expy expx:

The correctness is obvious.
Note y does not need to be normalized, since erry < 4B.

3.5 Arithmetic Operators

In the following subsections, we describe how arithmetic operations are done over
BigFloat numbers.

Let x = hmx; errx; expxi and y = hmy; erry; expyi be BigFloat. For @ 2 f+;�; �; =g,
we would like to de�ne x@y to be a BigFloat z = hmz; errz; expzi which satis�es

(a) if a real X belongs to x and a real Y belongs to y then X@Y belongs to z,

and

(b') errzB
expz is minimized subject to (a).

As (b') is di�cult to ensure, our algorithms will only guarantee upper bounds for
errzB

expz .
In our algorithms, we �rst de�ne a BigFloat z0 = hm0; err0; exp0i whose normal-

ization would be z.

10

3.5.1 Addition and Subtraction

We would like to compute z = x� y. By symmetry, we may assume expx � expy.

1. If expx = expy then

m0
z mx �my

err0z errx + erry

exp0z expx:

The correctness is obvious.

If errx = 0 or erry = 0 then err0z < 4B and z0 does not need to be normalized.

2. If expx > expy and errx = 0 then we shift mx left by expx � expy chunks and
add it to my to get m0

z so that we may avoid throwing away the error-free bits
of my:

m0
z mxB

expx�expy �my

err0z erry

exp0z expy:

The correctness for this case is also obvious.

Since err0z < 4B, z0 does not need to be normalized.

3. If expx > expy and errx > 0 then errx \hides" some insigni�cant bits of my and
erry. We shift my right by expx � expy chunks and add it to mx to get m0

z, and
add 5 to errx to get err

0
z; 1 for covering the truncated bits of my and 4 for erry:

m0
z mx � sgn (my)

� jmyj
Bexpx�expy

�
err0z errx + 5

exp0z expx:

If my � 0 then the addition and the subtraction are correct, since

(m0
z � err0z)B

exp0z

=
��

mx �
� jmyj
Bexpx�expy

��
� (errx + 5)

�
Bexpx

= (mx � errx)B
expx �

�� jmyj
Bexpx�expy

�
� 5

�
Bexpx�expyBexpy

< (mx � errx)B
expx � (my � erry)B

expy

and

(m0
z + err0z)B

exp0z

=
��

mx �
� jmyj
Bexpx�expy

��
+ (errx + 5)

�
Bexpx

= (mx + errx)B
expx �

�� jmyj
Bexpx�expy

�
� 5

�
Bexpx�expyBexpy

> (mx + errx)B
expx � (my � erry)B

expy :

The correctness for the case my < 0 is similar.

11

Note the result of addition or subtraction of two error-free BigFloat numbers is
also error-free.

Proposition 3

errzB
expz � 6max ferrxBexpx; erryB

expyg :

Proof.

1. If expx = expy then

errzB
expz � 2 err0zB

exp0z

= 2 (errxB
expx + erryB

expy)

� 4max ferrxBexpx; erryB
expyg :

2. If expx > expy and errx = 0 then

errzB
expz � 2 err0zB

exp0z

= 2 erryB
expy :

3. If expx > expy and errx = 1 or 2 then

errzB
expz = err0zB

exp0z (since err0z = errx + 5 < 4B)
� 6 errxB

expx: (since err0z � 6 errx)

4. If expx > expy and errx � 3 then err0z = errx + 5 < 3 errx. Thus

errzB
expz � 2 err0zB

exp0z

< 6 errxB
expx:

Q.E.D.

3.5.2 Multiplication

To compute z = x � y, we let
m0

z mxmy

err0z jmxj erry + errx jmyj+ errx erry

exp0z expx + expy:

To see that this is correct, it is enough to show

(m0
z � err0z)B

exp0z � min

8>>><>>>:
(mx + errx)B

expx (my + erry)B
expy

(mx + errx)B
expx (my � erry)B

expy

(mx � errx)B
expx (my + erry)B

expy

(mx � errx)B
expx (my � erry)B

expy

9>>>=>>>; (3)

12

and

(m0
z + err0z)B

exp0z � max

8>>><>>>:
(mx + errx)B

expx (my + erry)B
expy

(mx + errx)B
expx (my � erry)B

expy

(mx � errx)B
expx (my + erry)B

expy

(mx � errx)B
expx (my � erry)B

expy

9>>>=>>>; : (4)

The inequalities (3) and (4) amount to the relatively obvious inequalities

m0
z � err0z �

8>>><>>>:
(mx + errx) (my + erry)
(mx + errx) (my � erry)
(mx � errx) (my + erry)
(mx � errx) (my � erry)

9>>>=>>>; � m0
z + err0z: (5)

It is easy to see that (5) holds whatever the signs of mx and my.
Note the result of multiplication of two error-free BigFloat numbers is also error-

free. In particular, z0 does not need to be normalized.

Proposition 4

errzB
expz � 6max

8><>:
jmxjBexpxerryB

expy

errxB
expx jmyjBexpy

errxB
expxerryB

expy

9>=>; :

Proof.

errzB
expz

� 2 err0zB
exp0z

= 2 (jmxjBexpxerryB
expy + errxB

expx jmyjBexpy + errxB
expxerryB

expy)

� 6max fjmxjBexpxerryB
expy ; errxB

expx jmyjBexpy ; errxB
expxerryB

expyg :
Q.E.D.

3.5.3 Division

We would like to compute z = x=y. We may assume jmyj > erry, because otherwise
0 belongs to y and (by de�nition) the operator is not de�ned.

The mantissa of the result is computed by calling the function div (mx; my; r) for
some r 2 N. Here, div (mx; my; r) is de�ned to be div (mx; my; r;1) which was de�ned
in Section 3.2.1 Approximation Algorithm.

Let

Ix=y = fX=Y jX and Y are real, X belongs to x and Y belongs to yg :
If errx > 0 or erry > 0 then Ix=y is not a singleton and we can estimate the size

of the interval Ix=y. Using this estimate, we choose a suitable r for the function call
div (mx; my; r).

If errx = erry = 0 then Ix=y = fZ0g, a singleton, and (unless my divides mx) it
is impossible to �nd an error-free BigFloat z to which Z0 belongs. In this case, r is
arti�cially speci�ed to be some global constant rdefault which users can change.

We now describe the algorithm in several cases.

13

(a) CASE errx = erry = 0:
Let hm00

z ; err
00
z ; exp

00
zi = div (mx; my; rdefault). Then, we set

m0
z m00

z

err0z err00z
exp0z expx � expy + exp00z :

Note z0 does not need to be normalized, since err0z � 1.

(b) CASE errx > 0 or erry > 0:

(b-1) CASE jmxj � errx:
If jmxj � errx then 0 belongs to x. Thus, we set

m0
z 0

err0z
� jmxj+errx
jmyj�erry

�
exp0z expx � expy:

The correctness follows from����(mx�errx)Bexpx

(my�erry)Bexpy

���� � (jmxj+errx)Bexpx

(jmyj�erry)Bexpy � err0zB
exp0z :

(b-2) CASE jmxj > errx:
Let hm00

z ; err
00
z ; exp

00
zi = div (mx; my; r).

First, we will show how to estimate r. In this case,

Ix=y =
�
(jmxj�errx)Bexpx

(jmyj+erry)Bexpy ;
(jmxj+errx)Bexpx

(jmyj�erry)Bexpy

�
:

Since Bexpx

Bexpy does not a�ect the choice of r, it is convenient to use

Jx=y = Ix=y
Bexpy

Bexpx =
� jmxj�errx
jmyj+erry ;

jmxj+errx
jmyj�erry

�

instead of Ix=y. Note
jmxj
jmyj 2 Jx=y. By Proposition 1,

���� jmxj
jmyj � jm

00
z jBexp00z

���� � jmxj
jmyj 2

�r:

Thus, r speci�es an upper bound for the distance between jmxj
jmyj and jm00

z jBexp00z . It is

enough to choose r so that
jm00

z jBexp00z 2 Jx=y; (6)

because a larger r does not decrease the error of z0 substantially. To ensure (6), it
su�ces to have

jmxj
jmyj 2

�r � jmxj
jmyj �

jmxj�errx
jmyj+erry ; (7)

14

because

jmxj
jmyj �

jmxj
jmyj 2

�r � jm00
z jBexp00z =

� jmxj
jmyjBexp00z

�
Bexp00z � jmxj

jmyj <
jmxj+errx
jmyj�erry :

Hence, we are interested in the smallest r so that (7) holds. As getting the \smallest"
r is di�cult, we shall only compute some upper bound. Since

jmxj
jmyj �

jmxj�errx
jmyj+erry =

jmxjerry+errxjmyj
jmyj(jmyj+erry)

=
jmxj

jmyj+erry
�
errx
jmxj +

erry
jmyj

�
� jmxj

2jmyj
�
errx
jmxj +

erry
jmyj

�
� jmxj

2jmyj max
�
errx
jmxj ;

erry
jmyj

�
;

it su�ces to have

2�r �

8>>>><>>>>:
1
2

1
jmyj if errx = 0 and erry > 0

1
2

1
jmxj if errx > 0 and erry = 0

1
2 max

�
1
jmxj ;

1
jmyj

�
if errx > 0 and erry > 0:

Hence, we set

r
8><>:
blg jmyjc + 2 if errx = 0 and erry > 0
blg jmxjc+ 2 if errx > 0 and erry = 0
minfblg jmxjc ; blg jmyjcg+ 2 if errx > 0 and erry > 0

(8)

and

m0
z m00

z

exp0z expx � expy + exp00z :

Next, we compute err0z.
1 It must satisfy

(m0
z � err0z)B

exp0z � (mx�errx)Bexpx

(my�erry)Bexpy � (m0
z + err0z)B

exp0z

or equivalently

m0
z � err0z � mx�errx

(my�erry)Bexp00z � m0
z + err0z: (9)

1We could have

err0z
� jmxj+errx
jmyj�erry �

jmxj�errx
jmyj+erry

�
Bexpx

Bexpy =
2(jmxjerry+errxjmyj)

jmyj2�err2y
Bexpx

Bexpy :

But this error-bound is unnecessarily large and expensive to compute.

15

Since we assume that jmxj > errx and jmyj > erry, the signs of mx � errx and
my � erry are the same as those of mx and my, respectively. Dividing both sides of
(9) by sgn (mz) = sgn (mxmy),

jm0
zj � err0z � jmxj�errx

(jmyj�erry)Bexp00z � jm0
zj+ err0z: (10)

We claim that it su�ces to set

err0z
2666
j jmxj
Bexp00z

k
+
j

errx
Bexp00z

k
+ � � jmyj jm0

zj+ erry jm0
zj

jmyj � erry

3777 (11)

where

� =

(
0 if exp00z � 0
2 if exp00z > 0.

Note the quantity
j jmxj
Bexp00z

k
�jmyj jm0

zj is the remainder of the integer division
�

jmxj
B
exp00y

�
= jmyj,

and it has already been computed by div (mx; my; r). If
j jmxj
Bexp00z

k
+
j

errx
Bexp00z

k
is replaced

by
j jmxj+errx

Bexp00z

k
then we could have � � 1, but we must perform another integer division

to get it.
To see that (11) implies (10), we have

err0z �
j

jmxj
Bexp00z

k
+
j

errx

Bexp00z

k
+��jmyjjm0

zj+erryjm0
z j

jmyj�erry
� jmxj+errx

(jmyj�erry)Bexp00z � jm0
zj

�
���� jmxj�errx
(jmyj�erry)Bexp00z � jm0

zj
����

where the last inequality is proven as follows:
Let

D+ =
���� jmxj+errx
(jmyj�erry)Bexp00z � jm

0
zj
���� and D� =

���� jmxj�errx
(jmyj+erry)Bexp00z � jm

0
zj
���� :

Actually,

D+ =
jmxj+errx

(jmyj�erry)Bexp00z � jm
0
zj

since jmxj+errx
(jmy j�erry)Bexp00z

> jmxj
jmyjBexp00z

�
�

jmxj
jmyjBexp00z

�
= jm0

zj, and

D� = jm0
zj � jmxj�errx

(jmyj+erry)Bexp00z

because of our choice of r. Obviously

max
n
D+; D�o � ���� jmxj�errx

(jmyj�erry)Bexp00z � jm
0
zj
���� ;

16

but max fD+; D�g = D+, since

D+ �D� =
jmxj+errx

(jmyj�erry)Bexp00z +
jmxj�errx

(jmyj+erry)Bexp00z � 2 jm0
zj

=
2(jmxjjmyj+errxerry)
(jmyj2�err2y)Bexp00z � 2 jm0

zj

� 2jmxjjmyj
jmyj2Bexp00z � 2 jm0

zj

= 2
jmxj

jmyjBexp00z � 2
� jmxj
jmyjBexp00z

�
� 0:

Proposition 5

1. If errx = erry = 0 then

errzB
expz � jmxjBexpx

jmyjBexpy 2
�rdefault :

2. If either errx = 0 and jmyj
2
� erry > 0

or jmxj > errx > 0 and erry = 0

or jmxj > errx > 0 and jmyj
2
� erry > 0 then

errzB
expz � 12

jmxjBexpx

jmyjBexpy max
�
errx
jmxj ;

erry
jmyj

�
:

Proof.

1. This is immediate from de�nition for div (mx; my; rdefault) (see Section 3.2.1 Ap-
proximation Algorithm).

2. Since errzB
expz � 2 err0zB

exp0z , it is enough to show

err0zB
exp0z � 6

jmxjBexpx

jmyjBexpy max
�
errx
jmxj ;

erry
jmyj

�
:

We will consider three cases. The cases follow the logic of the algorithms for
division.

(a) Suppose mx = errx = 0 and jmyj
2
� erry > 0.

(This is the case (b-1) of the algorithm.)
Then, err0z = 0.

(b) Suppose either jmxj > errx > 0 and erry = 0

or jmxj > errx > 0 and jmyj
2
� erry > 0 and blg jmxjc � blg jmyjc.

(This is the case (b-2) of the algorithm when r is set to be blg jmxjc+ 2 in
(8).)

In this case, we see from (2) that

exp00z =
��blgjmyjc�3

c

�
:

17

Then
c � exp00z � � (blg jmyjc + 1)� 2 < 0:

Thus
Bexp00z = 2c�exp

00

z < 1
4jmyj :

Hence

Bexp0z = BexpxBexp00z
Bexpy <

jmxjBexpx

jmyjBexpy

1
4jmxj : (12)

From (11)

err0z <
jmxj+errx

(jmyj�erry)Bexp00z � jm00
z j+ 1 (since � = 0)

<
jmxj+errx

(jmyj�erry)Bexp00z �
jmxj

jmyjBexp00z + 2

=
jmxj

(jmyj�erry)Bexp00z

� jmxj+errx
jmxj � jmyj�erry

jmyj
�
+ 2

� 2
jmxj

jmyjBexp00z

�
errx
jmxj +

erry
jmyj

�
+ 2:

Therefore

err0zB
exp0z < 2

jmxj
jmyjBexp00z B

exp0z

�
errx
jmxj +

erry
jmyj

�
+ 2Bexp0z

< 2
jmxjBexpx

jmyjBexpy

�
errx
jmxj +

erry
jmyj

�
+ 2

jmxjBexpx

jmyjBexpy

1
4jmxj (by (12))

= 2
jmxjBexpx

jmyjBexpy

�
errx
jmxj +

1
4jmxj +

erry
jmyj

�
� 6

jmxjBexpx

jmyjBexpy max
�
errx
jmxj ;

erry
jmyj

�
:

(c) Suppose either jmxj > errx = 0 and jmyj
2
� erry > 0

or jmxj > errx > 0 and jmyj
2
� erry > 0 and blg jmxjc > blg jmyjc.

(This is the case (b-2) of the algorithm when r is set to be blg jmyjc+ 2 in
(8).)

In this case, (2) gives us

exp00z =
�blgjmxjc�2blgjmyjc�3

c

�
:

Then

c � exp00z � blg jmxjc � 2 (blg jmyjc + 1)� 1:

Thus
Bexp00z = 2c�exp

00

z <
jmxj
2jmyj2 :

Hence
Bexp00z
jmxj <

1
2jmyj2 �

1
4jmyj (13)

where the last inequality follows from jmyj � 2. Also

Bexp0z = BexpxBexp00z
Bexpy <

jmxjBexpx

jmyjBexpy

1
2jmyj : (14)

18

From (11)

err0z
<

jmxj+errx
(jmyj�erry)Bexp00z + �

jmyj�erry � jm
00
z j+ 1

<
jmxj+errx

(jmyj�erry)Bexp00z + 2
jmyj�erry �

jmxj
jmyjBexp00z + 2

=
jmxj

(jmyj�erry)Bexp00z

� jmxj+errx
jmxj + 2Bexp00z

jmxj �
jmyj�erry
jmyj

�
+ 2

� 2
jmxj

jmyjBexp00z

�
errx
jmxj +

1
2jmyj +

erry
jmyj

�
+ 2: (by (13))

Therefore

err0zB
exp0z

< 2
jmxjBexpx

jmyjBexpy

�
errx
jmxj +

1
2jmyj +

erry
jmyj

�
+ 2

jmxjBexpx

jmyjBexpy

1
2jmyj (by (14))

= 2
jmxjBexpx

jmyjBexpy

�
errx
jmxj +

erry
jmyj +

1
jmyj

�
� 6

jmxjBexpx

jmyjBexpy max
�
errx
jmxj ;

erry
jmyj

�
:

This proposition does not cover the cases 0 = jmxj < errx or 0 < jmxj � errx
since there is no upper bound for err0z in terms of x and y, nor does it cover
the cases 2 erry > jmyj > erry > 0 since we may assume that non-exact y
can be recomputed so that it will have the error-bound [r; a] with r � 1 and
a � �blg jmyjc+ 1.

Q.E.D.

3.6 Squareroot

Let x = hmx; errx; expxi be a BigFloat withmx � 0. De�ne sqrt (x) to be a BigFloat
y = hmy; erry; expyi such that 8 real X � 0, if X belongs to x then

p
X belongs to y.

For x = hmx; errx; expxi with mx < 0, sqrt (x) is not de�ned.

3.6.1 Algorithm for sqrt (x)

Let x = hmx; errx; expxi be a BigFloat with mx � 0. We would like to compute a
BigFloat y = sqrt (x).

De�ne the function sqrt (X;A) as follows:
For X 2 N and A 2 Z, sqrt (X;A) returns an error-free BigFloat z = hmz; 0; expzi

such that
���pX �mzB

expz
��� � 2�A.

The function sqrt (x) will be computed by calling sqrt (X;A) for some X and A.
Let

Ipx =
�q

� j � is non-negative real and � belongs to x
�
:

If errx > 0 then Ipx is not a singleton and we can estimate the size of the interval
Ipx. Using this estimate, we choose a suitable A for the function call sqrt (X;A).

19

If errx = 0 then Ipx = f�0g, a singleton, and (unless mx is a prefect square) it
is impossible to �nd an error-free BigFloat y to which �0 belongs. In this case, A is
arti�cially speci�ed by some default precision.

Let

� =

(
0 if expx is even
1 if expx is odd.

We now describe the algorithm in several cases. In each case, we �rst de�ne a
BigFloat y0 =

D
m0

y; err
0
y; exp

0
y

E
whose normalization would be y.

(a) CASE mx � errx:
If mx � errx then 0 belongs to x. Thus, we set

m0
y 0

err0y
(

0 if errx = 0

2 (bsqrt ((double) errx)c + 1) 2�d c2e if errx > 0.

exp0y expx��
2

Here, double sqrt (double d) is the function in the standard library of C++ to computep
d for d � 0 which is correctly rounded as outlined in the IEEE 754 oating-point

standard [PH90] [Gol91].
The correctness follows from

err0yB
exp0y > 2

p
errx
p
B�

r
Bexpx

B�

>
q
2 errxBexpx

�
q
(mx + errx)Bexpx:

(b) CASE mx > errx = 0:
We would like to compute y0 such that

err0yB
exp0y � 2�adefault�1

where adefault is some global constant which users can change.

Let hmz; 0; expzi = sqrt
�
mxB

�; adefault + 1 + c � expx��
2

�
and

p = adefault + 1 + c � expx��2 + c � expz:

If p � 0 then 2�p � 1. Thus, we set

m0
y mz

err0y 2�p

exp0y expz +
expx��

2 :

The correctness is obvious.

20

If p > 0 then 2�p < 1. We shift 2�p left
l
p
c

m
chunks to get err0y so that err0y � 1.

Thus

m0
y mzB

d pce

err0y 2�pBd pce

exp0y expz +
expx��

2 �
l
p
c

m
= �

l
adefault+1

c

m
:

The correctness is also obvious.

(c) CASE mx > errx > 0:

Let hmz; 0; expzi = sqrt
�
mxB

�; A
�
for some A.

First, we will show how to estimate A. In this case,

Ipx =
�q

(mx � errx)Bexpx;
q
(mx + errx)Bexpx

�
:

It is convenient to use

Jpx =
Ipxp

Bexpx�� =
�q

(mx � errx)B�;
q
(mx + errx)B�

�
instead of Ipx. Note

p
mxB� 2 Jpx. By de�nition for sqrt

�
mxB

�; A
�
, A speci�es an

upper bound for the distance between
p
mxB� and mzB

expz . It is enough to choose A
so that

mzB
expz 2 Jpx; (15)

because a larger A does not decrease the error of y0 substantially. Since mx > errx,q
mxB� �

q
(mx � errx)B� >

q
(mx + errx)B� �

q
mxB�: (16)

Hence, to ensure (15), it su�ces to haveq
(mx + errx)B� �

q
mxB� � 2�A: (17)

We are interested in the smallest A such that (17) holds. As getting the \smallest" A
is di�cult, we shall only compute some upper bound. Since mx > errx > 0,

1 + errx
mx

> 1 + errx
2mx

+
err2x
16m2

x
=

�
1 + errx

4mx

�2
:

Hence r
1 + errx

mx
� 1 > errx

4mx
:

Therefore q
(mx + errx)B� �pmxB� =

p
mxB�

�q
1 + errx

mx
� 1

�
> errx

p
B�

4
p
mx

= 2lg errx�2�
1

2
lgmx+�

c
2

> 2blg errxc�b 12 (blgmxc+1��c)c�3:

(18)

21

Hence, we set

A �blg errxc +
j
1
2
(blgmxc+ 1� � c)

k
+ 3:

Next, we compute err0y. It must satisfy�
m0

y � err0y
�
Bexp0y �

q
(mx � errx)Bexpx �

�
m0

y + err0y
�
Bexp0y:

Considering (16), it su�ces to set err0y so that

q
mxBexpx �

q
(mx � errx)Bexpx + 2�A

r
Bexpx

B� � err0yB
expz :

Since 1 > 1� errx
mx

> 0,

1�
q
1� errx

mx
< 1�

�
1� errx

mx

�
= errx

mx
:

Hence q
mxBexpx �

q
(mx � errx)Bexpx + 2�A

r
Bexpx

B�

=
p
mxBexpx

�
1�

q
1� errx

mx

�
+ errx

p
B�

4
p
mx

r
Bexpx

B� (by (18))

< errx
p
Bexpxp
mx

+ errx
p
Bexpx

4
p
mx

< 2 errx
p
Bexpxp
mx

:

Therefore, err0y must be set so that

2 errx
p
Bexpxp
mx

� err0yB
exp0y:

Let

q = �1� dlg errxe+
j
1
2
blgmxc

k
� �

l
c
2

m
+ c � expz:

Note if q � 0 then 2 errx
p
B�p

mxBexpz � 1.

If q � 0 then we set

m0
y mz

err0y 2 errx 2
�b 12 blgmxcc+�d c2e�c�expz

exp0y expz +
expx��

2 :

This is correct, because

err0y � 2 errx
1p
mx

p
B� 1

Bexpz � 1

and

err0yB
exp0y � 2 errx

p
B�p

mxBexpz

Bexpz
p
Bexpxp

B�
= 2 errx

p
Bexpxp
mx

:

22

If q > 0 then 2�q < 1. We shift 2�q left
l
q
c

m
chunks to get err0y so that err0y � 1.

Thus

m0
y mzB

d qce

err0y 2�qBd qce

exp0y expz +
expx��

2
�
l
q
c

m
=

expx��
2
�
&
�1�dlg errxe+b 1

2
blgmxcc��d c

2e
c

'
:

The correctness is similar to the previous case. Note y0 does not need to be normalized,
since err0y < B.

Proposition 6

1. If errx = 0 then

erryB
expy � 2�adefault :

2. If errx > 0 then 2

erryB
expy � 16

q
errxBexpx:

Proof.

1. If mx = errx = 0 then err0y = 0.

If mx > errx = 0 then

erryBexpy � 2 err0yB
exp0y � 2 � 2�adefault�1:

2. If mx � errx and errx > 0 then

erryB
expy � 2 err0yB

exp0y

� 2 (
p
errx + 2) 2�d c2e

r
Bexpx

B�

� 2 (
p
errx + 2

p
errx) 2

p
B�

r
Bexpx

B�

= 12
q
errxBexpx:

If mx > errx > 0 and q = �1�dlg errxe+
j
1
2 blgmxc

k
� �

l
c
2

m
+ c � expz � 0 then

erryB
expy � 2 err0yB

exp0y

= 2 � 2 errx 2�b
1

2
blgmxcc+�d c2e�c�expzBexpz

p
Bexpxp

B�

< 2 � 2 errx 2p
mx

2
p
B� 1

Bexpz

Bexpz
p
Bexpxp

B�

= 16
r
errx
mx

q
errxBexpx

< 16
q
errxBexpx:

2If c is even then we could replace 16 by 8, because
�
c
2

�
= c

2
, i.e., 2�d c2e =

p
B� . Note we set

c =
�
L
2

� � 2 where 2L � 1 is the largest unsigned long. In almost all systems, L is some positive
power of 2 (typically L = 32), and hence, c is even.

23

If mx > errx > 0 and q > 0 then

erryB
expy = err0yB

exp0y

= 21+dlg errxe�b 12 blgmxcc+�d c2e�c�expzBd qceBexpz
p
Bexpxp

B�Bd qce

< 2 � 2 errx 2p
mx

2
p
B� 1

Bexpz

Bexpz
p
Bexpxp

B�

= 16
r
errx
mx

q
errxBexpx

< 16
q
errxBexpx:

Q.E.D.

3.6.2 Algorithm for sqrt (X;A)

We now describe the algorithm for sqrt (X;A) de�ned above.
We simulate Newton's method to compute

p
X over BigFloat numbers. First, we

introduce some functions which will be used in our algorithm.
For X 2 N, error-free BigFloat numbers y = hmy; 0; expyi with my > 0 and

z = hmz; 0; expzi with mz � 0, and A 2 Z, de�ne

QX(y; A) =
D
m0

q; 0; exp
0
q � expy

E
where

D
m0

q; err
0
q; exp

0
q

E
= div (X;my;1; A� c � expy) ;

H(z) =
Dj

mz

2

k
; 0; expz

E
;

NX(y; A) = H (y +QX(y; A)) ;

SX(y) = 1
2

�
myB

expy + X
myB

expy

�
:

Note the function SX(y) yields a fraction, not a BigFloat.

Lemma 7

1.

X
myB

expy � 2�A � X
myB

expy � Bb�A
c c < QX(y; A) � X

myB
expy : (19)

2.

SX(y)� 2�A � SX(y)� Bb�A
c c < NX(y; A) � SX(y): (20)

Proof.

1. By de�nition (see Section 3.2.1 Approximation Algorithm),

QX(y; A) =

6664 X

myBb
�A
c c+expy

7775Bb�A
c c:

24

Thus

X
myB

expy � Bb�A
c c =

0@ X

myBb
�A
c c+expy � 1

1ABb�A
c c

< QX(y; A)

� X

myB
b�A

c c+expyB
b�A

c c

= X
myB

expy :

2. By de�nition of BigFloat addition,

1
2 (myB

expy +QX(y; A))� 1
2B

minfexpy;b�A
c cg � H (y +QX(y; A))

� 1
2 (myB

expy +QX(y; A)) :

By (19)

1
2 (myB

expy +QX(y; A))� 1
2B

minfexpy;b�A
c cg

> 1
2

�
myB

expy + X
myB

expy �Bb�A
c c
�
� 1

2B
minfexpy;b�A

c cg

� 1
2

�
myB

expy + X
myB

expy

�
� Bb�A

c c

and

1
2 (myB

expy +QX(y; A)) � 1
2

�
myB

expy + X
myB

expy

�
:

Q.E.D.

Lemma 8

1.
p
X lies between myB

expy and X
myB

expy , i.e.,

�
myB

expy �
p
X
��

X
myB

expy �
p
X
�
� 0: (21)

2. If myB
expy � pX then

myB
expy � SX(y) �

p
X (22)

where the equalities hold i� myB
expy =

p
X.

Proof.

25

1. If myB
expy � pX then

X
myB

expy � Xp
X

=
p
X;

and if myB
expy <

p
X then

X
myB

expy > Xp
X

=
p
X:

2. Note SX(y) is the midpoint between myB
expy and X

myB
expy , but

p
X �min

�
myB

expy ; X
myB

expy

�
� max

�
myB

expy ; X
myB

expy

�
�
p
X

since�
max

�
myB

expy ; X
myB

expy

�
�pX

�
�
�p

X �min
�
myB

expy ; X
myB

expy

��
= myB

expy � 2
p
X + X

myB
expy

=
m2

yB
2expy�2myB

expy
p
X+X

myB
expy

=
(myB

expy�pX)2
myB

expy

� 0:

Q.E.D.

Now, we present the algorithm for sqrt (X;A). Since the case X = 0 or 1 is trivial,
assume X � 2. Set

y0 = hX; 0; 0i
yi = NX (yi�1; A) i = 1; 2; : : : :

Note my0B
expy0 � pX.

The iteration continues until we will �nd the smallest i 2 N such that

QX (yi; A) + 2�A � myiB
expyi ; (23)

and hmyi ; 0; expyii will be returned. The correctness follows from the following lemmas.

Lemma 9 The condition (23) is su�cient to have
���pX �myiB

expyi

��� � 2�A.

Proof. There are two cases.

1. If QX (yi; A) + 2�A � myiB
expyi � pX then

0 � myiB
expyi �

p
X � 2�A;

since
QX (yi; A) + 2�A � myiB

expyi (by assumption)

� p
X (by assumption)

� X
myi

Bexpyi
(by (21))

� QX (yi; A) : (by (19))

26

2. Suppose

QX (yi; A) + 2�A � myiB
expyi and

p
X > myiB

expyi : (24)

Actually, the �rst condition of (24) is redundant, i.e., (24) is equivalent to
p
X >

myiB
expyi . In fact, if

p
X > myiB

expyi then

QX (yi; A) + 2�A > X
myi

Bexpyi
(by (19))

� p
X (by (21))

> myiB
expyi : (by assumption)

If
p
X > myiB

expyi and myjB
expyj >

p
X for j = 0; 1; 2; : : : ; i� 1 then

0 <
p
X �myiB

expyi � 2�A;

since
SX (yi�1) >

p
X (by (22))

> myiB
expyi = NX (yi�1; A) (by (21))

> SX (yi�1)� 2�A: (by (20))

Q.E.D.

Lemma 10 There exists i 2 N such that (23) holds.

Proof. If myjB
expyj � pX then myjB

expyj � myj+1B
expyj+1 , because

myjB
expyj � SX (yj) (by (22))

� NX (yj; A) (by (20))
= myj+1B

expyj+1 :

Since my0B
expy0 � pX, the sequence

n
myjB

expyj
o
is non-increasing for small j. De-

pending on the behavior of
n
myjB

expyj
o
, we consider several cases.

1. If 9i 2 N such that myiB
expyi = myi+1B

expyi+1 and myjB
expyj > myj+1B

expyj+1 for
j = 0; 1; 2; : : : ; i� 1 then

myiB
expyi = SX (yi) = NX (yi; A) = myi+1B

expyi+1 :

By (19)

myiB
expyi = X

myi
Bexpyi

< QX (yi; A) + 2�A:

Note, in this case, myiB
expyi =

p
X.

2. Suppose
n
myjB

expyj
o
is strictly decreasing for all small j.

27

(a) If 9i 2 N>0 such that
p
X > myiB

expyi and myjB
expyj >

p
X for j =

0; 1; 2; : : : ; i � 1 then we have already seen in Lemma 9 that QX (yi; A) +
2�A > myiB

expyi .

(b) Otherwise, 8j 2 N myjB
expyj >

p
X. By (22), 8j 2 N

myjB
expyj > SX (yj) � myj+1B

expyj+1 >
p
X:

Thus, both
n
myjB

expyj
o
and fSX (yj)g are strictly decreasing for all j and

bounded from below by
p
X. Hence, both of them converge. Moreover,

limj!1myjB
expyj = limj!1 SX (yj). Hence,

lim
j!1

myjB
expyj =

p
X;

and in particular, 9i 2 N such that (23) holds.

Q.E.D.

Finally, we claim that the convergence of
n
myjB

expyj
o
is quadratic as the original

Newton's method. Let i be the smallest non-negative integer such that (23) holds. By
Lemma 10, for j = 1; 2; : : : ; i� 1; myjB

expyj >
p
X. Then

myjB
expyj �

p
X

= NX (yj�1; A)�
p
X

� SX (yj�1)�
p
X (by (20))

= 1
2

myj�1B

expyj�1 + X
myj�1

B
expyj�1

!
�pX

=
m2

yj�1
B

2expyj�1�2myj�1
B
expyj�1

p
X+X

2myj�1
B
expyj�1

< 1
2
p
X

�
myj�1B

expyj�1 �pX
�2
: (since myj�1B

expyj�1 >
p
X)

Summarizing:

if X = 0 then return h0; 0; 0i
else if X = 1 then return h1; 0; 0i
else

y hX; 0; 0i
loop

q QX(y; A)
if y � q + 2�A then return hmy; 0; expyi
y H(y + q)

end loop

28

3.7 Implementation

We use the well-known \letter-envelope" technique [Cop92]. Any BigFloat number is
associated with two instances, one belongs to the \envelope" class BigFloat and the
other belongs to the \letter" class BigFloatRep.

The \envelope" class BigFloat is de�ned as follows:

class BigFloat

{

BigFloatRep* rep;

// private member functions come here.

public:

// public member functions come here.

};

The \letter" class BigFloatRep is de�ned as follows:

class BigFloatRep

{

friend class BigFloat;

BigInt m;

unsigned long err;

long exp;

unsigned int refCount;

// private member functions come here.

};

Here, BigInt is the class of integers of arbitrary length. In the previous sections, we
assume that the exponent exp 2 Z. In the implementation, however, we declare exp

to be long for e�ciency.
No member of BigFloatRep is declared to be public. Thus, the members of

BigFloatRep can be accessed only via BigFloat.
The only data member of BigFloat is a pointer rep to the \letter" where the

values of components are stored. The member or friend functions of BigFloat are
implemented as implicit calls to the corresponding member functions of BigFloatRep.
For example,

BigFloat x, y;

x + y;

is compiled as follows (see Figure 1):
The binary operator

29

x + y

z.rep->add(*x.rep, *y.rep)

x.operator +(y)

class BigFloat

class BigFloatRep

Figure 1: The ow for x + y.

BigFloat BigFloat :: operator +(const BigFloat) const

is called with the implicit argument x and the explicit argument y. It constructs
BigFloat z where the result is going to be stored, and calls the member function of
BigFloatRep

void BigFloatRep :: add(const BigFloatRep, const BigFloatRep)

with the implicit argument *z.rep and the explicit arguments *x.rep and *y.rep.
The \letter-envelope" technique allows us to do memory-management e�ciently

since multiple \envelopes" can share the single \letter". For example, consider the
function

BigFloat BigFloat :: abs() const

which returns the absolute value of the *this. If BigFloat x has a non-negative
mantissa then the values of the components of x and x.abs() are the same. Thus,
x.abs() could be implemented as a BigFloat whose rep is identical to x.rep rather
than a copy of x. Compared to a brute-force implementation, we now reduce the
number of BigInt instances by one (see Figure 2).

x.abs()x

< m, err, exp >

x

< m, err, exp > < m, err, exp >

x.abs()

Implementation with

Letter-envelope Technique
Brute-force Implementation

Figure 2: If a brute-force implementation is used, the components of x and x.abs() are
distinct, even though their components store the same values. If the \letter-envelope"
technique is used, x and x.abs() can share their components.

The class BigFloatRep has the private data member refCount which counts how
many \envelopes" points to *this. When an instance of BigFloat x is about to be
destroyed, x.rep->refCount is decremented, and if it reaches 0 then *x.rep is also
destroyed.

30

4 Real

In this section, we describe the Real package implemented as a class library in C++.
In addition to the standard libraries of C++, we assume that we have a class library
of integers of arbitrary length and a class library of rational numbers such as GNU's
Integer and Rational as well as our class BigFloat.

The class Real is used to represent numerical objects in the Expr package. The
class has the ability to capture various types of number representations, namely, built-
in machine types and some arbitrary length number types including BigFloat.

4.1 De�nition

4.1.1 Construction

De�ne

KernelType = fint; long; double; BigInt; Rational; BigFloatg :
Here, int, long and double are the standard C++ types, BigInt is the type of arbitrary
length integers and Rational is the type of rational numbers.

A Real x is de�ned to be a numerical object X of type t 2 KernelType.
We say X is the kernel of x.

4.1.2 Semantics

Any Real number is associated with a triple hT; V; Erri where
� T 2 RealType = (KernelType n fBigFloatg) [fExBigFloat; AppBigFloatg,
� V 2 Q,

� Err 2 Q�0 .

Here, ExBigFloat is the type of error-free BigFloat numbers and AppBigFloat is
the type of BigFloat numbers with positive errors. As one would expect, there is a
natural type coercion among the types in RealType. It is as follows:

int < long <

(
double

BigInt

)
< ExBigFloat < Rational < AppBigFloat: (25)

Note double resides between long and ExBigFloat, that is, a double can be a kernel
of some Real only if it is exact.

For any Real x, hTx; Vx; Errxi is set as follows:
� If the kernel of x is the BigFloat X = hmX ; errX ; expXi then

Tx =

(
ExBigFloat if errX = 0
AppBigFloat if errX > 0

Vx = mXB
expX

Errx = errXB
expX :

31

� If the kernel of x is X whose type is t 6= BigFloat then

Tx = t

Vx = X

Errx = 0:

A Real x is said to be error-free if Errx = 0. Hence, a Real x is error-free, unless
Tx is AppBigFloat.

On the other hand, a Real x with Tx = AppBigFloat is intended to be an ap-
proximation for some real number. A real number X is said to belong to a Real x
if

X 2 [Vx � Errx; Vx + Errx] :

Let (r; a) 2 N � Z. A Real x is said to have an error-bound [r; a] if

Errx � max
n
jVxj 2�r; 2�a

o
:

The most signi�cant bit (MSB) �x of a Real x is de�ned to be(blg jVxjc if Vx 6= 0
�1 if Vx = 0.

4.2 Approximation

Let X be a real number and (r; a) 2 N � Z. We say a Real x approximates X to
precision [r; a] and write

x �= X[r; a]

if X belongs to x and

Errx � max
n
jXj 2�r; 2�a

o
:

If x approximates X then Vx �= X[r; a], i.e.,

jX � Vxj � max
n
jXj 2�r; 2�a

o
:

4.2.1 Approximation Algorithm

Given R 2 Q and (r; a) 2 N � Z, we would like to compute a Real x with the error-
bound [r; a] such that R belongs to x.

If r = a =1 then x is the Real whose kernel is R.
Otherwise, x is the Real whose kernel is the BigFloat X with error-bound [r; a]

such that R belongs to x (de�ned in Section 3.2.1).

32

4.2.2 Properties

Proposition 11 Fix R 2 Q and (r; a) 2 N � Z. Let x be the Real computed by our
approximation algorithm on input R and [r; a].

1.
jVxj � jRj : (26)

2.
x �= R[r; a]: (27)

In particular, Vx �= R[r; a], i.e., jR � Vxj � max fjRj 2�r; 2�ag.
3. If R 6= 0 then

�x = blg jRjc : (28)

Proof. If Tx 6= ExBigFloat or Tx 6= AppBigFloat then the claims are trivial.
If Tx = ExBigFloat or Tx = AppBigFloat then the claims follow from Proposition

1 and 2. Q.E.D.

4.3 Arithmetic Operators and Squareroot

Over Real, the arithmetic operators +, (unary and binary) �, � and = as well as the
function sqrt() are de�ned.

4.3.1 Unary Minus

Let x be Real whose kernel is X. We de�ne �x as follows:

1. Suppose Tx = int. Note, in this case, �X may not �t in int. Thus, �x is the
Real whose kernel is 3(�X if �X �ts in int

�(long)X if �X does not �t in int.

Here, (t)X stands for X to which the casting operator () is applied so that the
result has type t.

2. Suppose Tx = long. Again, �X may not �t in long. Thus, �x is the Real

whose kernel is (�X if �X �ts in long

�(BigInt)X if �X does not �t in long.

3. Suppose Tx � double or BigInt. Then, �x is the Real whose kernel is �X.

3By de�nition, int � long. If a system assumes that int = long then long must be replaced by
BigInt.

33

4.3.2 Uni�er

We need the concept of uni�ers to de�ne the binary operators.
Let s and t 2 RealType. We say u 2 RealType uni�es s and t if s � u and t � u

where � is de�ned as in (25). If u uni�es s and t, u is called a uni�er of s and t. For
example, both ExBigFloat and AppBigFloat are the uni�ers of double and BigInt.

The most general uni�er (MGU) of s and t is de�ned to be u 2 RealType such
that

� u uni�es s and t,

� 8 uni�er u0 of s and t, u0 6< u.

For example, the MGU of double and BigInt is ExBigFloat.
Note, as long as both s and t 2 RealType, their MGU is uniquely determined.

4.3.3 Addition, Subtraction and Multiplication

We now de�ne the binary operators +, � and � over Real.
Let x and y be Real whose kernels are X and Y , respectively. Further, let u be

the MGU of Tx and Ty.
For @ 2 f+;�; �g, we de�ne x@y as follows:

1. Suppose u = int, i.e., Tx = Ty = int. Note @ de�ned in int is not overow-free.
Thus, x@y is the Real whose kernel is8><>:

X@Y if X@Y �ts in int

(long)X@(long)Y if X@Y does not �t in int but �ts in long

(BigInt)X@(BigInt)Y if X@Y does not �t in long.

2. Suppose u = long. Again, @ de�ned in long is not overow-free. Thus, x@y is
the Real whose kernel is(

(long)X@(long)Y if (long)X@(long)Y �ts in long

(BigInt)X@(BigInt)Y if (long)X@(long)Y does not �t in long.

3. Suppose u = double. Then, @ de�ned in double is neither overow-free nor
underow-free. Moreover, even when @ does not cause over/underow, the result
may be rounded (an exception \inexact" is caused). Since we assume that a non-
exact double cannot be a kernel of Real, we must use @ in BigFloat when the
result of @ in double is rounded. Thus, x@y is the Real whose kernel is8>>>>>>>><>>>>>>>>:

(double)X@(double)Y
if (double)X@(double)Y does not cause exceptions:

overow or underow or inexact
(BigFloat)X@(BigFloat)Y

if (double)X@(double)Y causes an exception:
overow or underow or inexact.

34

4. Suppose BigInt � u � Rational. Set v 2 KernelType to be(
BigFloat if u = ExBigFloat

u otherwise.

Then, @ de�ned in v is overow-free. Thus, x@y is just the Real whose kernel
is (v)X@(v)Y .

5. Suppose the one of Tx and Ty is Rational and the other is AppBigFloat.
WLOG, we may assume that Tx = Rational and Ty = AppBigFloat. Al-
though u = AppBigFloat, we cannot simply say that x@y is the Real whose
kernel is (BigFloat)X@(BigFloat)Y , because Rational cannot be casted into
BigFloat. Instead, we �rst compute an approximation bx of x to some precision
so that Tbx = AppBigFloat, then we de�ne x@y to be the Real whose kernel iscX@Y where cX is the kernel of bx.
We now state how much precision is speci�ed to get bx.
(a) If @ = + or � then bx �= x [1;�blgErryc].

Note

Errbx � Erry; (29)

since Errbx � 2blgErryc � Erry.

(b) If @ = � then bx �= x [max fblg jVyjc � blgErryc ; 0g+ 1;1].

Note, by (26),

jVbxjErry � jVxjErry;

and

Errbx jVyj � jVxjErry;

since Errbx � jVxj 2�(blgjVyjc+1)+blgErryc � jVxjErryjVyj , and

ErrbxErry � jVxjErry:

because Errbx � jVxj 2�1. All together,
max fjVbxjErry; Errbx jVyj ; ErrbxErryg � jVxjErry: (30)

6. If Tx = Ty = AppBigFloat then x@y is the Real whose kernel is X@Y .

For example, if x = hExBigFloat; X; 0i and y = hRational; R; 0i then x + y =
hRational; (Rational)X +R; 0i where + is the addition de�ned in Rational.

35

4.3.4 Division

To de�ne the binary operator = over Real, we must clarify the semantics of =.
Let x and y be Real whose kernels are X and Y , respectively. We would like

to de�ne z = x=y so that x = y � z. Unfortunately, in some types, the operator =
does not satisfy this condition. For example, if X and Y are both int then X=Y is

sgn (X Y)
j���X

Y

���k which is di�erent from X
Y
(unless Y jX). Hence, we �rst cast X and Y

to be Rational or BigFloat where = is appropriately de�ned.
Let u be the MGU of Tx and Ty. We de�ne x=y as follows:

1. If u 2 fint; long; BigInt; Rationalg then x=y is the Real whose kernel is
(Rational)X=(Rational)Y .

2. Suppose u = double or ExBigFloat. Then, x=y is the Real whose kernel is
(BigFloat)X=(BigFloat)Y . We could use the division in Rational, but con-
structing Rational from double or BigFloat is expensive, in general.

3. Suppose that one of Tx and Ty is Rational and the other is AppBigFloat.
WLOG, we may assume that Tx = Rational and Ty = AppBigFloat. Again,
instead of casting X into BigFloat, x must be approximated by bx so that
Tbx = AppBigFloat. We set bx �= x [max fblg jVyjc � blgErryc ; 0g+ 1;1] andcX to be the kernel of bx. Then, x=y is the Real whose kernel is cX=Y .

Note

jVbxj
jVyj

Errbx
jVbxj � jVxj

jVyj
Erry
jVyj ;

since Errbx � jVxj 2�(blgjVyjc+1)+blgErryc � jVxjErryjVy j , and

jVbxj
jVyj

Erry
jVyj �

jVxj
jVyj

Erry
jVyj ;

by (26). Hence

jVbxj
jVyj max

(
Errbx
jVbxj ; ErryjVyj

)
� jVxj

jVyj
Erry
jVyj : (31)

4. If Tx = Ty = AppBigFloat then x=y is the Real whose kernel is X=Y .

4.3.5 Squareroot

Let x be Real whose kernel is X. Since there is no type where
p
X can be com-

puted exactly, we use the function BigFloat sqrt (BigFloat hmX ; errX ; expXi) which
computes

q
hmX ; errX ; expXi for mX � 0 (see Section 3.6).

1. Unless Tx = Rational then sqrt (x) is de�ned to be the Real z whose kernel is
sqrt ((BigFloat)X).

36

2. If Tx = Rational then, once again, x must be approximated by bx so that Tbx =
AppBigFloat. We set bx �= x [1; 2 adefault + 8] and cX to be the kernel of bx.
Then, sqrt (x) is de�ned to be the Real z whose kernel is sqrt

�cX�.
Note q

Errbx � 2�adefault�4: (32)

4.3.6 Properties

Proposition 12 Let x and y be Real.

1. If a real X belongs to x then �X belongs to �x.
2. For @ 2 f+;�; �; =g, if a real X belongs to x and a real Y belongs to y then

X@Y belongs to x@y.

3. If a real X � 0 belongs to x then
p
X belongs to sqrt (x).

Proof. Clear from de�nitions. Q.E.D.

Proposition 13 Let x, y and z be Real.

1. If z = x� y then

Errz � 6 max fErrx; Erryg : (33)

2. If z = x � y then

Errz � 6 max fjVxjErry; Errx jVyj ; ErrxErryg : (34)

3. Suppose z = x=y.

(a) If Errx = Erry = 0 then

Errz � jVxj
jVyj 2

�rdefault (35)

where rdefault is some global constant which users can change.

(b) If either Errx = 0 and jVyj
2
� Erry > 0

or jVxj > Errx > 0 and Erry = 0

or jVxj > Errx > 0 and jVyj
2
� Erry > 0 then

Errz � 12
jVxj
jVy j max

�
Errx
jVxj ;

Erry
jVy j

�
: (36)

4. Suppose z = sqrt (x).

37

(a) If Errx = 0 then

Errz � 2�adefault (37)

where adefault is some global constant which users can change.

(b) If Errx > 0 then

Errz � 16
q
Errx: (38)

Proof. If Tz 6= ExBigFloat or Tz 6= AppBigFloat then the claims are trivial.
If either Tz = ExBigFloat or Tz = AppBigFloat but neither Tx nor Ty is Rational

then the claims follow from Proposition 3, 4, 5 and 6.
Otherwise one of Tx and Ty is Rational and the other is AppBigFloat. WLOG, we

may assume Tx = Rational and Ty = AppBigFloat. In this case, x is approximated
by bx and z is de�ned to be the result of the BigFloat operation applied to bx and y.

1. If z = x� y then

Errz � 6 max fErrbx; Erryg (by Proposition 3)
� 6Erry: (by (29))

2. If z = x � y then

Errz � 6 max fjVbxjErry; Errbx jVyj ; ErrbxErryg (by Proposition 4)
� 6 jVxjErry: (by (30))

3. If z = x=y and jVyj
2
� Erry > 0 then

Errz � 12
jVbxj
jVyj max

(
Errbx
jVbxj ; ErryjVyj

)
(by Proposition 5)

� 12
jVxj
jVyj

Erry
jVyj : (by (31))

4. If z = sqrt (x) then

Errz � 16
q
Errbx (by Proposition 6)

� 2�adefault : (by (32))

Q.E.D.

4.4 Implementation

For the implementation, we use the class inheritance scheme of the C++ language, as
well as the \letter-envelope" technique. From the class Real, we derive several classes,
each of which corresponds to the number types that Real incorporates.

38

class Real

{

Real* rep;

// other members here.

};

class RealInt : public class Real

{

friend class RealLong;

friend class RealDouble;

friend class RealBigInt;

friend class RealBigFloat;

friend class RealRational;

int ker; // kernel

// other members come here.

};

// other inherited classes come here.

Now, consider the following program segment:

double X = 1.0;

BigInt Y = 1;

Real x = X;

Real y = Y;

x + y;

x + y

x.rep->operator +(y)

x.rep->operator +(y)

y.rep->addDouble(*x.rep)

y.rep->addDouble(*x.rep)

x.operator +(y)

class Real

class RealDouble class RealBigInt

Figure 3: The ow for x + y.

Then, x + y is compiled as follows (see Figure 3):

39

1. The binary operator

Real Real :: operator +(const Real) const

is called with the implicit argument x and the explicit argument y.

2. Determine Tx. The operator + applied to the \envelope" x calls the operator +
for its \letter" *x.rep:

virtual Real Real :: operator +(const Real) const

is called with the implicit argument *x.rep and the explicit argument y. By the
virtual function mechanism, the compiler �nds that Tx = double, and actually

Real RealDouble :: operator +(const Real) const

is called.

3. Determine Ty. \Swap" the implicit and explicit arguments and do the same as
before: the member operator + of RealDouble calls

virtual Real Real :: addDouble(const RealDouble) const

with the implicit argument *y.rep and the explicit argument *x.rep. Again,
by the virtual function mechanism, the compiler �nds that Ty = BigInt, and
actually

Real RealBigInt :: addDouble(const RealDouble) const

is called.

4. Now, x + y turns out to be an addition for double and BigInt. Since the MGU
of double and BigInt is ExBigFloat,

Real(BigFloat(*x.rep) + BigFloat(*y.rep)).

is returned.

5 Expr

In this section, we describe the Expr package implemented as a class library in C++.
In addition to the standard library of C++, we assume that we have our class Real.

The class Expr captures a set of algebraic expressions.

40

5.1 De�nition

5.1.1 Node of Expr Tree and Exact Value

An Expr e is a node of some rooted DAG. If Expr e is a leaf of some rooted DAG then
it is

� a parameter node which can store some value in Q.

If Expr e is an internal node of some rooted DAG then it is either

� a unary minus node which has one child f and represents �f , or
� a binary operator node which has two children f and g and represents f@g for
@ 2 f+;�; �; =g, or
� a squareroot node which has one child f and represents

p
f .

A non parameter node is called an operator node.
Let e and f be Expr. The tree rooted at e and the tree rooted at f could share

some subtrees. Hence, a single node may have several parent nodes. This is why we
de�ne an instance of Expr to be a node of some DAG, and not a node of some simple
tree.

Any Expr e is associated with an exact value �e de�ned as follows:

1. Suppose e is a parameter node. If e stores a value x 2 Q then �e = x. Otherwise,
�e is an indeterminate value denoted !e.

2. If e is a unary minus node whose child is f then �e = � �f .

3. If e is a binary operator node which has two children f and g and represents
f@g for @ 2 f+;�; �; =g then �e = �f@�g.

4. If e is a squareroot node whose child is f then �e = � �f .

If every leaf of the tree rooted at e has the exact value in Q then �e is the element of
some algebraically closed �led D containing Q.

In this paper, we may use the same symbol e for an instance of Expr, a tree rooted
at e and its exact value. The context should make our intent clear. For example, in
the statement \if e is a parameter then e 2 Q", the �rst e is meant to be the instance
of Expr and the second e is the exact value of the instance.

5.1.2 Approximation

Let e be Expr and (r; a) 2 N �Z. We say Real be approximates e to precision [r; a] and
write be �= e[r; a]

if e belongs to be and
Errbe � max

n
jej 2�r; 2�a

o
:

41

If be �= e[r; a] then Vbe �= e[r; a], i.e.,

je� Vbej � max
n
jej 2�r; 2�a

o
:

Each Expr e maintains

� an approximate value be in Real, and

� precision [r; a] where r 2 N and a 2 Z

so that be �= e[r; a]. Precision can be set explicitly by users or implicitly by some
function call. Whenever precision [r; a] of Expr e is speci�ed, we recompute the ap-
proximate value be of e so that be �= e[r; a].

5.1.3 Semantics of Assignments

In the Expr package, assignment is somewhat subtle as we now explain.
The copy rule of C++ is \pass by value". Thus, the assignment x = y assigns the

current actual value of y to the actual value of x. We do not want to apply this copy
rule to assignment operators over instances of Expr. Consider the following program:

Expr a, b, c;

Expr D = b * b - 4 * a * c;

// at this point, the exact value of D is !2
b � 4!a!c.

a = 3;

b = 7;

c = 3;

// at this point, the exact value of D is still !2
b � 4!a!c,

// although we expect it to be 13.

If we follow the standard semantics of C++, then the exact value of D at the end of the
program is !2

b �4!a!c. We would like to have special semantics where the exact value
of e becomes 13 at the end of the program.

De�ne the semantics of the assignment operator = for Expr so that the following
holds:

Fix a scope S. Let e, f and g be Expr and x be Real. Further, let � be an algebraic
expression which involves +, (unary and binary) �, �, = and p .

1. Suppose, in S, there are statements of the form

e = � (f) (39)

f = x: (40)

If (40) precedes (39), and in between (40) and (39) there is no assignment state-
ment whose left operand is f then, as in the standard C++ semantics, the exact
value of e becomes � (x) when (39) is stated. If (39) precedes (40), and in be-
tween (39) and (40) there is no assignment statement whose left operand is e
then, unlike the standard C++ semantics, the exact value of e becomes � (x) when
(40) is stated.

42

2. Suppose, in S, there are statements of the form

e = � (f) (41)

f = g: (42)

If (42) precedes (41), and in between (42) and (41) there is no assignment state-
ment whose left operand is f then, as in the standard C++ semantics, the exact
value of e becomes the exact value of � (g) when (41) is stated. If (41) precedes
(42), and in between (41) and (42) there is no assignment statement whose left
operand is e then, unlike the standard C++ semantics, the exact value of e be-
comes the exact value of � (g) when (42) is stated.

Note our new semantics for the assignment operator causes a side-e�ect:
Fix a scope S. Let e and f be Expr and � be an algebraic expression which involves

+, (unary and binary) �, �, = and p . Suppose, in S, there is a statement of the form

e = � (f) :

Then, in the rest of S, until e is assigned to be something else, whenever the assignment
operator whose left operand is f is stated, the exact value of e is changed.

The assignment of the form e = � (e) is not de�ned. Also, the operators +=, -=,
*= and /= are not de�ned.

5.2 Implementation

To realize the semantics described above, again, we use the full power of the \letter-
envelope" technique.

There are two basic classes, the class Expr for \envelopes" and the class ExprRep
for \letters". From ExprRep, we derive three classes, ParamRep, UnaryOpRep and
BinOpRep. From UnaryOpRep, we derive two classes, NegRep and SqrtRep. From
BinOpRep, we derive four classes, AddRep, SubRep, MultRep and DivRep. (See Figure
4.) It is clear what each of those classes represents.

ParamRep UnaryOpRep

NegRep

SqrtRep

ExprRep

DivRepSubRep

AddRep MultRep

BinOpRep

Expr

Figure 4: Expr, ExprRep and the classes inherited from ExprRep

The class ExprRep is derived from the class Expr. Thus, an instance of the class
ExprRep could point to another instance of the class ExprRep.

43

class Expr

{

protected:

Expr* rep;

// other members come here.

};

class ExprRep : public class Expr

{

friend class Expr;

friend class ParamRep;

friend class UnaryOpRep;

friend class BinOpRep;

private:

unsigned refCount;

protected:

Real appValue; // approximate value

// other members come here.

};

// the inherited classes come here.

5.2.1 Node

A node of Expr tree is realized as a chain that consists of 0 or 1 \envelope" (Expr)
followed by 1 or more \letter(s)" (ExprRep) (see Figure 5).

The last letter in the chain speci�es the type of the node, e.g., if the last letter in
the chain is NegRep then the chain represents a unary minus node. The approximate
value and the precision of the chain reside in the last letter.

ExprRepExprRepExpr

Figure 5: The chain of Expr. Arrows indicate rep pointers.

The last letter in the chain is characterized as an ExprRep where rep == this

holds. Hence, given a chain of Expr, its last letter is detected as follows: starting
from any instance of Expr or ExprRep in the chain, follow the chain until reaching the
instance where rep == this holds.

44

5.2.2 Construction

A new parameter node e which stores x 2 Q is a chain of one Expr and one ParamRep
which contains Real x.

Expr

e Real x

ParamRep

A new unary minus node e which represents �f is a chain of one Expr and one
NegRep whose child is *f.rep.

ExprRepExprRep

NegRep

e

Expr

Expr

f

A new binary operator node e which represents f@g is a chain of one Expr and one
letter of some derived class of BinOpRep (depending on @) whose children are *f.rep
and *g.rep.

ExprRepExprRepExpr

f

e

Expr

ExprRepExpr

g

ExprRep

BinOpRep

A new squareroot node e which represents
p
f is a chain of one Expr and one

SqrtRep whose child is *f.rep.

ExprRepExprRepExpr

f

e

Expr SqrtRep

45

5.2.3 Assignment

Let e and f be Expr and x be Real.
The assignment operation e = x is done as follows:

1. Suppose *e.rep is ParamRep. Then, *e.rep can store x. We cut the chain
headed by e at *e.rep and destroy the instances in the chain headed by e.rep->rep
(if exist), and set e.rep->exValue to be x.

Expr

e Real x X

ParamRep ExprRep

2. Suppose *e.rep is UnaryOpRep or BinOpRep. Then, e.rep cannot store x. First,
we cut the chain headed by e at the *e.rep and destroy the instances in the chain
headed by e.rep->rep (if exist). Then, we cut the link(s) from to its child(ren)
(if exists) and destroy the chain(s) headed by *e.rep's child(ren). Finally, we
construct a new ParamRep which will store x, and make both e and the current
*e.rep point to this newly constructed ParamRep.

Expr

e

ExprRep

ExprRep

Real x

ParamRep

ExprRep

or BinOpRep
UnaryOpRep

X
X

X

The assignment operation e = f is done as follows:
First, we cut the chain headed by e at the *e.rep and destroy the instances in the

chain headed by e.rep->rep (if exist). Then, we cut the link(s) from to its child(ren)
(if exist(s)) and destroy the chain(s) headed by *e.rep's child(ren). Then, we set
e.rep->rep to be *f.rep.

Expr

e

ExprRep

ExprRepExprRep

ExprRep ExprRepExpr

f

ExprRep

X

or BinOpRep
UnaryOpRep

X

46

6 Root Bound

In this section, we describe our algorithm to determine whether or not a given Expr

is exactly 0. The algorithm is based on the theory of the root bounds for polynomials
over an algebraically closed �eld. The missing proofs for the theorems are found in
[Yap97].

6.1 Notations

Fix an algebraically closed �eld D . Any Expr e can be viewed as an element of D , i.e.,
9E(X) 2 D [X] such that E(e) = 0.

Write

E(X) =
mX
i=0

eiX
i where em 6= 0.

We say E(X) is of degree m and write degE = m. The leading coe�cient of E(X) is
em.

Let �1; : : : ; �m 2 D (not necessarily distinct) be all the roots of E(X). Then

E(X) = em
mY
i=1

(X � �i):

De�ne

jjEjj1 =
mX
i=0

jeij

jjEjj2 =

vuut mX
i=0

jeij2

jjEjj1 = max fje0j ; � � � ; jemjg :
Note jjEjj1 � jjEjj2 � jjEjj1.

6.2 Root Bound

In this subsection, we describe Landau's root bound theorem and introduce our algo-
rithm to determine whether or not a given Expr e is exactly 0, provided the 2-norm of
E(X) 2 D [X] such that E(e) = 0 is known.

6.2.1 Landau's Root Bound

We start from Landau's root bound theorem which gives us an upper bound for the
magnitude of any root of E(X):

Theorem 14 (Landau) For any root � of E(X) =
Pm

i=0 eiX
i 2 D [X] with em 6= 0,

j�j � jjEjj2jemj :

47

Let E(X) =
Pm

i=0 eiX
i 2 D [X] with em 6= 0. De�ne the tail coe�cient of E(X) to

be et which satis�es

et 6= 0 and ei = 0 i = 0; : : : ; t� 1:

Such t always exists, since em 6= 0. Obviously, t � m.

Lemma 15 Let E(X) =
Pm

i=0 eiX
i with em 6= 0 be a polynomial in D [X] whose tail

coe�cient is et. Then, E(X) has a non-zero root in D i� t < m.

Proof. We show that the only root of E(X) is 0 i� t = m.
If the only root of E(X) is 0 then E(X) = emX

m.
Conversely, the equation emX

m = 0 where em 6= 0 has the only solution 0 over the
integral domain D . Q.E.D.

Theorem 16 Let E(X) =
Pm

i=0 eiX
i with em 6= 0 be a polynomial in D [X] whose tail

coe�cient is et. For any non-zero root � of E(X)

j�j � jetj
jjEjj2 :

Proof. De�ne

F (X) = XmE
�
1
X

�
= Xm

mX
i=t

ei
�
1
X

�i
=

m�tX
j=0

em�jXj:

Suppose E(X) has a non-zero root. By lemma 15, t < m. Hence, deg F = m� t �
1, and for any non-zero root � of E(X), 1

�
is a root of F (X).

Since jjF jj2 = jjEjj2 and the leading coe�cient of F (X) is the tail coe�cient of

E(X), applying Landau's root bound for 1
�
yields

��� 1
�

��� � jjEjj2jetj ;

or equivalently

j�j � jetj
jjEjj2 :

Q.E.D.

Corollary 17 Let � be a root of E(X) 2 Z[X]. Then

� 6= 0 i� j�j � 1
jjEjj2 :

Proof. The su�cient condition is trivial.
The necessary condition is immediate from Theorem 16. Q.E.D.

48

6.2.2 Algorithm

Let e be Expr and E(X) 2 Z[X] such that E(e) = 0. De�ne a length bound le of e to
be a positive integer which satis�es

le � blg jjEjj2c :
Note 1

jjEjj2 > 2�le�1.

Proposition 18 e = 0 i� 0 belongs to be where be �= e [1; le + 2].

Proof. The necessary condition is trivial.
Suppose 0 belongs to be, i.e., jVbej � Errbe. Then

jej � je� Vbej+ jVbej � 2Errbe:
Since be �= e [1; le + 2], Errbe � 2�le�2. Hence

jej � 2�le�1 < 1
jjEjj2 :

By Corollary 17, e = 0. Q.E.D.

Proposition 18 suggests the algorithm to determine whether or not a given Expr e
is exactly 0. We simply compute be �= e [1; le + 2]. If jVbej � Errbe then e is exactly 0.
Otherwise, e 6= 0.

6.3 Resultant

To invoke our algorithm to determine whether or not a given Expr e is exactly 0, we
must calculate the length bound le of E(X) 2 Z[X] such that E(e) = 0. In this
subsection, we describe the method of �nding such an E(X).

6.3.1 Sylvester Resultant

Let F (X) and G(X) be polynomials in D [X] of degree m and n, respectively. Write
F (X) =

Pm
i=0 fiX

i and G(X) =
Pn

i=0 giX
i where fmgn 6= 0.

The Sylvester matrix sylX (F;G) of F and G with respect to X is the (m + n)
dimensional square matrix which is de�ned to be0BBBBBBBBBBBBBBBBBBBB@

fm fm�1 � � � f0
fm � � � f1 f0

. . . � � � . . .

fm � � � f0
gn gn�1 � � � g0

gn � � � g1 g0
. . . � � � . . .

gn � � � g0

1CCCCCCCCCCCCCCCCCCCCA
49

The Sylvester resultant resX (F;G) of F and G with respect to X is de�ned to be

det (sylX (F;G)) :

Let �1; : : : ; �m and 1; : : : ; n be the roots of F and G, respectively.
The following lemma is a well-known property of the Sylvester resultant which is

sometimes used as an alternative de�nition of the Sylvester resultant.

Lemma 19 (Poisson's De�nition for Resultant)

resX (F;G) = fnm

mY
i=1

G (�i) = gmn

nY
j=1

F (j) = fnmg
m
n

mY
i=1

nY
j=1

(�i � j) :

Theorem 20

1.

resY (F (X � Y); G(Y)) = fnmg
m
n

mY
i=1

nY
j=1

(X � (�i � j)) : (43)

2.

resY
�
Y mF

�
X
Y

�
; G(Y)

�
= fnmg

m
n

mY
i=1

nY
j=1

(X � �ij): (44)

Proof.

1.

resY (F (X � Y); G(Y)) = gmn

nY
j=1

F (X � j)

= gmn

nY
j=1

fm

mY
i=1

(X � j � �i)

!

= fnmg
m
n

mY
i=1

nY
j=1

(X � (�i � j)) :

2.

resY
�
Y mF

�
X
Y

�
; G(Y)

�
= gmn

nY
j=1

mj F
�
X
j

�

= gmn

nY
j=1

mj fm

mY
i=1

�
X
j
� �i

�!

= fnmg
m
n

nY
j=1

mY
i=1

�
j

�
X
j
� �i

��

= fnmg
m
n

mY
i=1

nY
j=1

(X � �ij):

Q.E.D.

50

Proposition 21 Algebraic numbers are closed under taking the inverse, addition and
multiplication. In fact, algebraic numbers form a �eld.

Proof. Let � and 2 D . Then, 9F (X) and G(X) 2 Z[X] so that F (�) = G() = 0.

If � 6= 0 then 1
�
is a root of

XdegFF
�
1
X

�
(45)

(see the proof for Theorem 16). By (43), � � is a root of

resY (F (X � Y); G(Y)) : (46)

By (44), � is a root of

resY
�
Y deg FF

�
X
Y

�
; G(Y)

�
: (47)

Finally, if F (X) and G(X) are both in Z[X] then so are (45), (46) and (47), because
of their constructions. Q.E.D.

6.3.2 Algorithms

Fix any Expr e. We would like to �nd E(X) 2 Z[X] such that E(e) = 0. They are
computed recursively by traversing the Expr tree e bottom-up from the leaves to the
root e.

1. Suppose e is a leaf. Then, the exact value e 2 Q is known. Writing e =
p
q
where

(p; q) 2 Z� Z6=0 with gcd(p; q) = 1, we �nd that

E(X) = qX � p: (48)

2. Suppose e is of the form e = �f for some Expr f . By assumption, F (X) =Pm
i=0 fiX

i 2 Z[X] with fm 6= 0 such that F (f) = 0 is known. Then

E(X) = F (�X) =
mX
i=0

(�1)ifiX i: (49)

The correctness is obvious.

3. Suppose e is of the form e = f@g for some Expr f and g and for some @ 2
f+;�; �; =g. By assumption, F (X) and G(X) 2 Z[X] such that F (f) = G(g) = 0
are known.

(a) If e = f + g then

E(X) = resY (F (X � Y); G(Y)) (50)

or
E(X) = resY (G(X � Y); F (Y)) : (51)

The correctness is immediate from (46).

51

(b) If e = f � g then

E(X) = resY (F (X + Y); G(Y)) (52)

or

E(X) = H(�X) where H(X) = resY (G(X + Y); F (Y)) : (53)

The correctness for (52) is immediate from (46). Also, by (46), g � f is a
root of H(X). Hence, f � g = �(g � f) is a root of H(�X).

(c) If e = f � g then 4

E(X) = resY
�
Y degFF

�
X
Y

�
; G(Y)

�
: (54)

The correctness is immediate from (47).

(d) If g 6= 0 and e = f=g then

E(X) = resY
�
Y degFF

�
X
Y

�
; Y degGG

�
1
Y

��
: (55)

The correctness is proven as follows:

Since g 6= 0, by (45), 1
g
is a root of XdegGG

�
1
X

�
. By (47),

f
g
= f 1

g
is a

root of (55).

4. Suppose e is of the form e = sqrt (f) for some Expr f with f � 0. By assumption,
F (X) =

Pm
i=0 fiX

i 2 Z[X] with fm 6= 0 such that F (f) = 0 is known. Then

E(X) = F
�
X2
�
=

mX
i=0

fiX
2i: (56)

This is correct, since

E(e) =
mX
i=0

fi

�q
f
�2i

=
mX
i=0

fif
i = 0:

6.4 Degree-Length Bound

In the previous subsection, we described the method, for a given Expr e, of �nding
E(X) 2 Z[X] such that E(e) = 0. We would like to compute the length bound le
of E(X). The naive approach is just to calculate all the coe�cients of E(X) and
use them to get blg jjEjj2c. This is ine�cient both in terms of space and time: To
�nd E(X), for each descendent f of e, we must �nd a polynomial F (X) 2 Z[X]
such that F (f) = 0, but the degree and the magnitudes of the coe�cients of those
polynomials easily become huge. To avoid these problems, we compute an upper bound
for blg jjEjj2c which may not be tight, but could be gotten much more e�ciently. In
fact, we compute it without knowing any coe�cient of E(X).

4We could also have

E(X) = resY

�
Y degGG

�
X
Y

�
; F (Y)

�
:

But unlike the addition or subtraction, having this alternative choice will not a�ect our algorithm.
Hence, we can safely ignore it.

52

6.4.1 Generalized Hadamard Bound

We are going to use the generalized version of Hadamard Bound [GG74] which gives
us an upper bound for the 2-norm of the determinant of a matrix over C [X]:

Theorem 22 (Generalized Hadamard Bound) Let P (X) = [Pj;k(X)] be an n di-
mensional square matrix over C [X]. Then

jjdetP (X)jj2 �
nY
j=1

vuut nX
k=1

jjPj;k(X)jj21: (57)

Proposition 23 Let F (X) =
Pm

j=0 fjX
j and G(X) =

Pn
j=0 gjX

j 2 Z[X] with fmgn 6=
0.

1. If E(X) = resY (F (X � Y); G(Y)) then

degE � mn and jjEjj2 �
�
jjF jj2 2m+1

�n jjGjjm2 : (58)

2. If E(X) = resY
�
Y mF

�
X
Y

�
; G(Y)

�
then

degE � mn and jjEjj2 � jjF jjn2 jjGjjm2 : (59)

Proof.

1.

F (X � Y) =
mX
j=0

fj(X � Y)j

=
mX
j=0

fj

jX
k=0

j

k

!
Xj�k(�Y)k

=
mX
k=0

0@(�1)k mX
j=k

fj

j

k

!
Xj�k

1AY k:

For each of the upper n rows of sylY (F (X � Y); G(Y)), any non-zero element
in the row is a polynomial (in X) of degree at most m, and for each of the lower
m rows, all the elements in the row are constants. Hence, degE � mn.

For each of the upper n rows of sylY (F (X � Y); G(Y)), the square root of the
sum of the squared 1-norm of the elements in the row is bounded from above asvuuut mX

k=0

������
������(�1)k

mX
j=k

fj

j

k

!
Xj�k

������
������
2

1

�
vuuut mX

k=0

0@ mX
j=k

jjF jj1

j

k

!1A2

�
mX
k=0

mX
j=k

jjF jj1

j

k

!

= jjF jj1
mX
j=0

jX
k=0

j

k

!

53

= jjF jj1
mX
j=0

2j

� jjF jj1 2m+1

� jjF jj2 2m+1:

For each of the lower m rows of sylY (F (X � Y); G(Y)), the square root of the
sum of the squared 1-norm of the elements in the row isvuut nX

j=0

jgjj2 = jjGjj2 :

Applying (57) to E(X),

jjEjj2 �
�
jjF jj2 2m+1

�n jjGjjm2 :

2. Let ft be the tail coe�cient of F (X). Then

Y mF
�
X
Y

�
=

m�tX
j=0

fm�jXm�jY j:

For each of the upper n rows of sylY
�
Y mF

�
X
Y

�
; G(Y)

�
, any non-zero element

in the row is a polynomial (in X) of degree at most m, and for each of the lower
m rows, all the elements in the row are constants. Hence, degE � mn.

For each of the upper n rows of sylY
�
Y mF

�
X
Y

�
; G(Y)

�
, the square root of the

sum of the squared 1-norm of the elements in the row isvuutm�tX
j=0

jjfm�jXm�jjj21 =

vuutm�tX
j=0

jfm�jj2

=

vuut mX
k=t

jfkj2

= jjF jj2 :

For each of the lower m rows of sylY
�
Y mF

�
X
Y

�
; G(Y)

�
, the square root of the

sum of the squared 1-norm of the elements in the row isvuut nX
j=0

jgjj2 = jjGjj2 :

Applying (57) to E(X),
jjEjj2 � jjF jjn2 jjGjjm2 :

Q.E.D.

54

6.4.2 Algorithms

Let e be Expr and E(X) 2 Z[X] such that E(e) = 0. De�ne a degree-length bound of
e to be a pair (de; le) 2 N>0 � N which satis�es

de � degE and le � blg jjEjj2c :

By Proposition 18, e = 0 i� 0 belongs to be where be �= e [1; le + 2].
Fix any Expr e. Let E(X) 2 Z[X] such that E(e) = 0. We would like to �nd a

degree-length bound (de; le) of e. The bounds are computed recursively by traversing
the Expr tree e bottom-up from the leaves to the root e.

1. Suppose e is a leaf. Then, by (48), E(X) = pX � q where (p; q) 2 Z� Z6=0 such
that e =

p
q
and gcd(p; q) = 1. Thus

degE = 1 and jjEjj2 =
q
p2 + q2:

Hence, we set

de 1

le max fblg jpjc ; blg jqjcg+ 1 �
j
1
2
+ lg (max fjpj ; jqjg)

k
=

j
1
2

�
1 + lg (max fjpj ; jqjg)2

�k
=

j
1
2 lg (2max fp2; q2g)

k
�

j
lg
p
p2 + q2

k
:

2. Suppose e is of the form e = �f for some Expr f . Assume (df ; lf) is known. Let
F (X) 2 Z[X] found in Section 6.3.2 such that F (f) = 0. Then, df � degF and
lf � blg jjF jj2c. By (49), E(X) = F (�X). Thus

degE = deg F and jjEjj2 = jjF jj2 :

Hence, we set

de df

le lf :

3. Suppose e is of the form e = f@g for some Expr f and g and for some @ 2
f+;�; �; =g. Assume (df ; lf) and (dg; lg) are known. Let F (X) and G(X) 2 Z[X]
found in Section 6.3.2 such that F (f) = G(g) = 0. Then, df � degF , lf �
blg jjF jj2c, dg � degG and lg � blg jjGjj2c.
(a) Suppose e = f + g. If, as (50), E(X) = resY (F (X � Y); G(Y)) then, by

(58),

degE � degF degG and jjEjj2 �
�
jjF jj2 2degF+1

�degG jjGjjdeg F2 :

55

Thus

blg jjEjj2c = bdegG (lg jjF jj2 + degF + 1) + degF lg jjGjj2c
� bdegG (lg jjF jj2 + degF + 1)c+ bdegF lg jjGjj2c+ 1

� degG (blg jjF jj2c+ deg F + 1) + degG� 1

+degF blg jjGjj2c + degF � 1 + 1:

If, as (51), E(X) = resY (G(X � Y); F (Y)) then, by (58),

degE � degG degF and jjEjj2 �
�
jjGjj2 2degG+1

�degF jjF jjdegG2 :

Thus

blg jjEjj2c � degF (blg jjGjj2c + degG+ 1) + degF � 1

+degG blg jjF jj2c+ degG� 1 + 1:

Hence, we set

de df dg

le df lg + dg lf + df dg +min fdf ; dgg+ df + dg � 1:

(b) Suppose e = f � g. If, as (52), E(X) = resY (F (X + Y); G(Y)) then, by
(58),

degE � degF degG and jjEjj2 �
�
jjF jj2 2degF+1

�degG jjGjjdeg F2 :

If, as (53), E(X) = H(�X) where H(X) = resY (G(X + Y); F (Y)) then,
by (58),

degE = degH � degG deg F

and
jjEjj2 = jjHjj2 �

�
jjGjj2 2degG+1

�degF jjF jjdegG2 :

Hence, we set

de df dg

le df lg + dg lf + df dg +min fdf ; dgg+ df + dg � 1:

(c) If e = f � g then, by (54), E(X) = resY
�
Y deg FF

�
X
Y

�
; G(Y)

�
. By (59),

degE � degF degG and jjEjj2 � jjF jjdegG2 jjGjjdegF2 :

Thus

blg jjEjj2c = bdegG lg jjF jj2 + deg F lg jjGjj2c
� bdegG lg jjF jj2c + bdegF lg jjGjj2c+ 1

� degG blg jjF jj2c+ degG� 1

+degF blg jjGjj2c + degF � 1 + 1:

Hence, we set

de df dg

le df lg + dg lf + df + dg � 1:

56

(d) If g 6= 0 and e = f=g then, by (55), E(X) = resY
�
Y deg FF

�
X
Y

�
; H(Y)

�
where H(Y) = Y degGG

�
1
Y

�
. Since degH � degG and jjHjj2 = jjGjj2, by

(59),
degE � degF degH � degF degG

and
jjEjj2 � jjF jjdegH2 jjHjjdegF2 � jjF jjdegG2 jjGjjdeg F2 :

Hence, we set

de df dg

le df lg + dg lf + df + dg � 1:

4. Suppose e is of the form e = sqrt (f) for some Expr f with f � 0. Assume
(df ; lf) is known. Let F (X) 2 Z[X] found in Section 6.3.2 such that F (f) = 0.
Then, df � deg F and lf � blg jjF jj2c. By (56), E(X) = F (X2). Thus

degE = deg2 F and jjEjj2 = jjF jj2 :

Hence, we set

de d2f
le lf :

7 Precision-Driven Algorithm

In this section, we describe our algorithm to compute an approximation of a given
Expr to a given precision.

Let e be Expr. Whenever precision pe is given, for each child f of e, we compute the
precision pf of f so that if f is approximated by bf to pf then be which is computed by

applying Real operation to bf will be an approximation of e to the required precision
pe. Thus, in our algorithms, the precisions are propagated top-down from e to the
leaves, whereas approximate values are collected bottom-up from the leaves to e.

7.1 Approximation

Let e be Expr and (r; a) 2 N �Z. We say Real be approximates e to precision [r; a] and
write be �= e[r; a]

if e belongs to be and
Errbe � max

n
jej 2�r; 2�a

o
:

If be �= e[r; a] then Vbe �= e[r; a], i.e.,

je� Vbej � max
n
jej 2�r; 2�a

o
:

57

7.1.1 Properties

Lemma 24 Fix Expr e and (r; a) 2 N � Z. Let be �= e[r; a].

1. If a � �blg jejc then
jVbej � 2 jej : (60)

2. If r � 1 and a � �blg jejc + 1 then

jVbej � jej2 : (61)

3. If r � 1 and a � �blg jejc + 1 then

jVbej � Errbe: (62)

Proof.

1. If jVbej � jej then there is nothing to prove.

Suppose jVbej > jej. Since r � 0 and a � �blg jejc, max fjej 2�r; 2�ag � jej.
Then

jVbej � jej+ Errbe � jej+max fjej 2�r; 2�ag � 2 jej :

2. If jVbej � jej then there is nothing to prove.

Suppose jVbej < jej. Since r � 1 and a � �blg jejc + 1, max fjej 2�r; 2�ag � jej
2
.

Then

jVbej � jej � Errbe � jej �max fjej 2�r; 2�ag � jej
2
:

3. Again, max fjej 2�r; 2�ag � jej
2
. Together with (61),

Errbe � max fjej 2�r; 2�ag � jej
2
� jVbej :

Q.E.D.

7.2 Most Signi�cant Bit

Let e be Expr. The most signi�cant bit (MSB) �e of e is de�ned to be(blg jejc if e 6= 0
�1 if e = 0.

Note
2�e � jej < 2�e+1:

Here, we mean 2�1 = 0 by convention. We write �e = sgn (e).

58

The MSB �e of e plays an important role in our precision driven algorithm. If
non-trivial �e is known then each of the relative and absolute precisions of e could be
\translated" to the other. Moreover, a non-trivial �e actually tells us whether or not
e is exactly 0, i.e, if e is exactly 0 then �e = �1. Since we usually do not know the
exact value of e, the MSB itself is hard to compute. Instead, we compute an upper
bound �+

e and a lower bound ��e for the MSB �e of e. We also compute the sign �e of
e which is helpful to compute �+

e and ��e .
We now describe how to compute �+

e , �
�
e and �e.

We will consider two cases:

(a) When e is newly constructed or gets some new substructure.

(b) When e has been approximated at least once to precision [r; a] with r � 1 and
a � ��e + 1.

This idea comes from the following observation:
If e has never approximated, then we use a static algorithm to compute �+

e and
��e . These bounds may not be tight. Thus, once we get some approximation of e, we
try to re�ne �+

e and ��e .

7.2.1 Algorithms for MSB

Let e be Expr. We would like to compute an upper bound �+
e and a lower bound ��e

for the MSB �e of e, as well as the sign �e of e. They are computed recursively by
traversing the Expr tree e bottom-up from the leaves to the root e.

(a) Suppose e is newly constructed or gets some new substructure.

1. Suppose e is a leaf. Then, the exact value e 2 Q is known. Thus, we set

�+
e = ��e blg jejc

�e sgn (e):

2. Suppose e is of the form e = �f for some Expr f . By assumption, �+
f , �

�
f and

�f are known. Then

2�f � j�f j = jf j < 2�f+1:

Thus, we set

�+
e �+

f

��e ��f
�e ��f :

3. Suppose e is of the form e = f@g for some Expr f and g and for some @ 2
f+;�; �; =g. By assumption, �+

f , �
�
f , �f , �

+
g , �

�
g and �g are known.

(a) Suppose e = f � g. There are several cases depending on �f and �g.

59

i. If either e = f + g and �f �g > 0 or e = f � g and �f �g < 0 then

2maxf�f ; �gg < 2�f + 2�g

� jf j+ jgj = jf � gj
< 2�f+1 + 2�g+1 � 2maxf�f ; �gg+2:

Thus, we set

�+
e max

n
�+
f ; �

+
g

o
+ 1

��e max
n
��f ; �

�
g

o
�e �f :

ii. If either e = f + g and �f �g < 0 or e = f � g and �f �g > 0 then

jjf j � jgjj = jf � gj < 2maxf�f+1; �g+1g:

Thus, we set

�+
e max

n
�+
f ; �

+
g

o
:

To get ��e and �e, we consider three sub-cases.

A. Suppose ��f � �+
g � 2. Then

jf � gj = jf j � jgj
> 2�

�

f � 2�
+
g +1

=
�
2�

�

f
��+g �1 � 1

�
2�

+
g +1

� 2�
�

f
��+g �2 2�

+
g +1 (since ��f � �+

g � 1 � 1)

= 2�
�

f
�1:

Thus, we set

��e ��f � 1

�e �f :

Intuitively, the above means that �g is much smaller than �f so
that, even though f � g is performed, g cannot cancel out �f .

B. Suppose ��g � �+
f � 2. By a similar argument to the previous case,

jf � gj = � jf j+ jgj > 2�
�

g �1:

Thus, we set

��e ��g � 1

�e
(
�g if e = f + g
��g if e = f � g.

60

C. Otherwise, �f and �g are almost the same, and most (possibly all)
of the signi�cant bits of f and g will cancel out with each other.
Unfortunately, there is no way to predict how many of them will
cancel out, and we cannot �nd ��e or �e by just using statically
obtained quantities. We must use the algorithm which will be de-
scribed later.

iii. If �f 6= 0 but �g = 0 then f � g = f . Thus, we set

�+
e �+

f

��e ��f
�e �f :

iv. If �f = 0 but �g 6= 0 then jf � gj = jgj. Thus, we set
�+
e �+

g

��e ��g

�e
(
�g if e = f + g
��g if e = f � g.

v. If �f = �g = 0 then f � g = 0.

(b) If e = f � g then

2�f+�g � jf j jgj < 2�f+�g+2:

Thus, we set

�+
e �+

f + �+
g + 1

��e ��f + ��g
�e �f �g:

(c) Suppose e = f=g. If �g = 0 then e is not well-de�ned. Otherwise

2�f��g�1 <
����fg
���� < 2�f��g+1:

Thus, we set

�+
e �+

f � ��g
��e ��f � �+

g � 1

�e �f �g:

4. Suppose e is of the form e = sqrt (f) for some Expr f . By assumption, �+
f , �

�
f

and �f are known. If �f = �1 then e is not well-de�ned. Otherwise

2b
�f
2 c � 2

�f
2 � p

f < 2
�f+1

2 � 2b
�f
2 c+1:

Thus, we set

�+
e

$
�+
f

2

%

��e
$
��f
2

%
�e �f :

61

(b) Suppose e has been approximated by be to precision [r; a] with r � 1 and a �
��e + 1.

The following proposition suggests that we could re�ne �+
e and ��e when a suitable

approximation of e is known.

Proposition 25

�be + 1 � �e � �be � 1:

Proof. By (61),

jej � 2 jVbej < 2�be + 2:

By (60),

jej � jVbej
2 � 2�be � 1:

Q.E.D.

We now could have the algorithm to re�ne �+
e and ��e :

�+
e min

n
�+
e ; �be + 1

o
��e max

n
��e ; �be � 1

o
:

7.3 Precision-Driven Algorithm

Let Expr e and (re; ae) 2 N�Z. We would like to compute Real be such that be �= e [re; ae].
There are several cases depending on the type of e.

1. Suppose e is a leaf. Then, the exact value e 2 Q is known. We simply call the
approximation algorithm to compute be 2 Real with the error-bound [re; ae] such
that e belongs to be. By (27) in Proposition 11, be �= e[r; a].

2. Suppose e is of the form e = �f for some Expr f . The computation of be consists
of two phases:

(a) Set rf re and af ae, and make a recursive call to compute bf �=
f [re; ae].

(b) Set be � bf .
By Proposition 12,���e� ��Vbf���� = je� Vbej � max fjej 2�re; 2�aeg :

3. Suppose e is a binary operator node of the form e = f@g for some Expr f and
g and for some @ 2 f+;�; �; =g. The computation of be consists of two phases:

(a) Determine (rf ; af) and (rg; ag) 2 N � Z so that����e� Vf[rf ;af]@g[rg ;ag]

���� � max
n
jej 2�re; 2�ae

o
;

and make recursive calls to compute bf �= f [rf ; af] and bf �= g [rg; ag].

62

(b) Compute bf@bg to get be.
4. Suppose e is of the form e = sqrt (f) for some Expr f with f � 0. The compu-

tation of be consists of two phases:

(a) Determine (rf ; af) 2 N � Z so that����e� sqrt
�
Vf[rf ;af]

����� � max
n
jej 2�re; 2�ae

o
;

and make a recursive call to compute bf �= f [rf ; af].

(b) Compute sqrt
� bf� to get be.

Since phase (b) of the algorithms for binary operator nodes and sqrt nodes is just
the Real operation (and its correctness immediately follows from Proposition 12), we
will concentrate on phase (a).

7.3.1 Addition and Subtraction

Consider an Expr of the form e = f � g. Given (re; ae) 2 N � Z, we would like to
determine (rf ; af) and (rg; ag) 2 N � Z so that����e� Vf[rf ;af]�g[rg;ag]

���� � max
n
jej 2�re; 2�ae

o
: (63)

Proposition 26 To ensure (63), it su�ces to set

rf max
n
�+
f � ��e + re + 4; 0

o
; af ae + 3;

rg max
n
�+
g � ��e + re + 4; 0

o
; ag ae + 3:

(64)

Proof. By (33), it is enough to show

6max
n
Errbf ; Errbgo � max

n
jej 2�re; 2�ae

o
:

By symmetry, we may assume max
n
Errbf ; Errbgo = Errbf . If Errbf � jf j 2�rf then

6Errbf � 6 jf j 2�rf

� 6 jf j 2�(�+f +1)+��e �re�3

< jej 2�re:
If Errbf � 2�af then

6Errbf � 6 � 2�af
� 6 � 2�ae�3
� 2�ae :

Q.E.D.

63

7.3.2 Lower Bound for MSB

We now describe the algorithm to set ��e and �e for Expr e when e is of the form
either f + g with �f �g < 0 or f � g with �f �g > 0, and neither ��f � �+

g � 2 nor
��g � �+

f � 2. In this case, �f and �g are almost the same, and �e becomes very tiny
(possibly �1). To get ��e and �e, we must eventually compute an approximation of
e to some precision.

Setting

rf max
n
�+
f + le + 6; 0

o
; af le + 5;

rg max
n
�+
g + le + 6; 0

o
; ag le + 5;

we compute bf �= f [rf ; af] and bg �= g [rg; ag] by our precision-driven algorithm. Note
max fjf j 2�rf ; 2�afg � 2�le�5 and max fjgj 2�rg ; 2�agg � 2�le�5. Thus,

max
n
Errbf ; Errbgo � 2�le�5:

By (33),

Errbe � 6max
n
Errbf ; Errbgo � 6 � 2�le�5 < 2�le�2:

Hence, be �= e [1; le + 2].
By Proposition 18, if 0 belongs to be then e = 0.
Unless 0 belongs to be then e 6= 0. Thus, we could set

��e blg (jVbej � Errbe)c
�e sgn (Vbe):

7.3.3 Multiplication

Consider an Expr of the form e = f � g. Given (re; ae) 2 N � Z, we would like to
determine (rf ; af) and (rg; ag) 2 N � Z so that����e� Vf[rf ;af]�g[rg;ag]

���� � max
n
jej 2�re; 2�ae

o
: (65)

Proposition 27 To ensure (65), it su�ces to set

rf re + 4; af max
n
���f + 1; �+

g + ae + 5
o
;

rg re + 4; ag max
n
���g + 1; �+

f + ae + 5
o
:

(66)

Proof. By (34), it is enough to show

6max
n���Vbf ���Errbg; Errbf ���Vbg��� ; ErrbfErrbgo � max

n
jej 2�re ; 2�ae

o
: (67)

Observe rf � 4 and af � ���f + 1. Then, by (62), Errbf � ���Vbf ���. Thus
ErrbfErrbg � ���Vbf ���Errbg:

64

Hence, to have (67), we only need to show

6max
n���Vbf ���Errbg; Errbf ���Vbg���o � max

n
jej 2�re ; 2�ae

o
:

We claim

6
���Vbf ���Errbg � max

n
jej 2�re ; 2�ae

o
:

Since af � ���f + 1, by (60),
���Vbf ��� � 2 jf j. If Errbg � jgj 2�rg then

6
���Vbf ���Errbg � 6 � 2 jf j jgj 2�rg

� 12 jf � gj 2�re�4
� jej 2�re:

If Errbg � 2�ag then

6
���Vbf ���Errbg � 6 � 2 jf j 2�ag

� 12 jf j 2�(�+f +1)�ae�4

< 2�ae :

Similarly

6Errbf ���Vbg��� � max
n
jej 2�re ; 2�ae

o
:

Q.E.D.

7.3.4 Division

Consider an Expr of the form e = f=g. Given (re; ae) 2 N � Z, we would like to
determine (rf ; af) and (rg; ag) 2 N � Z so that����e� Vf[rf ;af]=g[rg;ag]

���� � max
n
jej 2�re; 2�ae

o
: (68)

Proposition 28 To ensure (68), it su�ces to set

rf min fre + 7; max f�+
e + ae + 8; 2gg ; af ���f + rf ;

rg min fre + 7; max f�+
e + ae + 8; 2gg ; ag ���g + rg;

rdefault max frdefault; minfre + 6; �+
e + ae + 7gg :

(69)

Proof. First, note max fjf j 2�rf ; 2�afg = jf j 2�rf and max fjgj 2�rg ; 2�agg =
jgj 2�rg . Thus, we only need to consider the case where f and g are both bounded by
their relative precisions.

Next, observe rf � 2, af � ���f + 2, rg � 2 and ag � ���g +2. Then, by (60) and
(61),

jf j
2
�
���Vbf ��� � 2 jf j and

jgj
2
�
���Vbg��� � 2 jgj : (70)

65

Moreover,

Errbf �
���Vbf ���
2 ; (71)

because Errbf � jf j 2�rf � ���Vbf ��� 2�rf+1 �
���Vbf ���
2 . Similarly

Errbg � jVbgj
2 : (72)

Now, we show that (68) holds. There are two cases.

1. Suppose Errbf = Errbg = 0. By (35), it is enough to show

12

���Vbf ���
jVbgj rdefault � max

n
jej 2�re; 2�ae

o
:

But, by (70),

12

���Vbf ���
jVbgj rdefault � 12

2 jf j
jgj
2

rdefault

� 48 jejmax
�
2�re�6; 2�(�

+
e +1)�ae�6

�
� max

n
jej 2�re; 2�ae

o
:

2. Suppose Errbf > 0 or Errbg > 0. Since (71) and (72) hold, by (36), it is enough
to show

12

���Vbf ���
jVbgj max

8<:Errbf���Vbf ��� ;
Errbg���Vbg���

9=; � max
n
jej 2�re; 2�ae

o
:

If Errbf � jf j 2�rf and Errbg � jgj 2�rg then, by (70),

12

���Vbf ���
jVbgj max

8<:Errbf���Vbf ��� ;
Errbg���Vbg���

9=; � 12
2 jf j
jgj
2

max

8<:Errbfjf j
2

;
Errbg
jgj
2

9=;
� 96 jejmax

�
2�re�7; 2�(�

+
e +1)�ae�7

�
� max

n
jej 2�re; 2�ae

o
:

Q.E.D.

66

7.3.5 Squareroot

Consider an Expr of the form e = sqrt (f). Given (re; ae) 2 N � Z, we would like to
determine (rf ; af) 2 N � Z so that����e� sqrt

�
Vf[rf ;af]

����� � max
n
jej 2�re; 2�ae

o
: (73)

Proposition 29 To ensure (73), it su�ces to set

rf 2 re + 8; af 2 ae + 8;
adefault max fadefault; min f���e + re; aegg : (74)

Proof. There are two cases.

1. Suppose Errbf = 0. By (37), it is enough to show

2�adefault � max
n
jej 2�re; 2�ae

o
:

But
2�adefault � max

n
2�

�

e �re; 2�ae
o
� max fjej 2�re; 2�aeg :

2. Suppose Errbf > 0. By (38), it is enough to show

16
q
Errbf � max

n
jej 2�re ; 2�ae

o
:

If Errbf � jf j 2�rf then

16
q
Errbf � 16

q
jf j 2�rf

= 16
q
jf j 2�re�4

= jej 2�re:

If Errbf � 2�af then

16
q
Errbf � 16

p
2�af

= 16 � 2�ae�4
= 2�ae:

Q.E.D.

67

8 Conclusion

Most geometric algorithms are designed under the assumption that all the numerical
quantities are real (algebraic) numbers and they can be computed exactly. Thus, their
implementations are quite di�cult and often practically impossible.

As an typical example, we consider the problem of the sign determination of de-
terminants of square matrices. Many geometrical predicates such as \left of line" or
\on circle" can be reduced into this problem.

For this problem, several robust implementations are proposed. Some of them
are based on oating-point arithmetic, and therefore, every implementation can work
correctly with some speci�c inputs and under some limited conditions. A user must
carefully choose the appropriate implementation which satis�es his/her request, and
probably some adjustments need to be done.

Our Real/Expr package may relax these annoying conditions to some extent. By
using the Real/Expr package, the user can have a simple implementation, namely,
expand the determinant to get the algebraic expressions for it, and apply the inequality
operator. The elements of the input matrix could be of any type from which an
instance of Real can be constructed. In particular, the inputs could be arbitrarily
long. Moreover, the same implementation can be used for matrices of any dimension
although it is not practical for dimensions above 6.

We would also like to say that the algorithms we use to determine the sign of
expressions may be more e�cient than the other exact computation package where
the naive implementation of the exact computation is taken.

We conclude that users can use our Real/Expr package to implement the exact
algorithms in the very general situation. More speci�cally, the Real/Expr package has
the following signi�cant points:

� Users can implement the exact algorithms without being constrained by the
restrictions caused by �xed-precision arithmetic.

� Users can expect better performance than the traditional exact computation
tools where all numerical quantities are computed exactly.

� Users can deal with algebraic expressions involving the squareroots.

We expect the Real/Expr package will be used in the following situations.
Under some circumstances, the Real/Expr package may be a primary candidate

to implement algorithms. The implementation could be an almost straightforward
interpretation of the underlying algorithm.

Nevertheless, oating-point arithmetic is fast. It is quite natural to choose oating-
point arithmetic to implement algorithms. Then, the robustness (or exactness) needs
to be ensured. In this situation, users can embed the Real/Expr package in their
implementation at some critical points where exactness is important.

Finally, users may use the Real/Expr package as a veri�er of oating-point imple-
mentation.

68

9 Acknowledgements

First of all, I would like to thank Prof. Chee Yap for his supervision, and to Prof.
Marsha Berger for being a reader of my paper.

Also, I would like to express my appreciation to Arieh Listowsky for his com-
ments, to Catalin Floristean for having discussions, and to Fabian Monrose who kept
encouraging me.

References

[Cop92] James O. Coplien. Advanced C++ programming styles and idioms. Addison-
Wesley Publishers, Co., Reading, MA., 1992.

[DY93] T. Dub�e and Chee Yap. A Basis for Implementing Exact Geometric Algo-
rithms (extended abstract), Sep 1993. The electronic copy is available via
ftp://cs.nyu.edu/pub/local/yap/exact/basis.ps.gz.

[GG74] A. J. Goldstein and R. L. Graham. A Hadamard-type bound on the coe�-
cients of a determinant of polynomials. SIAM Review, 16:394{395, 1974.

[Gol91] David Goldberg. What Every Computer Scientist Should Know About Float-
ing Point Arithmetic. ACM Computing Surveys, 23(1):5{48, Mar 1991.

[PH90] David A. Patterson and John L. Hennessy. Computer Architecture: a quanti-
tative approach. Morgan Kaufmann Publishers, Inc., San Mateo, CA., 1990.
(with an appendix on Computer Arithmetic by David Goldberg).

[Yap97] Chee Yap. Fundamental Problems in Algorithmic Algebra. Princeton Uni-
versity Press, Princeton, NJ., 1997. The electronic copy is available via
ftp://cs.nyu.edu/pub/local/yap/algebra-bk/.

69

