
Cellstorm
A bioinformatics software system to visualize subcellular

networks

Ana Neves

afn216@nyu.edu

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in the Department of
Computer Science, New York University

April 25, 2007

Approved: __

Professor Dennis Shasha, Research Advisor

Approved: __

Professor Zvi Kedem, Second Reader

Acknowledgements

I want to gratefully thank all the people who supported me during

my thesis project. I want to give a very special thank you to my research

advisor, Professor Dennis Shasha, for all his guidance and support. I want

to thank Chris Poultney who gave me highly qualified help and directions

for Cellstorm design and implementation. Thanks go also to Manpreet

Katari who gave me great support in the biology area and was always

available to answer my questions. I want to thank in general to all the great

researchers from the plant biology lab of Gloria Coruzzi who have helped

me during the thesis project. Finally, I want to thank my family and my

husband Andre Neves for all the patience and encouraging during the

periods of work.

2

©

Ana Neves

All Rights Reserved, 2007

Contents

1. INTRODUCTION ... 4

2. BIOLOGICAL NETWORKS .. 6

3. RELATED WORK .. 11

3.1. CYTOSCAPE ... 11

Viewing and Filtering a Network ... 11
Combining Interaction and Expression Data ... 12
Comparison with Cellstorm .. 12

3.2. MAPMAN ... 14

Comparison with Cellstorm .. 16
3.3. PATHWAY STUDIO .. 17

Pathway visualization .. 17
Comparison with Cellstorm .. 17

3.4. SUNGEAR .. 19

Comparison with Cellstorm .. 20

4. CELLSTORM INTERFACE .. 21

4.1. SUBCOMPONENTS .. 22

4.2. ZOOMING .. 26

4.3. NETWORKS AND LINKS .. 29

5. CELLSTORM DESIGN .. 33

5.1 DATA .. 34

5.1.1 Gene Ontology ... 35
5.1.2 Files and formatting ... 36

5.2 MODULES .. 38

5.3 PROGRAM STRUCTURE .. 40

6. CELLSTORM IMPLEMENTATION .. 41

6.1 CELLSTORM MAJOR DATA STRUCTURES .. 41

6.2 CELLSTORM MAJOR GRAPHICAL COMPONENTS .. 44

6.3 CELLSTORM MAJOR ALGORITHMS ... 45

6.3.1. Subcomponent placement algorithm .. 45
6.3.2. Drawing highways – thickness and quadratic curves .. 48

7. CELLSTORM INTEGRATION .. 55

3

8. USE CASES ... 57

8.1 BIOLOGICAL CASE STUDY .. 57

8.2. NON- BIOLOGICAL CASE STUDY ... 60

9. CONCLUSION AND FUTURE WORK .. 63

10. REFERENCES ... 65

1. Introduction

In the last few decades a lot has been done with the use of

computers in biological research. Information science has been applied to

biology to produce the field called Bioinformatics . Bioinformatics is now

one of the most rapidly growing areas of biological science, combining the

questions of computer science with those of biological research. The

methods of bioinformatics are being used in different fields such as

genetics, biochemistry, molecular biology, evolutionary science, cell

studies, clinical research, and field biology.

With the genomics revolution, biologists now spend much of their

time using computational tools to help them browse through the large

database of genes, proteins, and interactions. However, the access to

biological databases is not quite enough. One of the reasons is that

biologists must be able to manage and analyze large amounts of data

obtained from different sources, and therefore they have a great need for

data visualization and analysis tools.

4

Cellstorm is a bioinformatics software system that can be used by

biologists to visualize and analyze large amounts of genes’ data. Cellstorm

allows a rapid visualization of genes and networks’ interactions among the

cellular component.

Given a list of genes, an interesting problem is to know where they

located and what are the subcomponents where they are mostly expressed.

Biologists have the data needed to answer this question but a manual

process would be very time consuming. With Cellstorm we can get this

answer in a few seconds. Another interesting problem is to know how the

genes relate to each other. Cellstorm uses data from biological networks

(please refer to next chapter to see more about biological networks) to

display connections between sub- cellular components.

In sum, Cellstorm is a graphical display of genomic data where the

goal is to visualize the position of genes within a cell in terms of their sub-

cellular location and to visualize networks of various types as “highways”.

Although Cellstorm is mainly targeted for biologists, it can be used

in many other different fields. Cellstorm makes as few assumptions as

possible about the data it’s displaying, it doesn’t know, or care, if it’s

working with biological data. Cellstorm is a generic tool that avoids

building in data - specific assumptions and therefore can analyze large

amounts of data of completely different sources and fields.

5

2. Biological Networks

Biological networks facilitate the understanding of the cell’s

functional organization. Post genomic research aims to systematically

catalogue molecules and their interactions within a living cell. Indeed it is

very important to understand how these molecules and the interactions

between them determine the cell’s functional organization. Advances in

network biology indicate that cellular networks are governed by universal

laws.

For over a century, reductionism has provided knowledge about

individual cellular components and their functions, however it is clear that

a discrete biological function can only rarely be attributed to an individual

molecule. Most biological characteristics arise from complex interactions

6

between the cell’s numerous constituents, such as proteins, DNA, RNA and

small molecules.

It is increasingly recognized that complex systems cannot be

described in a reductionist view. A challenge for biology is to understand

the structure and the dynamics of the complex intracellular web of

interactions that contribute to the structure and function of the living cell.

Understanding the behavior of such systems starts with understanding the

topology of the corresponding network. Topological information is

fundamental in constructing realistic models for the function of the

network.

There are several types of networks, including protein - protein

interaction, metabolic, signaling and transcription - regulatory networks.

None of these networks are independent, instead they form a “network of

networks” which is going to be responsible for the behavior of the cell.

The cell’s behavior emerges from the activity of many components

that interact with each other through pair- wise interactions. The

components are just a series of nodes that are connected to each other by

links, with each link representing the interactions between two

components. The network is mainly formed by the nodes and links

together. In a more formal mathematical language one can say that a

network is just a graph (see figure 1).

7

Figure 1: Undirected and Directed networks

As we can see from figure 1, depending on the nature of interactions,

networks can be directed or undirected. For directed networks, the

interaction has a well- defined direction, for example the direction of the

information flow from a transcriptional factor to the gene that it regulates.

For undirected networks, there is no assigned direction between the nodes.

For example, in protein interaction networks, if protein A binds to protein

B, then protein B also binds to protein A. See figure 2.

8

a) Und irected b) Directed

Figure 2: Yeast protein interaction network. Nodes are proteins and links are

physical interactions

This figure was taken from A.- L- Barabasi & Z. Oltvai, Science, 2004

Despite the diversity of networks in nature, their architecture is

governed by a few simple principles that are common to most networks.

There are three models that had an important impact on the

understanding of biological networks: random networks where a fixed

number of nodes are randomly connected to each other, scale- free

networks characterized by a power law degree distribution and hierarchical

networks with clusters combined in an iterative manner. Figure 3

9

illustrates these three network’s architecture models. Studies show that

most networks within the cell approximate a scale- free topology.

Figure 3: Network models

A lot more can be said about biological networks. Here we only

attempted to give a brief introduction on this field and show why

biological networks are so important for the understanding of the cell’s

functional organization. In conclusion, cellular functions are carried out by

groups of genes and gene products in a coordinate manner. Detection of

such functional modules in a complex molecular network is one of the

most challenging problems.

10

3. Related work

The goal of this section is to compare Cellstorm with a set of

existing software systems that are widely used as visualization tools in

several biology fields. All the tools presented in this chapter work with

large data sets of genes and other genes’ related data, for example

networks data.

3.1. Cytoscape

Cytoscape is an open source Java- based software platform that

works on all major operating systems and that can be used for visualizing

networks of any type, as long as data are formatted in Simple Interaction

Format (SIF; three columns indicating interacting molecules and the type of

interaction).

Cytoscape can be extended through a plug- in architecture, allowing

rapid development of additional computational analyses and features.

Viewing and Filtering a Network

We start Cytoscape by loading the network data from a SIF file, or

the user can create the network data manually by using Cytoscape editing

tools. If the network has thousands of nodes, the user can filter the data

using measures of node and edge density which can help organize the

network into highly connected sub- networks.

11

Once the network data is fully loaded Cytoscape provides a wide

range of display layouts: layouts based on spring forces, layouts that try to

detect certain types of graph structure, annotation - based layouts, and

many others. Networks can be easily browsed, nodes and edges can be

selected, and their attributes examined. Nodes can also be searched for by

ID.

Combining Interaction and Expression Data

With Cytoscape the user can overlap expression information to

identify any patterns. Cytoscape offers easy ways to import expression

information where the key requirement is the use of the same

nomenclature system for interactions and expression. Once expression

data are linked to the nodes, the user has several choices about how to use

these data. Using a numeric filter, nodes above or below a threshold

expression value/ratio can be selected. Otherwise, nodes can be colored

one of several colors in a spectrum depending on user defined cutoffs.

Cellstorm does not offer the capability of importing expression

information other than the one already present and it only provides a

numeric filter for nodes with more genes or less genes than a threshold

value (Visibility threshold window).

Comparison with Cellstorm

Cellstorm is not as flexible as Cytoscape in terms of including

different display layouts. This is one of the powerful sides of Cytoscape.

Nevertheless the lack of flexibility allows Cellstorm to be less complex and

easier to use by any type of users. Cellstorm is a simple applet that can be

12

loaded in a few seconds and offers a clear user interface to visualize

networks.

Suppose that one wanted to analyze different networks selectively

within Cytoscape. It would be possible to create a node for each subcellular

component and to draw links between the nodes, but a front end program

would have to offer Cellstorm’s (i) zooming facility; (ii) import and export

facilities based on user selections; (iii) ability to dynamically select links;

Therefore, Cellstorm gives more insight than Cytoscape for the same

application.

The next figure shows a Sample Cytoscape Plugin for Interfacing

with cPath. The Cytoscape Expression Viewer plugin enables researchers to

visualize expression data on biological pathways. The plugin utilizes the

cPath web service API to retrieve pathway data, such as the Kit receptor

pathway from the Cancer Cell Map.

13

Figure 4: Cytoscape plugin

This figure was taken from BMC Bioinformatics 2006 7:497; Cerami et al.

3.2. MapMan

MapMan is a software system used to display large data sets onto

diagrams of particular pathways, for example metabolic pathways. In order

to display the data the user has only to specify the pathway file, an

expression data file and the mapping file. Note that just like Cellstorm,

14

Mapman is a general tool that avoids building on data - specific

assumptions.

In MapMan each pathway is arranged into hierarchical categories,

BINs and subBINs which are given locations within the diagram according

to the selected pathway. The expressed data is then assigned to one or

more of these BINs forming a MapMan diagram. A continuous color map

going from red to blue to designate the data expression value is used to

help find the locations with higher and lower levels of expressed data, for

example expressed genes.

The next image is a MapMan diagram of pathway level display of

genes involved in the TCA cycle, glyoxylate cycle, gluconeogenesis and

other organic acid transformations.

15

Figure 5:. This figure was taken from The Plant Journal(2004) 37, pag 927; Oliver

Thimm et al.

In addition to displaying pathway diagrams, MapMan also offers a

variety of tools to get information like for example gene names, expression

values, and other data properties and statistics.

Comparison with Cellstorm

The use of MapMan can be complementary to Cellstorm. While

Mapman displays entire paths and a relatively small number of genes

(scores at most) annotated to that pathway, Cellstorm is focused on single

links and can abstract a network in such a way as to show an arbitrary

number of links. MapMan is a very static application and doesn’t try to

offer the dynamic interaction that Cellstorm offers.

16

3.3. Pathway Studio

Pathway Studio is a software system for gene expression analysis

focusing on biological principles rather than on the selection of gene lists.

With Pathway Studio the user can import raw gene expression data files

and generate interaction maps to show possible regulation events and the

highly affected entities.

Pathway Studio offers a wide and diverse range of features going

from building and visualizing pathways, importing and analyzing gene and

protein lists, interpreting microarray gene expression data among others.

In this section we only present pathway visualization since this is the

feature that most relates with Cellstorm.

Pathway visualization

This Pathway Studio feature consists of a graphical user interface for

drawing, coloring, viewing, editing and annotating of pathway and

relationship maps. Very much like MapMan, the layout reveals pathway

organization. A very interesting layout is by cell localization. This layout

option automatically arranges entities by their localization in a cell. Other

layouts are also possible. Please see figure 6 for an example of cell layout.

Comparison with Cellstorm

While Pathway Studio looks at specific interactions, for example

sub- cellular interactions, Cellstorm with its zooming feature, is more

general allowing to look at interactions in different hierarchical levels. For

example, with Cellstorm we can look at biological networks between

different root cells, and going one level down, we can look at specific sub-

17

cellular interactions. We are not restricted to only one level on the

hierarchy. Cellstorm is much more dynamic than Pathway Studio and that

is a big advantage.

In terms of layout, Cellstorm may have less options; Cellstorm does

not present a range of different layouts and does not display components

using specific images or incorporating location information from

pathways. Nevertheless, Cellstorm offers other features that will be very

important for a user that is interested in visualizing networks and its

structure. In Pathway Studio the layout does not bring any information

about the expression values. While in Cellstorm we have highways with

different thickness representing the number of links and subcomponents

with different sizes representing the number of annotated genes. In

Pathway Studio we cannot get that information intuitively from the

displayed image.

The next image was taken from the Pathway Studio website and

illustrates the use of pathway using layout by cell localization.

18

Figure 6: Pathway layout by cell localization

3.4. Sungear

Sungear is a complementary application to Cellstorm.

Sungear enables rapid, visually interactive exploration of large sets

of genomic data. It allows browsing of gene sets by experiment

membership, gene annotation, and ontological term. Its intuitive interface

enables the user to quickly find the data sets that play a role in a function

of interest. The purpose of Sungear is to make otherwise complicated

queries quick and visually intuitive.

19

Figure 7: Example of the Sungear interface

This image was taken from Sungear’s paper ; C. Poultney et al.

Comparison with Cellstorm

Sungear is a very powerful tool but does not offer any feature to

visualize networks data. In fact we designed Cellstorm to fill exactly this

gap.. Therefore these tools are made to complement each other. With

Sungear the user can select the set of genes that he is interested in

analyzing. The user can then import this list into Cellstorm to visualize the

networks. Note that besides the network data that Cellstorm needs to get

as input file, Sungear and Cellstorm use just the same data import files.

20

4. Cellstorm Interface

Cellstorm is manly an interactive graphical tool that allows a very

rapid visualization of data. Therefore the user interface is a very important

aspect of this work. In this chapter we will describe the main features

covered by Cellstorm.

The most relevant property of Cellstorm is that display size and

quantity (number of genes expressed in a subcomponent or number of

links present in a network connection) are directly interconnected,

meaning that size is proportional to quantity.

21

4.1. Subcomponents

Cellstorm starts by receiving a list of genes selected externally,

either by the user, Sungear or other Virtual Plant applications. Once the

gene list is received, Cellstorm intersects the gene list and the genes

associated with each subcomponent. Each subcomponent will be bigger if

it has lots of genes from this intersection and smaller otherwise. This will

allow the user to intuitively see which subcomponent has more expressed

genes.

We illustrate this feature in figure 8. We can immediately say that

subcomponent “cell” (meaning in all subcellular components) is the one

with the higher number of genes (320 genes), followed by “organelle”,

“CCU”, “PC” and so on. For this example the gene list has a total of 442

genes (top right corner) and we are using the Gene Ontology hierarchy. If

the user is interested in knowing the exact number of genes associated

with each subcomponent, he only has to position the mouse on top of the

subcomponent and that number will be displayed as we can see for “cell”

subcomponent. To see the list explicitly the user may click on top of the

subcomponent and the list will be displayed. Please refer to Figure 5 to see

an example of this feature.

22

Figure 8: Graphical display of subcomponents of cellular_component

Figure 9: List of genes in “envelope”

The user has the options to Add, Remove or Intersect the displayed

genes to the user’s pre existing list of genes. When the application is

loaded for the first time, the user’s list is empty. In figure 8, bottom right

corner, we can see the number of genes in the user’s list and by clicking in

the link “My list” a pop up window will open with the actual list of genes,

23

please see figure 10 for an example.

As for the options, “Add”, will add the displayed genes that don’t

already exist in the user’s list, “Remove”, will remove the displayed genes

that exist in the user’s list and “Intersect”, will keep the genes that exist

both in the displayed list and the user’s list. OK, will close the window.

Figure 10: User’s gene list

In case an export_url was provided to Cellstorm through the query

string, then the button “Export” in the “My gene list” will be active and by

clicking on it the user has the ability to export its own list to that

export_url. In figure 10 we can see the “My gene list” window with the

Export button.

At any point in time, the user may select away subcomponents to

reduce clutter and to prune the gene list. Figure 11 shows an example

where this feature may be important to use due to the graphic complexity

originated by the high number of subcomponents present for “cytoplasm”.

24

Figure 11: Graphical display of subcomponents and networks of cytoplasm

If the user changes the visibility for example to 3 (see figure 13),

then the subcomponents with less than 3 genes will not be displayed.

Figure 12 shows the result of applying this new visibility threshold.

Figure 12: Graphical display of subcomponents and networks of cytoplasm with

25

threshold set to 3

By comparing figure 11 and figure 12, we can see the benefits of

changing the visibility threshold. Note that the total number of genes has

been reduced as well, in figure 11 we see that there are 188 genes in the

list, after changing the visibility threshold the list has been reduced to 182

genes.

Figure 13: Changing visibility threshold

To finalize this section, just a final remark about the subcomponent

position. When the subcomponents are displayed, Cellstorm chooses a

default position using a circular /oval distribution and avoiding overlaps as

much as possible. However, the user can always change the

subcomponents position by dragging and dropping.

4.2. Zooming

Before delving into the graphical display of networks we will explain

how zooming works for Cellstorm. As mentioned before, Cellstorm expects

to have some basic data like entities, hierarchical categories, a set

membership file and networks data. Using the hierarchical categories,

every view in Cellstorm has a main container /component (e.g.

cellular_Component) and sub- containers / s ubcomponents (e.g cell, CCU,

PC, envelope, ML, organelle). Once this hierarchical structure is defined,

zooming in and zooming out will allow to browse through all elements in

26

the structure. This will be exemplified in the following figures.

Zooming- In on a subcomponent will retrieve a new view level where

the subcomponent is now the new main component. If we look at the

hierarchical structure as a graph, zooming- In makes the subcomponent

the new parent. Zooming- Out works the other way around. The previous

main component will now be just one of the children in the new view level.

Zooming- In and Out will allow the user to graphically traverse the graph.

Zooming- Out will not be available if we are at the top level and Zooming-

In applies only if there are some edges to draw in the lower level.

As for the interface, there are two ways to zoom- In and zoom- Out.

The most simple and fast option is to use the mouse wheel exactly the

same way as in Google maps, roll- up to zoom - In and roll- down to zoom-

Out. The other option is to use a pop- down menu where the name of the

subcomponent to zoom- In or zoom- Out may be selected from a list. This

is shown in figure 14.

Figure 14: Zooming- In and Zooming- Out

The next two figures exemplify how zooming works. Figure 15,

shows the result of zooming- In on “cell”. Note that the current view

(parent) is now cell.

27

Figure 15: Zooming- In and Zooming- Out

Figure 16, shows the result of zooming- out. Note that the new

current view is now cellular - component.

Figure 16: Zooming- In and Zooming- Out

28

4.3. Networks and links

As already mentioned before, Cellstorm receives networks

information from a multi - network static file which will be provided by the

system or by the user. Once the subcomponents are displayed, the user is

then offered a menu of network types to choose from (figure 17), e.g.

metabolic, protein: protein, regulation and so on. Each network has a color

which will allow a very rapid visualization.

When a network type is selected, “highways” of various

thicknesses are drawn between the subcomponents. The highway size or

thickness, is proportional to the number of links that relate a gene in one

node to a gene in a second node (which could be the same). So thicker

means more links and thinner means fewer links.

For directed networks we have one way highways with appropriate

thickness and an arrow representing the network direction. We may also

have undirected networks, with no arrows, or bidirectional networks, with

an arrow in each side. Figures 18 and 19 illustrate the networks display.

For each view level the networks selection list (figure 17) may vary.

Only the networks with links will be displayed in this list for each view

level.

Also, the user has the option to hide or show self- loops. This may be

used to reduce graphic complexity. Another important aspect of the self-

loops is that by looking at a subcomponent’s self- loops the user can have

an idea of the networks that will be displayed when zooming- In on that

subcomponent.

29

Figure 17: Networks selection

The user selects only the networks that he or she is interested in

viewing. As mentioned before, if a network has no links then the network

checkbox is not displayed. Mousing over a network type will display the

number of links for that network.

30

Figure 18: Networks between subcomponents of cellular_component without self-

loops

Figure 19: Networks between subcomponents of cellular_component with self-

loops

In figure 18 we see that the thicker “highway” corresponds to the

blue network “Reaction” between “organelle” and “cell” meaning that this

network has the highest number of links (106 links /gene pairs), on the

other side, the red network, “Protein: protein” is the one with the lowest

number of links.

Also this figure shows the three different directional types of

networks: “Protein: protein” and “Reaction” are undirected networks,

“Reversible Reaction” is a bi- directed network and finally “Irreversible

Reaction (important)” is a directed network.

31

For directed networks, we may have a “highway” going from C1 to

C2 but none going from C2 to C1. In figure 18, this is the case for

“Irreversible Reaction (important)” between “CCU” and “cell” or between

“CCU” and “organelle”. If both “highways” are present one may be thicker

than the other. Again in figure 18 for “Irreversible Reaction(important)” we

have a “highway” with 32 links from “organelle” to “cell” and a “highway”

with 30 links from “cell” to “organelle”. Therefore the “highway” going

from “organelle” to “cell” is slightly thicker.

The user has a variety of mouse events that can be used to extract

more information from the networks. Mousing over a “highway” will

display the number of links /gene pairs. A mouse click opens a new window

with the gene pairs (figure 20).

Figure 20: Network gene pairs

32

The user has the options to Add, Remove or Intersect the displayed

genes to the user’s own list of genes the same way as for subcomponents.

5. Cellstorm design

A major design issue for Cellstorm concerned the choice between a

server - side language like Perl or Python or a client - side language like Java.

To get a more interactive application, and since all the data is loaded from

text files provided by the user, we decided to use Java.

Cellstorm consists of a Java applet that can be used directly on the

World Wide Web (internet). A Cellstorm application starts by reading a few

text files and loading the data in the corresponding data structures. Once

the loading process is complete the user can start using the application.

Achieving good performance in Cellstorm was an interesting

challenge. As an interactive application we wanted Cellstorm to handle

(load and retrieve) data as fast as possible. By using Java’s class Hash

Tables and Hash Sets to create Cellstorm’s data structures we were able to

achieve a good performance level for loading and retrieval.

A Cellstorm application is divided into two main windows. The

display window on the left and the control panel window on the right. An

action done in the control panel will always take effect on the display

section. In more detail, inside the control panel we have three sub-

windows. The networks window, the zooming window and the visibility

33

threshold window. Any of these windows offer a set of options that can be

selected by the user. See figure 21.

Figure 21: Cellstorm windows

In the next two sections we will explain in more detail Cellstorm’s

data and modules.

5.1 Data

As mentioned before, Cellstorm expects to have some basic data

like: entities, hierarchical categories, a set membership file and networks

data. For Arabidopsis, these are genes, GO (gene ontology) terms, the gene

34

list /set membership input file and the multi - networks file. The data is

provided to Cellstorm as a set of text files.

5.1.1 Gene Ontology

GO terms used by Cellstorm (by default) are provided by the Gene

Ontology project which offers consistent description of gene and gene

products attributes in any organism.

The GO project has developed three structured ontologies that

describe gene products in terms of their associated biological processes,

cellular components and molecular functions in a species - independent

manner.

The ontologies are structured as directed acyclic graphs (DAGs)

providing an hierarchical structure used by Cellstorm to create different

view levels. Note that each child in these structures may have more than

one parent.

GO terms have a unique numerical identifier of the form

GO:nnnnnnn , and a term name, e.g. cell . Each term is also assigned to one

of the three ontologies, molecular function, cellular component or

biological process. A gene product might be associated with or located in

one or more cellular components.

Cellstorm can use any of the three ontologies, however many

Cellstorm applications will use the cellular component ontology which

describes locations at the levels of subcellular structures and

macromolecular complexes. Generally, a gene product is located in or is a

subcomponent of a particular cellular component.

35

In order to maintain a hierarchical structure, each GO term has a

path to the root node (cellular component) which passes solely through

is_a relationships which means that there are is_a parent terms by at least

one path all the way to cellular component.

5.1.2 Files and formatting

Cellstorm may be used with different species. The user will have to

provide Cellstorm with the species name, gene annotation file, GO term

annotation file, GO term hierarchy file, GO term / gene correspondence

file, network file and network configuration file.

The file formatting is general for all the species. In this section we

will illustrate the files format by using Arabidopsis files.

• Species name: Arabidopsis

• The gene annotation file contains pairs (gene ID | gene description):

At3g26090 | expressed protein

At5g65080 | MADS- box family protein

…

• The GO term annotation file contains pairs (GO ID | GO description):

GO:0000001 | mitochondrion inheritance

GO:0000002 | mitochondrial genome maintenance

…

• The GO term hierarchy file contains rows like

 (parent GO ID | list_of_child_go_ids)

GO:0000018 | GO:0045910 GO:0045911 GO:0000337 GO:0000019

GO:0000087 | GO:0007072 GO:0000281 GO:0007067

36

GO:0000023 | GO:0000024 GO:0000025

…

• The GO term / gene correspondence file contains rows like

(GO ID | z- score | gene1list - of_gene_ids)

GO:0000002 | 1.1503067484662577E- 4 | At5g46400 At1g10270

GO:0000003 | 0.005138036809815951 | At3g20740

…

Note that for the scope of this project z- score values are not used;

• The network file contains rows like

(Origin /tab Network name /tab Destination)

At5g59710 interolog:pp At4g00660

At3g56150 interact At4g14110

At1g77070 regulog:pp At5g24760

1,2- Diacyl- sn- glycerol Irc At1g02660

10- Formyltetrahydrofolate Irc At4g17360

…

The network file follows the Simple Interaction Format, SIF, three

columns indicating interacting molecules (origin and destination) and

the interaction type;

• The network configuration file contains rows like

(network pretty name | network name | network type | network

color)

Interaction | interact | none | 153,102,51

Predicted protein:protein | interolog:pp | none | 153,0,204

Irreversible Reaction (important) | Irc | directional | 255,204,0

Positive Regulation | activate | directional | 255,102,0

…

• Gene List contains a list of genes

At1g01050

37

At1g01450

At1g01460

At1g01510

At1g01560

…

5.2 Modules

In this section we will describe each of the eight classes maintained

in Cellstorm.

• Class Gene

Data: id, name, location, gene_is_a

The gene location is the GO terms where the gene is annotated. The

gene_is_a is the list of GO terms to which the gene is annotated and its

ancestors in the cellular component ontology;

Methods: setName, setLocation, setGene_is_a, getId,

getName,getGene_is_a

• Class Goterm

Data: id, name, parent, children

Both parent and children are taken from the gene ontology

hierarchy;

Methods: setId, setName, setChildren, setParent, getId, getName,

getChildren, getParent, copy, clean, print

38

• Class Network

Data: nodeA, nodeB, label, name, direction, type, netColor

Methods: getName, getPrettyName, getType, getOrigin,

getDestination, getDirection, getColor

• Class Shape is abstract

 Methods: getX, getY, getWidth, getHeight, getId, getName

• Class SubComponent extends Shape

Data: id, name, x, y, width, height, color, shape, geneList, geneCount

Methods: setSize, setCoordinates, adjustCoordinates, setDragged,

setColor, setShape, addGeneList, contains, getNumGenes, getName,

getX, getY, getWidth, getHeight, setBounds, getId, getGeneList,

getGeneSet, draw

• Class Link

Data: color, thickness, origin, destination, type, name, weight,

genePairs, divFactor, curve, netWidth

Methods: setColor, equal, isPair, addThickness, getThickness,

addDivisionFactor, addGenePair, getListSize, getGenePairs,

getGeneSet, getName, getOriginName, getDestinationName,

getDirection, drawArrowFormat, contains, drawCurvedArrows, draw,

• Class Cellstorm extends JApplet implements Runnable

This is the main module where all graphical components that

compose Cellstorm interface are created. It’s also in this module

that all the data structures are defined and the data is loaded from the

text files

39

• Class Display extends JPanel implements MouseListener,

MouseMotionListener, MouseWheelListener; This is a nested class

that represents the drawing surface of the applet

 Data: width, height, graphic2D

5.3 Program structure

Cellstorm starts with two different threads. One thread creates the

Graphical User Interface; the other thread will take care of more time

consuming tasks as reading and loading data. Most often the GUI is

displayed even before the data has been processed.

The GUI creation thread starts by creating the component for the

drawing area using the Display class. Then it creates the main control

panel followed by the network panel, zooming panel and threshold options

panel. All these three panels are added to the control panel. Finally, the

drawing area and control panel are both added to the Applet.

The second thread starts by reading gene and go term data and

filling the correspondent data structures. This thread reads the data by the

following order: gene list, gene annotation, go to gene, go term annotation,

go hierarchy, network configuration and networks. Once all the data is

processed then the zooming area, visibility threshold and network area are

created and filled with data.

In the next chapter (Cellstorm implementation) we will describe in

more detail how the data is loaded into Cellstorm data structures.

40

6. Cellstorm implementation

In this section we will describe the major Cellstorm data structures,

some graphical components and the most important algorithms.

6.1 Cellstorm major data structures

• From the gene list file and gene annotation file Cellstorm creates a

geneMap that consists of pairs (Gene_ID, Gene). The map size

41

matches the gene list size however if a given gene does not exist in

the gene annotation file than it will be discarded.

Map<String, Gene> geneMap = new Hashtable<String, Gene>();

• From the go term annotation file Cellstorm creates a goMap that

consists of pairs (Go_ID, Goterm). The map size matches the file

size.

Map<String, Goterm> goMap = new Hashtable<String, Goterm>();

• From the network configuration file Cellstorm creates several

different network maps that will contains the different network

properties.

Map<String, String> networkMapName = new Hashtable<String, String>();

Map<String, String> networkMapType = new Hashtable<String, String>();

Map<String, String> networkMapColor = new Hashtable<String, String>();

• From the networks data file Cellstorm creates a networks set that

consists of entries that have at least one node belonging to geneMap.

So, any entry in the network file that does not have an origin or a

destination from the gene list will be discarded. Since the network

file is usually very big, this implementation strategy is important to

reduce the number of networks to be loaded in Cellstorm and

therefore to reduce the loading and processing time. It also reduces

the visual clutter.

42

Set<Network> networks = new HashSet<Network>();

• Other important data structures related to Gene and Goterm data

// Selected Genes in My List

Set<String> selectedGenes = new HashSet<String>();

// The top component in the hierarchy (Applet parameter)

String TopComponent;

// zoom in pushes terms to the history stack

// zoom out pops terms from the history stack

Stack<Goterm> history = new Stack<Goterm>();

• Other important data structures related to networks data

// set of all network types

Set<String> networksType = new HashSet<String>();

// types that have been selected by the user

Set<String> selectedNetworks = new HashSet<String>();

// types that are active for each zoom level

Set<String> activeNetworks = new HashSet<String>();

// network's pretty name

Set<String> prettyName = new HashSet<String>();

// network weigths to be used to draw the curved highways

Map<String, Double> networkWeight = new Hashtable<String, Double>();

// Apply associative rule: gene-other + other-gene => gene-gene

Map<String, Set<Network>> origin_map = new Hashtable<String,

Set<Network>>();

43

Map<String, Set<Network>> destination_map = new Hashtable<String,

Set<Network>>();

6.2 Cellstorm major graphical components

• Main window

// Applet width and height

int w,h;

JPanel canvasPanel;

JPanel controlPanel;

JScrollPane controlPanelScroll;

• Canvas Panel

// list of subcomponents to be displayed in the canvas

Vector<SubComponent> shapes = new Vector<SubComponent>();

// list of links between subcomponents

Set<Link> links = new HashSet<Link>();

• Control Panel

JPanel networkPanel;

JPanel zoomPanel;

JPanel thresholdPanel;

• Network Panel

Map<String, JCheckBox> networkMap = new Hashtable<String, JCheckBox>();

• Zoom Panel

44

JButton zoomIn, zoomOut;

ImageIcon ImageZoomIn = createImageIcon("zoom_in.jpg","Zoom_IN");

ImageIcon ImageZoomOut = createImageIcon("zoom_out.jpg","Zoom_OUT");

JLabel currentComponent;

JComboBox zoomInChoice, zoomOutChoice;

ComboBoxModel modelChildren, modelParent;

• Threshold Panel

JButton changeThreshold;

JComboBox thresholdChoice;

JLabel thresholdLabel;

6.3 Cellstorm Major Algorithms

6.3.1. Subcomponent placement algorithm

For each view level Cellstorm has a variable number of

subcomponents that must be displayed in the canvas area. Cellstorm

displays the group of subcomponents in an ellipse - shaped diagram. Next

we present the algorithm outline.

- Ellipse center:

int centerX = 10 + (width-20)/2;

int centerY = 40 + (height-80)/2;

- Number of subcomponents:

int numSubComp = shapes.size();

- Ellipse semi major axis and semi minor axis:

45

int radiumX = 3*(width-20)/7;

int radiumY = 3*(height-80)/7;

- Distance between subcomponents:

double theta;

if (numSubComp > 2)

{ theta = 2*Math.PI/numSubComp; }

else

{ theta = 2*Math.PI/3; }

- Subcomponent location. Coordinates location for subcomponent top left

corner:

double x = radiumX * Math.cos(i*theta);

double y = radiumY * Math.sin(i*theta);

int xCoord = centerX+(int)x-(maxSizeW/2);

int yCoord = centerY+(int)y-(maxSizeH/2);

shapes.get(i).setCoordinates(xCoord,yCoord);

- Subcomponents maximum size. This is the size of the subcomponent

with more genes:

int maxSizeH = Math.min(80, (int)(radiumY * Math.sin(theta) - 20.0));

int maxSizeW = maxSizeH;

if (width - height > 0)

{ maxSizeW = maxSizeW + (width-height)/4; }

- Subcomponent size using linear interpolation. Size is proportional to

quantity of genes:

46

if (maxGenes != 0)

{ width = (width/2 + ((geneList.size()/maxGenes) * (width/2)));

 height = (height/2 + ((geneList.size()/maxGenes) * (height/2)));

}

- Avoid overlapping. Given a subcomponent check that it’s not overlapping

its neighbors:

// check four corners if one overlaps then the component is overlapping

if ((x>=bounds[0] && x<=bounds[1] && y>=bounds[2] && y<=bounds[3]) ||

 (x>=bounds[0] && x<=bounds[1] && y+height>=bounds[2] &&

 y+height<=bounds[3]))

{ // shift to the rigth

 x = bounds[1] + 2;

}

else

{

 if ((x+width>=bounds[0] && x+width<=bounds[1] && y>=bounds[2] &&

 y<=bounds[3]) ||

(x+width>=bounds[0] && x+width<=bounds[1] && y+height>=bounds[2]

 && y+height<=bounds[3]))

 { // shift to the left

 x = bounds[0] - width - 2;

 }

}

47

6.3.2. Drawing highways – thickness and quadratic curves

Given two subcomponents, Cellstorm displays the networks between

them using quadratic curves whose thickness is proportional to the

number of gene pairs retrieved for each network type. Depending on the

type of network, the end points of the quadratic curve may or may not be

arrows. Directed – one arrow representing the network direction;

Undirected – no arrows; Bi- directed – two arrows one in each side. Next we

present the algorithm outline.

- Assign a different weight to each network type. Between two

subcomponents we may have several different network types. In order to

avoid the overlapping of each network must have a specific weight that will

serve as a measure to get the quadratic curve control points:

int totalNet = prettyName.size();

int i = 0;

Iterator it_prettyName = prettyName.iterator();

while(it_prettyName.hasNext())

{ String Net_prettyName = (String)it_prettyName.next();

 networkWeight.put(Net_prettyName,(i*1.0/(totalNet*1.0 - 1)));

 i++;

};

- Get division factor for directed networks. Directed networks need to have

two different weights, one for each direction. We use the division factor to

split one weight into two different weights:

divisionFactor = 1.0/(totalNet*1.0 - 1);

48

- Get maximum number of gene- pairs to be used for thickness:

Iterator it_link = links.iterator();

while(it_link.hasNext())

{

 Link link = (Link)it_link.next();

 maxGenePairs = Math.max(link.getListSize(),maxGenePairs);

}

- Get network width (known as thickness):

netWidth = (maxSize/5 + ((maxSize-maxSize/5)*1.0/maxGenePairs)

 *genePairs.size())/(1.5);

- Get origin and destination center points:

// Origin center point

double Ocx = origin.getX() + origin.getWidth()/2;

double Ocy = origin.getY() + origin.getHeight()/2;

// Destination center point

double Dcx = destination.getX() + destination.getWidth()/2;

double Dcy = destination.getY() + destination.getHeight()/2;

- Get slope of line that connects Origin and Destination center points:

t = ((Ocy-Dcy)*1.0/(Ocx-Dcx));

- Find bisector of previous line (connects Origin and Destination center

points). The control points will be always on top of bisector line. The next

figure illustrates how we get the bisector line and helps to follow the code.

49

Figure 22: Algorithm illustration

double h = Math.sqrt((Ocx-Dcx)*(Ocx-Dcx) + (Ocy-Dcy)*(Ocy-Dcy));

double l = h/Math.sqrt(2);

double alfa = Math.asin(Math.min(Math.abs(Ocx-Dcx),Math.abs(Ocy-

Dcy))/h);

double beta = Math.acos(Math.min(Math.abs(Ocx-Dcx),Math.abs(Ocy-

Dcy))/h);

double gamma;

if (Math.abs(t)<1)

{ gamma = Math.PI/2 - Math.min(alfa,beta) - Math.PI/4; }

else

{ gamma = beta - Math.PI/4; }

double a = l*Math.sin(gamma);

double b = l*Math.cos(gamma);

50

Orig

Dest

a

b

Line connecting Orig to
Dest

Bisector Line

Angle
alpha

Angle
gamma

Angle beta

Oy - Dy

- Get bisector start and end points (x1,y1) (x2,y2):

double x1,y1,x2,y2;

if (t>0)

{ if (Math.abs(t) < 1)

 { x1 = Math.min(Ocx,Dcx) + a;

 y1 = Math.min(Ocy,Dcy) + b;

 x2 = Math.max(Ocx,Dcx) - a;

 y2 = Math.max(Ocy,Dcy) - b;

 }

 else

 { x1 = Math.max(Ocx,Dcx) - b;

 y1 = Math.max(Ocy,Dcy) - a;

 x2 = Math.min(Ocx,Dcx) + b;

 y2 = Math.min(Ocy,Dcy) + a;

 }

}

else

{ if (Math.abs(t) < 1)

 { x1 = Math.min(Ocx,Dcx) + b;

 y1 = Math.max(Ocy,Dcy) + a;

 x2 = Math.min(Ocx,Dcx) + a;

 y2 = Math.max(Ocy,Dcy) - b;

 }

 else

 { x1 = Math.max(Ocx,Dcx) + a;

 y1 = Math.min(Ocy,Dcy) + b;

 x2 = Math.min(Ocx,Dcx) - a;

 y2 = Math.max(Ocy,Dcy) - b;

 }

 }

51

- Get quadratic curve (link) control points:

double m = (y2-y1)/(x2-x1);

double c = y1 - m*x1;

double ctrlx, ctrly;

if (m!=0 && m!=Double.POSITIVE_INFINITY && m!=Double.NEGATIVE_INFINITY)

{ ctrly = Math.min(y1,y2) + Math.abs(y1-y2)*weight;

 ctrlx = (ctrly - c)/m;

}

else

{

 if (m==0)

 { ctrlx = Math.min(x1,x2) + Math.abs(x1-x2)*weight;

 ctrly = y1;

 }

 else

 { ctrlx = x1;

 ctrly = Math.min(y1,y2) + Math.abs(y1-y2)*weight;

 }

}

- Get curve’s origin and destination. If the subcomponents are very close

then these points will be the center points of the subcomponents,

otherwise these points will be the intersection points between the

quadratic curve and the subcomponent shape. Next we show how to get

these values:

// - find intersection point for origin SubComponent

if (Ocx-ctrlx !=0)

{ // intersects with vertical left ?

 x = Ocx - origin.getWidth()/2 - netWidth;

 y = m1*x + b1;

 if (y>=Ocy-origin.getHeight()/2-netWidth &&

y<=Ocy+origin.getHeight()/2+netWidth && y>=Math.min(Ocy,ctrly) &&

y<=Math.max(Ocy,ctrly))

 { Ox = x; Oy = y; }

52

 // intects with vertical right ?

 x = Ocx + origin.getWidth()/2 + netWidth;

 y = m1*x + b1;

 if (y>=Ocy-origin.getHeight()/2-netWidth &&

y<=Ocy+origin.getHeight()/2+netWidth && y>=Math.min(Ocy,ctrly) &&

y<=Math.max(Ocy,ctrly))

 { Ox = x; Oy = y;}

}

if (Ocy-ctrly !=0)

{ // intects with horizontal top ?

 y = Ocy - origin.getHeight()/2 - netWidth;

 x = (y-b1)/m1;

if (x>=Ocx-origin.getWidth()/2-netWidth &&

x<=Ocx+origin.getWidth()/2+netWidth && y>=Math.min(Ocy,ctrly) &&

y<=Math.max(Ocy,ctrly))

{ Ox = x; Oy = y;}

 // intects with horizontal bottom ?

 y = Ocy + origin.getHeight()/2 + netWidth;

 x = (y-b1)/m1;

 if (x>=Ocx-origin.getWidth()/2-netWidth &&

x<=Ocx+origin.getWidth()/2+netWidth && y>=Math.min(Ocy,ctrly) &&

y<=Math.max(Ocy,ctrly))

 { Ox = x; Oy = y;}

}

// - find intersection point for destination SubComponent

if (Dcx-ctrlx !=0)

{ // intersects with vertical left ?

 x = Dcx - destination.getWidth()/2 - netWidth;

 y = m2*x + b2;

 if (y>=Dcy-destination.getHeight()/2-netWidth &&

y<=Dcy+destination.getHeight()/2+netWidth &&

y>=Math.min(Dcy,ctrly) && y<=Math.max(Dcy,ctrly))

 { Dx = x; Dy = y;}

53

 // intects with vertical right ?

 x = Dcx + destination.getWidth()/2 + netWidth;

 y = m2*x + b2;

 if (y>=Dcy-destination.getHeight()/2-netWidth &&

y<=Dcy+destination.getHeight()/2+netWidth &&

y>=Math.min(Dcy,ctrly) && y<=Math.max(Dcy,ctrly))

 { Dx = x; Dy = y;}

}

if (Dcy-ctrly !=0)

{ // intects with horizontal top ?

 y = Dcy - destination.getHeight()/2 - netWidth;

 x = (y-b2)/m2;

 if (x>=Dcx-destination.getWidth()/2-netWidth &&

x<=Dcx+destination.getWidth()/2+netWidth &&

y>=Math.min(Dcy,ctrly) && y<=Math.max(Dcy,ctrly))

 { Dx = x; Dy = y;}

 // intects with horizontal bottom ?

 y = Dcy + destination.getHeight()/2 + netWidth;

 x = (y-b2)/m2;

 if (x>=Dcx-destination.getWidth()/2-netWidth &&

x<=Dcx+destination.getWidth()/2+netWidth &&

y>=Math.min(Dcy,ctrly) && y<=Math.max(Dcy,ctrly))

 { Dx = x; Dy = y;}

 }

}

- Draw quadratic curve:

g.setStroke(newBasicStroke((float)netWidth,BasicStroke.CAP_SQUARE,

 BasicStroke.JOIN_ROUND));

curve = new QuadCurve2D.Double((double)Ox, (double)Oy, (double)ctrlx,

(double)ctrly, (double)Dx, (double)Dy);

drawCurvedArrows(g,(float)Ox,(float)Oy,(float)Dx,(float)Dy,(float)(netW

54

idth),(float)ctrlx,(float)ctrly);

7. Cellstorm Integration

Cellstorm is part of a bigger project called VirtualPlant. VirtualPlant

integrates genomic data and provides visualization and analysis tools for

rapid and efficient exploration of genomic data. Cellstorm belongs to that

group of tools.

Cellstorm is located in the VirtualPlant web server

/var /www/h tml /cellstorm and is launched from the VirtualPlant export

page by selecting Cellstorm from the pop- down list together with one or

several group of genes to analyze. Figures 23 and 24 show Cellstorm being

selected and launched from VirtualPlant page.

Figure 23: Cellstorm windows

55

Figure 24: Cellstorm windows

From the selected group of genes VP makes a file and sends its URL

to Cellstorm in the query string as the “data_url”. VP also sends a few more

parameters that will be used by Cellstorm to send back information to VP.

The most important of these is the URL where VP expects the form

submission to add new group: “export_url”. The data files urls can also be

send in the query string using specific parameters. The following is a

typical query string passed from VirtualPlant to Cellstorm:

http: / /vir tualplant.bio.nyu.edu /cellstorm /cellStorm1.html?

species=arabidopsis&

data_url= http: / /virtualplant.bio.nyu.edu /virtualplant / t emp / t em p5117612

2.sun &

export_url= http: / /vir tualplant - prod.bio.nyu.edu /cgi - bin/virtualplant.cgi &

56

http://virtualplant-prod.bio.nyu.edu/cgi-bin/virtualplant.cgi
http://virtualplant-prod.bio.nyu.edu/virtualplant/temp/temp872077208.sun
http://virtualplant-prod.bio.nyu.edu/virtualplant/temp/temp872077208.sun
http://virtualplant.bio.nyu.edu/cellstorm/cellStorm1.html?

export_cmd=addGroups&

export_action=session&

export_session_id=cc1f26aa8040f837f772dfe18bc24ffe

8. Use cases

In this section we will present two different test cases. The first case

shows Cellstorm being applied in a biological context. In the second case

Cellstorm is applied in a non- biological context. The second test case is

useful to demonstrate Cellstorm data independence.

8.1 Biological case study

We gratefully thank Miriam Gifford and Ken Birnbaum for supplying

the data for this test case.

In this case study we use Cellstorm to visualize network connections

between five different cell types within the root: Lateral Root Cap (LRC),

Epidermis&Cortex (EpiCor), Endodermis&Pericycle (EndoPeri), Pericycle

(Peri), Stele (Stele).

For each of these cell types we have the group of genes that are

nitrogen induced and nitrogen depressed. We have about 6,000 genes in

total. Note that genes can be nitrogen induced or depressed in more than

one cell type.

The data was grouped as nitrogen induced and nitrogen depressed.

For each of these groups we run Cellstorm for all genes and for cell

specific genes only.

57

In this case study the entities are Arabidopsis genes. The

hierarchical categories are: Root, LCR, EpiCor, EndoPeri, Peri and Stele

where the Root is the parent and all the other categories are Root’s

children. The membership is the nitrogen depressed / induced genes for

each cell type and finally the networks are the biological networks. The top

component in this case is the “Root”. Next we present some images from

this Cellstorm application, one per each different data group.

• Nitrogen induced:

Figure 25: Nitrogen induced using all genes

58

Figure 26: Nitrogen induced using cell specific genes only

• Nitrogen depressed:

Figure 27: Nitrogen depressed using all genes

59

Figure 28: Nitrogen depressed using cell specific genes only

8.2. Non- Biological case study

In this case study we use Cellstorm to show flight connections

between airports in different continents, countries and cities. The data for

this case study was built manually and does not attempt to represent a

complete set of flight connections.

Cellstorm expects entities, hierarchical categories, membership and

networks. In this case study the entities are airports, the hierarchical

categories are physical locations for example world, continents, countries,

states / regions, cities, the membership is where each airport is located and

finally the networks are the flight connections between different airports.

The top component in this case is the “World”.

Next we show several figures obtained from this case study. Figure

29 shows the top level view where the subcomponents are the 6

continents. Not surprisingly between continents we have more connections

60

for longer flights than for shorter flights.

Figure 29: Top level with flight connection

By zooming In on Europe we get the next figure that shows the flight

connections between some European countries. In this case, as we were

expecting, the longer flights disappeared and we only have connections for

shorter flights.

61

Figure 30: Zoom in to Europe

Next figure shows the airport locations for United Kingdom. We

obtain this figure by mouse clicking on top of the subcomponent “UK”.

Figure 31: Airport locations for United Kingdom

By mouse clicking in a link we obtain the list of connections between

two locations. Next figure shows the connections “between 2 and 3 hours”

from Portugal and United Kingdom.

62

Figure 32: Flight connections between Portugal and UK

9. Conclusion and Future Work

Cellstorm is a software system that allows a rapid visualization of

63

genes and subcellular networks. Given a set of genes, expression levels,

structural hierarchy and network’s data, Cellstorm displays the networks

at any level of the hierarchy and provides a set of user options such as

zooming, network selection and list filtering. In the graphical display the

most important property is that size is always proportional to quantity, for

example number of genes expressed in a subcomponent or number of

links present in a network connection.

Cellstorm is a generic tool that avoids building in data- specific

assumptions. Although it is targeted to be used in a biological context

Cellstorm can be applied in many other contexts as has been shown in

section 8.

Cellstorm was tested by some biology researchers and proved to be

a helpful tool to visualize networks in large datasets. Based on user

comments a variety of features may be added in the future to Cellstorm.

Here is a list of some suggestions:

• Connect Cellstorm directly from Sungear;

• Make the history (showed at the bottom of the display section)

interactive where clicking in a subcomponent name turns that

subcomponent to the present View level;

• Allow to view networks between genes /entities; The user would be

able to toggle between: display networks between subcomponents

and display networks between genes;

• Allow to create more than one list of genes and provide a more

flexible interface to add, remove and intersect list of genes;

64

10. References

[1] Albert - László Barabási & Zoltán N. Oltvai. Network Biology:

Understanding the cell’s functional Organization.

www.nature.com/ reviews /genetics

[2] George W. Bell and Fran Lewitter. DNA Microarrays, Part B, Visualizing

Networks.

[3] Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S. Baliga, Jonathan T.

Wang, Daniel Ramage, Nada Amin, Benno Schwikowski and Trey Ideker.

Cytoscape: A Software Environment for Integrated Models of Biomolecular

Interaction Networks. Genome Res.2003 13: 2498- 2504.

[4] Oliver Thimm et al. MapMan: A user - driven tool to display genomics

data sets onto diagrams of metabolic pathways and other biological

processes. The Plant Journal (2004) 37, 914- 939.

[5] C. Poultney et al. Sungear: Interactive visualization and functional

analysis of genomic datasets. Bioinformatics Advance Access published

October 2,2006.

[6] The Gene Ontology project. www.geneontology.org

[7] Virtual Plant. http: / /vir tualplant - prod.bio.nyu.edu /cgi -

bin/virtualplant.cgi

[8] Pathway Studio. http: / /www.ariadnegenomics.com/p roducts / pa thway-

studio /

[9] James D. Tisdall. Perl Programming for Bioinformatics. Mastering Perl

65

http://www.ariadnegenomics.com/products/pathway-studio/
http://www.ariadnegenomics.com/products/pathway-studio/
http://virtualplant-prod.bio.nyu.edu/cgi-bin/virtualplant.cgi
http://virtualplant-prod.bio.nyu.edu/cgi-bin/virtualplant.cgi

for Bioinformatics

[10] Java documentation. http: / / j ava.sun.com /j2se /1.4.2 /docs /

66

	1. Introduction
	2. Biological Networks
	3. Related work
	3.1. Cytoscape
	Viewing and Filtering a Network
	Combining Interaction and Expression Data
	Comparison with Cellstorm

	3.2. MapMan
	Comparison with Cellstorm

	3.3. Pathway Studio
	Pathway visualization
	Comparison with Cellstorm

	3.4. Sungear
	Comparison with Cellstorm

	4. Cellstorm Interface
	4.1. Subcomponents
	4.2. Zooming
	4.3. Networks and links

	5. Cellstorm design
	5.1 Data	
	5.1.1 Gene Ontology
	5.1.2 Files and formatting

	5.2 Modules
	5.3 Program structure

	6. Cellstorm implementation
	6.1 Cellstorm major data structures
	6.2 Cellstorm major graphical components
	6.3 Cellstorm Major Algorithms	
	6.3.1. Subcomponent placement algorithm
	6.3.2. Drawing highways – thickness and quadratic curves

	7. Cellstorm Integration
	8. Use cases
	8.1 Biological case study
	8.2. Non-Biological case study

	9. Conclusion and Future Work
	10. References

