Cellstorm

A bioinformatics software system to visualize subcellular

networks

Ana Neves
afn216@nyu.edu

A thesis submitted in partial fulfillment
of the requirements for the degree of
Master of Science in the Department of
Computer Science, New York University

April 25, 2007

Approved:

Professor Dennis Shasha, Research Advisor



Approved:
Professor Zvi Kedem, Second Reader

Acknowledgements

| want to gratefully thank all the people who supported me during
my thesis project. | want to give a very special thank you to my research
advisor, Professor Dennis Shasha, for all his guidance and support. | want
to thank Chris Poultney who gave me highly qualified help and directions
for Cellstorm design and implementation. Thanks go also to Manpreet
Katari who gave me great support in the biology area and was always
available to answer my questions. | want to thank in general to all the great
researchers from the plant biology lab of Gloria Coruzzi who have helped
me during the thesis project. Finally, | want to thank my family and my
husband Andre Neves for all the patience and encouraging during the

periods of work.



©
Ana Neves
All Rights Reserved, 2007

Contents
1. INTRODUGCT ION ittt ittt ittt itessereseeeessteeeeesstssaeseres i eesaesetetaeesstieresaeteteeeaeesteretesaereeanseesaieeess 4
2. BIOLOGICAL NETWORKS oottt eeeeeeieee e 6
3. RELATED W ORK L ittt ittt sttt et et et e e tee e st eeeeeeeeeteseneestateteeeeeetesee e eeeteretaereesentesearreeanes 11
I T O o = o = T T T T 11
Viewing and Filtering a NetWOIK ....occveieiiiiiieiiiiiiieiiieeei e 11
Combining Interaction and EXPression Data......cc.cceeeeceeeieeeeiieiiiiiieeeeeie e 12
Comparison With CellStOrM .icueieieiiiiiiiiiiiieieiiiiiee it 12
I Y VN Y T T 14
Comparison With CellStOrm . 16
3.3, PATHWAY STUDIO . utttttttetttt ettt ittt ettt et ettt ittt ettt et ettt e eeeeeeeseeeeeeeeteetnen, 17
Pathway VisualiZation ......c..cceeieeiiiiiiiieee i 17
Comparison With CellStOrm . 17
3d. SUNGEAR: .t ettt ettt ettt ettt e e ettt e teeeeee et ee e et e e et eettteee ettt e ee e e e et e ettetettttbrrrr ettt 19
Comparison With CellStOrm .o 20
4, CELLSTORM INTERFACE. ...ttt e i 21
A0, SUBCOMPONENTS. s tteeesseseesteeeeettteeeseetseeeesee et e teeesteestee ettt e e e ee e e eeeeeteeeesetsteeserees rettees 22
.2, ZOOMING. ettt ie e e ittt ettt ettt ettt ettt ettt e i e ee ettt e et ettt ettt it ettt e 26
4,3, NETWORKS AND LINKS: tvuuuuuiiiiiitttteesttenetetitesteseeeeustetttetttesstreetteetieeettteeeserreeereeiieeeiieeeseeeeseeetenenans 29
5. CELLSTORM DESIGN ittt ittt eeeeeeeeeeeeeeeeeieeeeeeeeeeeaees 33
.0 DATA et e et e ettt e e e eereeeeiieeeees 34
5.1.1 GENE ONLOIOQY Lerrrerrrrreeeeiieiitititiit et en it aie st ittt e et es e e sttt ee e e e e s e s s e e e e 35
5.1.2 Filesand formatting ...c.ocoeeeeeseiiiiieiiiiiisssis s, 36
oI Y/ (o) o O = 38
5.3 PROGRAM STRUCTURE. ce1iiiiiiiiiiiiieiieeitttteeeeeeeeeeeeeeeeeeeee e ettt e e ie ettt eeteeeeeeeeteeeeeeeeeeeeeeeaiieeeseeeeeees 40
6. CELLSTORM IMPLEMENTATION ttiiiiiiiiiiiiiiieee ettt 41
6.1 CELLSTORM MAJOR DATA STRUCTURES. ..uuuiiittiieeetuestuetiitessesesseesteenitteeesesseesstteiieeeeeessieeesetieienieeesseeeeeees 41
6.2 CELLSTORM MAJOR GRAPHICAL COMPONENTS. tetteeeetettnetiiiiiitieeiiieeeeeeeteeeieeeiieeieteereeeetieeeieeeieeeseeeseeeeeees 44
6.3 CELLSTORM MAJOR A LGORITHMS t1ieeteeetunnieiiiiiiiiiiiiieeet e ieeieiieeieeeteeeeeeeeeeeeeeeeeeet e ieeeeeeeereeeeees 45
6.3.1. Subcomponent placement algorithm ..ooceeveeeeieeeiieiiiiiiiieiiiiii i 45
6.3.2. Drawing highways —thickness and quadratiC CUrVeS.........cccoeeeeveiieeiieeiseiiieeecnenn.. 48
7. CELLSTORM INTEGRATION ittt 55




8. USE CASES ..o 57

8.1 BIOLOGICAL CASE STUDY ..itereessnssntteeeeeessreesseseeesttessstsesee st tteeseeesstere et st etteeseeeereeestaeeeteeeezzeeeerees 57
8.2. NON- BIOLOGICAL CASE STUDY .uuiiiiiiiiiiiiiiiiiiieeeeeee ettt ettt ettt e e it etieeeeeeet it eeeeeeeeesseeeseeeeeeeeeees 60
9. CONCLUSION AND FUTURE WORK Leetiiiiiiitteiiiiiiieeeiee ettt e eeeieeeeeeeeeiiieeee e 63
10. REFERENGCES ... oottt ettt 65

1. Introduction

In the last few decades a lot has been done with the use of
computers in biological research. Information science has been applied to
biology to produce the field called Bioinformatics. Bioinformatics is now
one of the most rapidly growing areas of biological science, combining the
guestions of computer science with those of biological research. The
methods of bioinformatics are being used in different fields such as
genetics, biochemistry, molecular biology, evolutionary science, cell

studies, clinical research, and field biology.

With the genomics revolution, biologists now spend much of their
time using computational tools to help them browse through the large
database of genes, proteins, and interactions. However, the access to
biological databases is not quite enough. One of the reasons is that
biologists must be able to manage and analyze large amounts of data
obtained from different sources, and therefore they have a great need for

data visualization and analysis tools.



Cellstorm is a bioinformatics software system that can be used by
biologists to visualize and analyze large amounts of genes data. Cellstorm
allows a rapid visualization of genes and networks' interactions among the

cellular component.

Given a list of genes, an interesting problem is to know where they
located and what are the subcomponents where they are mostly expressed.
Biologists have the data needed to answer this question but a manual
process would be very time consuming. With Cellstorm we can get this
answer in a few seconds. Another interesting problem is to know how the
genes relate to each other. Cellstorm uses data from biological networks
(please refer to next chapter to see more about biological networks) to

display connections between sub- cellular components.

In sum, Cellstorm is a graphical display of genomic data where the
goal isto visualize the position of genes within acell in terms of their sub-

cellular location and to visualize networks of various types as “highways”.

Although Cellstorm is mainly targeted for biologists, it can be used
in many other different fields. Cellstorm makes as few assumptions as
possible about the data it's displaying, it doesn't know, or care, if it's
working with biological data. Cellstorm is a generic tool that avoids
building in data- specific assumptions and therefore can analyze large

amounts of data of completely different sources and fields.



2. Biological Networks

Biological networks facilitate the wunderstanding of the cell’s
functional organization. Post genomic research aims to systematically
catalogue molecules and their interactions within a living cell. Indeed it is
very important to understand how these molecules and the interactions
between them determine the cell’s functional organization. Advances in

network biology indicate that cellular networks are governed by universal

laws.

For over a century, reductionism has provided knowledge about
individual cellular components and their functions, however it is clear that
a discrete biological function can only rarely be attributed to an individual

molecule. Most biological characteristics arise from complex interactions



between the cell’s numerous constituents, such as proteins, DNA, RNA and

small molecules.

It is increasingly recognized that complex systems cannot be
described in a reductionist view. A challenge for biology is to understand
the structure and the dynamics of the complex intracellular web of
interactions that contribute to the structure and function of the living cell.
Understanding the behavior of such systems starts with understanding the
topology of the corresponding network. Topological information is
fundamental in constructing realistic models for the function of the

network.

There are several types of networks, including protein- protein
interaction, metabolic, signaling and transcription- regulatory networks.
None of these networks are independent, instead they form a “network of

networks” which is going to be responsible for the behavior of the cell.

The cell’s behavior emerges from the activity of many components
that interact with each other through pair-wise interactions. The
components are just a series of nodes that are connected to each other by
links, with each link representing the interactions between two
components. The network is mainly formed by the nodes and links
together. In a more formal mathematical language one can say that a

network isjust a graph (see figure 1).



N

a) Undirected b) Directed

Figure 1: Undirected and Directed networks

As we can see from figure 1, depending on the nature of interactions,
networks can be directed or undirected. For directed networks, the
interaction has a well- defined direction, for example the direction of the
information flow from a transcriptional factor to the gene that it regulates.
For undirected networks, there is no assigned direction between the nodes.
For example, in protein interaction networks, if protein A binds to protein

B, then protein B also binds to protein A. See figure 2.



Figure 2: Yeast protein interaction network. Nodes are proteins and links are
physical interactions
This figure was taken from A.-L- Barabasi & Z. Oltvai, Science, 2004

Despite the diversity of networks in nature, their architecture is
governed by a few simple principles that are common to most networks.
There are three models that had an important impact on the
understanding of biological networks: random networks where a fixed
number of nodes are randomly connected to each other, scale- free
networks characterized by a power law degree distribution and hierarchical

networks with clusters combined in an iterative manner. Figure 3



illustrates these three network’'s architecture models. Studies show that

most networks within the cell approximate a scale- free topology.
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Figure 3: Network models

A lot more can be said about biological networks. Here we only
attempted to give a brief introduction on this field and show why
biological networks are so important for the understanding of the cell’s
functional organization. In conclusion, cellular functions are carried out by
groups of genes and gene products in a coordinate manner. Detection of
such functional modules in a complex molecular network is one of the

most challenging problems.
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3. Related work

The goal of this section is to compare Cellstorm with a set of
existing software systems that are widely used as visualization tools in
several biology fields. All the tools presented in this chapter work with
large data sets of genes and other genes related data, for example

networks data.

3.1. Cytoscape

Cytoscape is an open source Java- based software platform that
works on all major operating systems and that can be used for visualizing
networks of any type, as long as data are formatted in Simple Interaction
Format (SIF; three columns indicating interacting molecules and the type of

interaction).

Cytoscape can be extended through a plug- in architecture, allowing

rapid development of additional computational analyses and features.

Viewing and Filtering a Network

We start Cytoscape by loading the network data from a SIF file, or
the user can create the network data manually by using Cytoscape editing
tools. If the network has thousands of nodes, the user can filter the data
using measures of node and edge density which can help organize the

network into highly connected sub- networks.
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Once the network data is fully loaded Cytoscape provides a wide
range of display layouts: layouts based on spring forces, layouts that try to
detect certain types of graph structure, annotation- based layouts, and
many others. Networks can be easily browsed, nodes and edges can be
selected, and their attributes examined. Nodes can also be searched for by

ID.

Combining Interaction and Expression Data

With Cytoscape the user can overlap expression information to
identify any patterns. Cytoscape offers easy ways to import expression
information where the Kkey requirement is the use of the same
nomenclature system for interactions and expression. Once expression
data are linked to the nodes, the user has several choices about how to use
these data. Using a numeric filter, nodes above or below a threshold
expression value/ratio can be selected. Otherwise, nodes can be colored

one of several colors in a spectrum depending on user defined cutoffs.

Cellstorm does not offer the capability of importing expression
information other than the one already present and it only provides a
numeric filter for nodes with more genes or less genes than a threshold

value (Visibility threshold window).

Comparison with Cellstorm

Cellstorm is not as flexible as Cytoscape in terms of including
different display layouts. This is one of the powerful sides of Cytoscape.
Nevertheless the lack of flexibility allows Cellstorm to be less complex and

easier to use by any type of users. Cellstorm is a simple applet that can be

12



loaded in a few seconds and offers a clear user interface to visualize

networks.

Suppose that one wanted to analyze different networks selectively
within Cytoscape. It would be possible to create a node for each subcellular
component and to draw links between the nodes, but a front end program
would have to offer Cellstorm’s (i) zooming facility; (ii) import and export
facilities based on user selections; (iii) ability to dynamically select links;
Therefore, Cellstorm gives more insight than Cytoscape for the same

application.

The next figure shows a Sample Cytoscape Plugin for Interfacing
with cPath. The Cytoscape Expression Viewer plugin enables researchers to
visualize expression data on biological pathways. The plugin utilizes the
cPath web service API to retrieve pathway data, such as the Kit receptor

pathway from the Cancer Cell Map.

13
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Figure 4: Cytoscape plugin
This figure was taken from BMC Bioinformatics 2006 7:497; Cerami et al.

3.2. MapMan

MapMan is a software system used to display large data sets onto
diagrams of particular pathways, for example metabolic pathways. In order
to display the data the user has only to specify the pathway file, an

expression data file and the mapping file. Note that just like Cellstorm,
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Mapman is a general tool that avoids building on data- specific

assumptions.

In MapMan each pathway is arranged into hierarchical categories,
BINs and subBINs which are given locations within the diagram according
to the selected pathway. The expressed data is then assigned to one or
more of these BINs forming a MapMan diagram. A continuous color map
going from red to blue to designate the data expression value is used to
help find the locations with higher and lower levels of expressed data, for
example expressed genes.

The next image is a MapMan diagram of pathway level display of

genes involved in the TCA cycle, glyoxylate cycle, gluconeogenesis and

other organic acid transformations.
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Figure 5:. This figure was taken from The Plant Journal(2004) 37, pag 927; Oliver
Thimm et al.

In addition to displaying pathway diagrams, MapMan also offers a
variety of tools to get information like for example gene names, expression

values, and other data properties and statistics.

Comparison with Cellstorm

The use of MapMan can be complementary to Cellstorm. While
Mapman displays entire paths and a relatively small number of genes
(scores at most) annotated to that pathway, Cellstorm is focused on single
links and can abstract a network in such a way as to show an arbitrary
number of links. MapMan is a very static application and doesn’'t try to

offer the dynamic interaction that Cellstorm offers.
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3.3. Pathway Studio

Pathway Studio is a software system for gene expression analysis
focusing on biological principles rather than on the selection of gene lists.
With Pathway Studio the user can import raw gene expression data files
and generate interaction maps to show possible regulation events and the

highly affected entities.

Pathway Studio offers a wide and diverse range of features going
from building and visualizing pathways, importing and analyzing gene and
protein lists, interpreting microarray gene expression data among others.
In this section we only present pathway visualization since this is the

feature that most relates with Cellstorm.

Pathway visualization

This Pathway Studio feature consists of a graphical user interface for
drawing, coloring, viewing, editing and annotating of pathway and
relationship maps. Very much like MapMan, the layout reveals pathway
organization. A very interesting layout is by cell localization. This layout
option automatically arranges entities by their localization in a cell. Other

layouts are also possible. Please see figure 6 for an example of cell layout.

Comparison with Cellstorm

While Pathway Studio looks at specific interactions, for example
sub- cellular interactions, Cellstorm with its zooming feature, is more
general allowing to look at interactions in different hierarchical levels. For
example, with Cellstorm we can look at biological networks between

different root cells, and going one level down, we can look at specific sub-

17



cellular interactions. We are not restricted to only one level on the
hierarchy. Cellstorm is much more dynamic than Pathway Studio and that

is a big advantage.

In terms of layout, Cellstorm may have less options; Cellstorm does
not present arange of different layouts and does not display components
using specific images or incorporating location information from
pathways. Nevertheless, Cellstorm offers other features that will be very
important for a user that is interested in visualizing networks and its
structure. In Pathway Studio the layout does not bring any information
about the expression values. While in Cellstorm we have highways with
different thickness representing the number of links and subcomponents
with different sizes representing the number of annotated genes. In
Pathway Studio we cannot get that information intuitively from the

displayed image.

The next image was taken from the Pathway Studio website and

illustrates the use of pathway using layout by cell localization.

18



E Pattway Expression £t Wew Select Tooks Window Help =8| x|

A | 508 - BB X B o B BELSYE QA9

Small Molecule i ]E'W aFact :::i"'“""” |2
O oreten d Greph View | entty Table | Relation Table | SRl
Cell PFrocess Drynamic Layout
e Dymamic Layout Parameters. ..
1

Cell Obyject

Funclional Class

=
|2 T & |

DW i

o
B = Reguation %

——@—= MolSyrihesis
——&—= MalTranzsport
W= Expression
—e— Bindng
. FrotModification
——&—= FromoterBinding

——o—= DireciReguiation

—0O—= ChemicalReaction

apoptosis

@3 Correlation

Color Profein Entties By Gr
| I

J Database ) pajette [ Ir 4 | »
. o

R

Figure 6: Pathway layout by cell localization

3.4. Sungear

Sungear is a complementary application to Cellstorm.

Sungear enables rapid, visually interactive exploration of large sets
of genomic data. It allows browsing of gene sets by experiment
membership, gene annotation, and ontological term. Its intuitive interface
enables the user to quickly find the data sets that play arole in a function
of interest. The purpose of Sungear is to make otherwise complicated

queries quick and visually intuitive.
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Figure 7: Example of the Sungear interface

This image was taken from Sungear’s paper ; C. Poultney et al.

Comparison with Cellstorm

Sungear is a very powerful tool but does not offer any feature to
visualize networks data. In fact we designed Cellstorm to fill exactly this
gap.. Therefore these tools are made to complement each other. With
Sungear the user can select the set of genes that he is interested in
analyzing. The user can then import this list into Cellstorm to visualize the
networks. Note that besides the network data that Cellstorm needs to get

as input file, Sungear and Cellstorm use just the same data import files.
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4. Cellstorm Interface

Cellstorm is manly an interactive graphical tool that allows a very
rapid visualization of data. Therefore the user interface is a very important
aspect of this work. In this chapter we will describe the main features

covered by Cellstorm.

The most relevant property of Cellstorm is that display size and
quantity (number of genes expressed in a subcomponent or number of
links present in a network connection) are directly interconnected,

meaning that size is proportional to quantity.
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4.1. Subcomponents

Cellstorm starts by receiving a list of genes selected externally,
either by the user, Sungear or other Virtual Plant applications. Once the
gene list is received, Cellstorm intersects the gene list and the genes
associated with each subcomponent. Each subcomponent will be bigger if
it has lots of genes from this intersection and smaller otherwise. This will
allow the user to intuitively see which subcomponent has more expressed

genes.

We illustrate this feature in figure 8. We can immediately say that
subcomponent “cell” (meaning in all subcellular components) is the one
with the higher number of genes (320 genes), followed by “organelle”,
“CCU", “PC" and so on. For this example the gene list has a total of 442
genes (top right corner) and we are using the Gene Ontology hierarchy. If
the user is interested in knowing the exact number of genes associated
with each subcomponent, he only has to position the mouse on top of the
subcomponent and that number will be displayed as we can see for “cell”
subcomponent. To see the list explicitly the user may click on top of the
subcomponent and the list will be displayed. Please refer to Figure 5 to see

an example of this feature.
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View:cellular_component Gene count: 442

cell - 320 genes

cell

History: empty My list: 0

Figure 8: Graphical display of subcomponents of cellular_component

envelope - 4 genes

At2g22500; mitochondrial substrate carrier 1
At3g14040; mitochondrial phosphate transp
At3g01340; mitochondrial substrate carrier 1
Atlg42960; expressed protein localized to tl

oK

Add Remove Intersect

Figure 9: List of genes in “envelope”

The user has the options to Add, Remove or Intersect the displayed
genes to the user's pre existing list of genes. When the application is
loaded for the first time, the user’'s list is empty. In figure 8, bottom right
corner, we can see the number of genes in the user’s list and by clicking in

the link “My list” a pop up window will open with the actual list of genes,

23



please see figure 10 for an example.

As for the options, “Add”, will add the displayed genes that don’t
already exist in the user’s list, “Remove”, will remove the displayed genes
that exist in the user’'s list and “Intersect”, will keep the genes that exist

both in the displayed list and the user’s list. OK, will close the window.

(alala) My gene list

At2g22300: mitochondrial substrate carrier
At3g01340: mitochondrial substrate carrier
At3g14040: mitochondrial phosphate transp
Atlg42960: expressed protein localized to t

oK

Export

Figure 10: User’s gene list

In case an export_url was provided to Cellstorm through the query
string, then the button “Export” in the “My gene list” will be active and by
clicking on it the user has the ability to export its own list to that
export_url. In figure 10 we can see the “My gene list” window with the
Export button.

At any point in time, the user may select away subcomponents to
reduce clutter and to prune the gene list. Figure 11 shows an example
where this feature may be important to use due to the graphic complexity

originated by the high number of subcomponents present for “cytoplasm”.
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View:cytoplasm Gene count: 188

History: cellular_component; cell; intracellular; My list: 4

Figure 11: Graphical display of subcomponents and networks of cytoplasm

If the user changes the visibility for example to 3 (see figure 13),
then the subcomponents with less than 3 genes will not be displayed.

Figure 12 shows the result of applying this new visibility threshold.

View:cytoplasm Gene count: 182

History: cellular_component; cell; intracellular; My list: 4

Figure 12: Graphical display of subcomponents and networks of cytoplasm with
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threshold set to 3
By comparing figure 11 and figure 12, we can see the benefits of
changing the visibility threshold. Note that the total number of genes has
been reduced as well, in figure 11 we see that there are 188 genes in the

list, after changing the visibility threshold the list has been reduced to 182

genes.

Visibility Threshold

= Change Threshold

Figure 13: Changing visibility threshold

To finalize this section, just a final remark about the subcomponent
position. When the subcomponents are displayed, Cellstorm chooses a
default position using a circular/oval distribution and avoiding overlaps as
much as possible. However, the wuser can aways change the

subcomponents position by dragging and dropping.

4.2. Zooming

Before delving into the graphical display of networks we will explain
how zooming works for Cellstorm. As mentioned before, Cellstorm expects
to have some basic data like entities, hierarchical categories, a set
membership file and networks data. Using the hierarchical categories,
every view in Cellstorm has a main container/component (e.g.
cellular_Component) and sub- containers/subcomponents (e.g cell, CCU,
PC, envelope, ML, organelle). Once this hierarchical structure is defined,

zooming in and zooming out will allow to browse through all elements in
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the structure. This will be exemplified in the following figures.

Zooming- In on a subcomponent will retrieve a new view level where
the subcomponent is now the new main component. If we look at the
hierarchical structure as a graph, zooming- In makes the subcomponent
the new parent. Zooming- Out works the other way around. The previous
main component will now be just one of the children in the new view level.
Zooming- In and Out will allow the user to graphically traverse the graph.
Zooming- Out will not be available if we are at the top level and Zooming-

In applies only if there are some edges to draw in the lower level.

As for the interface, there are two ways to zoom- In and zoom- Out.
The most simple and fast option is to use the mouse wheel exactly the
same way as in Google maps, roll-up to zoom- In and roll- down to zoom-
Out. The other option is to use a pop- down menu where the name of the
subcomponent to zoom- In or zoom- Out may be selected from a list. This

is shown in figure 14.

Zooming

|intrace|lular |v|

View - cell

E:I |ce|lu|ar_cumpunent |v|

Figure 14: Zooming- In and Zooming- Out

The next two figures exemplify how zooming works. Figure 15,
shows the result of zooming- In on “cell”. Note that the current view

(parent) is now cell.
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View:cell Gene count: 320

intracellular

History: cellular_component; My list: 4

Figure 15: Zooming- In and Zooming- Out

Figure 16, shows the result of zooming- out. Note that the new

current view is now cellular- component.

View:cellular_component Gene count: 442

History: empty My list: 4

Figure 16: Zooming- In and Zooming- Out
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4.3. Networks and links

As adready mentioned before, Cellstorm receives networks
information from a multi- network static file which will be provided by the
system or by the user. Once the subcomponents are displayed, the user is
then offered a menu of network types to choose from (figure 17), e.g.
metabolic, protein: protein, regulation and so on. Each network has a color

which will allow a very rapid visualization.

When a network type is selected, “highways” of various
thicknesses are drawn between the subcomponents. The highway size or
thickness, is proportional to the number of links that relate a gene in one
node to a gene in a second node (which could be the same). So thicker

means more links and thinner means fewer links.

For directed networks we have one way highways with appropriate
thickness and an arrow representing the network direction. We may also
have undirected networks, with no arrows, or bidirectional networks, with

an arrow in each side. Figures 18 and 19 illustrate the networks display.

For each view level the networks selection list (figure 17) may vary.
Only the networks with links will be displayed in this list for each view

level.

Also, the user has the option to hide or show self- loops. This may be
used to reduce graphic complexity. Another important aspect of the self-
loops is that by looking at a subcomponent’s self- loops the user can have
an idea of the networks that will be displayed when zooming- In on that

subcomponent.

29



Metworks

|

[] Predicted protein:protein
Reaction

[] Irreversible Reaction

[] Reversible Reaction mportant)
Protein:protein

L] Positive Regulation

[ ] Hide self loops

Figure 17: Networks selection

The user selects only the networks that he or she is interested in
viewing. As mentioned before, if a network has no links then the network
checkbox is not displayed. Mousing over a network type will display the

number of links for that network.

View:cellular_component Gene count: 442

organelle
\ . 106 gene pairs - \\ organg

_,.-—-"“"—____ : cell

‘..,,.--""

History: empty My list: 4
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Figure 18: Networks between subcomponents of cellular_component without self-

loops

View:cellular_component Gene count: 442

Figure 19: Networks between subcomponents of cellular_component with self-

loops

In figure 18 we see that the thicker “highway” corresponds to the
blue network “Reaction” between “organelle” and “cell” meaning that this
network has the highest number of links (106 links/gene pairs), on the
other side, the red network, “Protein: protein” is the one with the lowest

number of links.

Also this figure shows the three different directional types of
networks: “Protein: protein” and “Reaction” are undirected networks,
“Reversible Reaction” is a bi-directed network and finally “lrreversible

Reaction (important)” is a directed network.
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For directed networks, we may have a “highway” going from C1 to
C2 but none going from C2 to C1. In figure 18, this is the case for
“Irreversible Reaction (important)” between “CCU” and “cell” or between
“CCU” and “organelle’. If both “highways” are present one may be thicker
than the other. Again in figure 18 for “Irreversible Reaction(important)” we
have a “highway” with 32 links from “organelle” to “cell” and a “highway”
with 30 links from *“cell” to “organelle”. Therefore the “highway” going

from “organelle” to “cell” is glightly thicker.

The user has a variety of mouse events that can be used to extract
more information from the networks. Mousing over a “highway” will
display the number of links/gene pairs. A mouse click opens a new window

with the gene pairs (figure 20).

© 7 7 41 gene pairs - Reaction

Atlg79550; phosphoglycerate Kinase, put
Atlg30120; pyruvate dehydrogenase E1 ¢
Atlg77590; long- chain-fatty - acid- - CoA
Atlgl2000; pyrophosphate- -fructose- G-
At1g53240; malate dehydrogenase (WMAD),
Atlg30120; pyruvate dehydrogenase E1 ¢
At3g60250: casein Kinase Il beta chain, By

m Dl

ME

Add Remove Intersect

Figure 20: Network gene pairs
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The user has the options to Add, Remove or Intersect the displayed

genes to the user’s own list of genes the same way as for subcomponents.

5. Cellstorm design

A major design issue for Cellstorm concerned the choice between a
server- side language like Perl or Python or a client- side language like Java.
To get a more interactive application, and since all the data is loaded from

text files provided by the user, we decided to use Java

Cellstorm consists of a Java applet that can be used directly on the
World Wide Web (internet). A Cellstorm application starts by reading a few
text files and loading the data in the corresponding data structures. Once

the loading process is complete the user can start using the application.

Achieving good performance in Cellstorm was an interesting
challenge. As an interactive application we wanted Cellstorm to handle
(load and retrieve) data as fast as possible. By using Java's class Hash
Tables and Hash Sets to create Cellstorm’s data structures we were able to

achieve a good performance level for loading and retrieval.

A Cellstorm application is divided into two main windows. The
display window on the left and the control panel window on the right. An
action done in the control panel will always take effect on the display
section. In more detail, inside the control panel we have three sub-

windows. The networks window, the zooming window and the visibility
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threshold window. Any of these windows offer a set of options that can be

selected by the user. See figure 21.

View:intracellular Gene count: 208 Metworks

Predicted protein:protein
Reaction

Irreversible Reaction

Reversible Reaction mportant)
Protein:protein

Positive Regulation

Hide self loops

Zooming

-.+ |chrumusume |v|

Yiew - intracellular

E |EE|| |v|

Visibility Threshold

Change Threshold

History: cellular_component; cell; My list: 6

Figure 21: Cellstorm windows

In the next two sections we will explain in more detail Cellstorm’s

data and modules.

5.1 Data

As mentioned before, Cellstorm expects to have some basic data
like: entities, hierarchical categories, a set membership file and networks

data. For Arabidopsis, these are genes, GO (gene ontology) terms, the gene
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list/set membership input file and the multi- networks file. The data is

provided to Cellstorm as a set of text files.

5.1.1 Gene Ontology

GO terms used by Cellstorm (by default) are provided by the Gene
Ontology project which offers consistent description of gene and gene

products attributes in any organism.

The GO project has developed three structured ontologies that
describe gene products in terms of their associated biological processes,
cellular components and molecular functions in a species- independent

manner.

The ontologies are structured as directed acyclic graphs (DAGS)
providing an hierarchical structure used by Cellstorm to create different
view levels. Note that each child in these structures may have more than

one parent.

GO terms have a unique numerical identifier of the form
GO:nnnnnnn, and a term name, e.g. cell. Each term is also assigned to one
of the three ontologies, molecular function, cellular component or
biological process. A gene product might be associated with or located in

one or more cellular components.

Cellstorm can use any of the three ontologies, however many
Cellstorm applications will use the cellular component ontology which
describes locations at the levels of subcellular structures and
macromol ecular complexes. Generally, a gene product is located in or is a

subcomponent of a particular cellular component.
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In order to maintain a hierarchical structure, each GO term has a
path to the root node (cellular component) which passes solely through
is_a relationships which means that there are is _a parent terms by at least

one path all the way to cellular component.

5.1.2 Files and formatting

Cellstorm may be used with different species. The user will have to
provide Cellstorm with the species name, gene annotation file, GO term
annotation file, GO term hierarchy file, GO term / gene correspondence

file, network file and network configuration file.

The file formatting is general for all the species. In this section we

will illustrate the files format by using Arabidopsis files.

» Species name: Arabidopsis
* The gene annotation file contains pairs (gene ID | gene description):

At3926090 | expressed protein
At5g65080 | MADS-box family protein

* The GO term annotation file contains pairs (GO ID | GO description):

GO:0000001 | mitochondrion inheritance

GO:0000002 | mitochondrial genome maintenance

 The GO term hierarchy file contains rows like
(parent GO ID | list_of _child_go_ids)
GO0:0000018 | GO:0045910 GO:0045911 GO:0000337 GO:0000019
GO0:0000087 | GO:0007072 GO:0000281 GO:0007067
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G0:0000023 | GO:0000024 GO:0000025

« The GO term / gene correspondence file contains rows like

(GO ID | z- score | genellist- of gene_ids)
GO:0000002 | 1.1503067484662577E- 4 | At5g46400 Atlgl10270
GO0:0000003 | 0.005138036809815951 | At3g20740

Note that for the scope of this project z- score values are not used;

* The network file contains rows like

(Origin /tab Network name /tab Destination)
At5959710 interolog:pp At4g00660
At3g56150 interact At4914110

Atlg77070 regulog:pp At5924760
1,2- Diacyl- sn- glycerol Irc  At1g02660
10- Formyltetrahydrofolate Irc At4g17360

The network file follows the Simple Interaction Format, SIF, three
columns indicating interacting molecules (origin and destination) and

the interaction type;

* The network configuration file contains rows like
(network pretty name | network name | network type | network
color)
Interaction | interact | none | 153,102,51
Predicted protein:protein | interolog:pp | none | 153,0,204
Irreversible Reaction (important) | Irc | directional | 255,204,0

Positive Regulation | activate | directional | 255,102,0

e Gene List contains alist of genes

At1g01050
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At1g01450
At1g01460
At1g01510
At1g01560

5.2 Modules

In this section we will describe each of the eight classes maintained

in Cellstorm.

* Class Gene
Data: id, name, location, gene_is a
The gene location is the GO terms where the gene is annotated. The
gene_is_a is the list of GO terms to which the gene is annotated and its
ancestors in the cellular component ontology;
Methods: setName, setL ocation, setGene _is_a, getld,

getName,getGene_is a

» Class Goterm
Data: id, name, parent, children
Both parent and children are taken from the gene ontology
hierarchy;
Methods: setld, setName, setChildren, setParent, getld, getName,

getChildren, getParent, copy, clean, print
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¢ Class Network

Data: nodeA, nodeB, label, name, direction, type, netColor
Methods: getName, getPrettyName, getType, getOrigin,

getDestination, getDirection, getColor

* Class Shape is abstract
Methods: getX, getY, getWidth, getHeight, getld, getName

e Class SubComponent extends Shape

Data: id, name, X, y, width, height, color, shape, geneList, geneCount
Methods: setSize, setCoordinates, adjustCoordinates, setDragged,
setColor, setShape, addGeneList, contains, getNumGenes, getName,

getX, getY, getWidth, getHeight, setBounds, getld, getGeneList,
getGeneSet, draw

e (Class Link

Data: color, thickness, origin, destination, type, name, weight,
genePairs, divFactor, curve, netWidth

Methods: setColor, equal, isPair, addThickness, getThickness,
addDivisionFactor, addGenePair, getListSize, getGenePairs,
getGeneSet, getName, getOriginName, getDestinationName,

getDirection, drawArrowFormat, contains, drawCurvedArrows, draw,

e Class Cellstorm extends JApplet implements Runnable
This is the main module where all graphical components that
compose Cellstorm interface are created. It's also in this module

that all the data structures are defined and the data is loaded from the
text files
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e Class Display extends JPanel implements  Mouselistener,
MouseMotionListener, MouseWheelListener; This is a nested class
that represents the drawing surface of the applet
Data: width, height, graphic2D

5.3 Program structure

Cellstorm starts with two different threads. One thread creates the
Graphical User Interface; the other thread will take care of more time
consuming tasks as reading and loading data. Most often the GUI is

displayed even before the data has been processed.

The GUI creation thread starts by creating the component for the
drawing area using the Display class. Then it creates the main control
panel followed by the network panel, zooming panel and threshold options
panel. All these three panels are added to the control panel. Finally, the

drawing area and control panel are both added to the Applet.

The second thread starts by reading gene and go term data and
filling the correspondent data structures. This thread reads the data by the
following order: gene list, gene annotation, go to gene, go term annotation,
go hierarchy, network configuration and networks. Once all the data is
processed then the zooming area, visibility threshold and network area are

created and filled with data.

In the next chapter (Cellstorm implementation) we will describe in

more detail how the data is loaded into Cellstorm data structures.
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6. Cellstorm implementation

In this section we will describe the major Cellstorm data structures,

some graphical components and the most important algorithms.

6.1 Cellstorm major data structures

« From the gene list file and gene annotation file Cellstorm creates a

geneMap that consists of pairs (Gene ID, Gene). The map size
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matches the gene list size however if a given gene does not exist in

the gene annotation file than it will be discarded.

Map<String, CGene> geneMap = new Hashtabl e<String, Gene>();

e From the go term annotation file Cellstorm creates a goMap that
consists of pairs (Go ID, Goterm). The map size matches the file

size.

Map<String, Cotern> goMap = new Hashtabl e<String, Goterne();

e From the network configuration file Cellstorm creates several
different network maps that will contains the different network

properties.

Map<String, String> networkMapNane = new Hashtabl e<String, String>();

Map<String, String> networkMapType = new Hashtabl e<String, String>();
Map<String, String> networ kMapCol or = new Hashtabl e<String, String>();

* From the networks data file Cellstorm creates a networks set that
consists of entries that have at least one node belonging to geneMap.
So, any entry in the network file that does not have an origin or a
destination from the gene list will be discarded. Since the network
file is usually very big, this implementation strategy is important to
reduce the number of networks to be loaded in Cellstorm and
therefore to reduce the loading and processing time. It also reduces

the visual clutter.
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Set <Net wor k> net wor ks = new HashSet <Net wor k>() ;

» Other important data structures related to Gene and Goterm data

/'l Selected Genes in My List
Set <String> sel ect edGenes = new HashSet <String>();

/1 The top conponent in the hierarchy (Applet paraneter)
String TopConponent;

/'l zoomin pushes terns to the history stack

/1 zoom out pops ternms fromthe history stack
Stack<Goternr history = new Stack<Goterny();

e Other important data structures related to networks data

/1 set of all network types
Set <Stri ng> networksType = new HashSet <String>();

/1 types that have been sel ected by the user
Set <String> sel ectedNet works = new HashSet <String>();

/'l types that are active for each zoom | evel
Set <String> activeNetworks = new HashSet <String>();

/1l network's pretty name
Set<String> prettyNanme = new HashSet <String>();

/1l network weigths to be used to draw the curved hi ghways
Map<String, Doubl e> networ kWi ght = new Hasht abl e<String, Doubl e>();

/'l Apply associative rule: gene-other + other-gene => gene-gene

Map<Stri ng, Set<Network>> origin_map = new Hasht abl e<Stri ng,
Set <Net wor k>>() ;
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Map<String, Set<Network>> destination_map = new Hasht abl e<Stri ng,

Set <Net wor k>>() ;

6.2 Cellstorm major graphical components

e Main window

/1 Applet wi dth and hei ght

int w, h;
JPanel canvasPanel ;

JPanel control Panel ;

JScrol | Pane control Panel Scrol | ;

¢ Canvas Panel

/1 list of subconponents to be displayed in the canvas
Vect or <SubComponent > shapes = new Vect or <SubConponent >();

/1 list of links between subconponents
Set <Li nk> |i nks = new HashSet <Li nk>();

*« Control Panel

JPanel networ kPanel ;
JPanel zoonPanel ;
JPanel threshol dPanel ;

« Network Panel

Map<Stri ng, JCheckBox> networ kMap = new Hasht abl e<Stri ng,

¢ Zoom Panel
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JButton zoom n, zoonCut;

I magel con | mageZoom n = createl nagel con("zoom.in.jpg","Zoom|N");

| magel con | mageZoonut = creat el magel con("zoom out.jpg", " Zoom OQUT");
JLabel current Conponent;

JConmboBox zoom nChoi ce, zoonut Choi ce;

ConmboBoxModel nodel Chil dren, nodel Parent;

e Threshold Panel

JButt on changeThr eshol d;
JConboBox t hreshol dChoi ce;
JLabel threshol dLabel ;

6.3 Cellstorm Major Algorithms

6.3.1. Subcomponent placement algorithm

For each view level Cellstorm has a variable number of
subcomponents that must be displayed in the canvas area. Cellstorm
displays the group of subcomponents in an ellipse- shaped diagram. Next

we present the algorithm outline.

- Ellipse center:

int centerX = 10 + (wi dt h-20)/2;

int centerY = 40 + (hei ght-80)/2;

- Number of subcomponents:

i nt nunSubConp = shapes. si ze();

- Ellipse semi major axis and semi minor axis:
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int radiunX = 3*(w dth-20)/7;
int radiumy = 3*(height-80)/7;

- Distance between subcomponents:

doubl e theta;
i f (nunBSubConp > 2)

{ theta = 2*Mat h. Pl / nunSubConp; }
el se
{ theta = 2*Math.PI/3; }

- Subcomponent location. Coordinates location for subcomponent top left

corner.

double x = radiunmX * Math.cos(i*theta);
radi unmy * Math. sin(i*theta);

doubl e y

int xCoord
int yCoord = centerY+(int)y-(nmaxSi zeH 2);

center X+(int)x-(maxSi zeW 2) ;

shapes. get (i) . set Coor di nat es(xCoor d, yCoord) ;

- Subcomponents maximum size. This is the size of the subcomponent

with more genes:

int maxSi zeH = Math.mn( 80, (int)(radiunmy * Math.sin(theta) - 20.0));
i nt maxSi zeW = naxSi zeH;

if (width - height > 0)

{ maxSi zeW = maxSi zeW + (wi dt h-hei ght)/4; }

- Subcomponent size using linear interpolation. Size is proportional to

quantity of genes:
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if (maxGenes !'= 0)
{ width = (wvidth/2 + ((geneList.size()/mxCGenes) * (width/2)));
hei ght = (height/2 + ((geneList.size()/mxCenes) * (height/2)));

- Avoid overlapping. Given a subcomponent check that it's not overlapping

its neighbors:

/'l check four corners if one overlaps then the conponent is overl appi ng
i f ((x>=bounds[0] && x<=bounds[1l] && y>=bounds[2] && y<=bounds[3]) ||
(x>=bounds[ 0] && x<=bounds[1] && y+hei ght >=bounds[2] &&
y+hei ght <=bounds[ 3]))
{ /1 shift to the rigth
X = bounds[1] + 2;
}
el se
{
i f ((x+wi dt h>=bounds[ 0] && x+w dt h<=bounds[1] && y>=bounds[2] &&
y<=bounds[ 3]) ||
(x+wi dt h>=bounds[ 0] && x+w dt h<=bounds[ 1] && y+hei ght >=bounds] 2]
&& y+hei ght <=bounds[ 3]))
{ /] shift to the left
X = bounds[0] - width - 2;
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6.3.2. Drawing highways —thickness and quadratic curves

Given two subcomponents, Cellstorm displays the networks between
them wusing quadratic curves whose thickness is proportional to the
number of gene pairs retrieved for each network type. Depending on the
type of network, the end points of the quadratic curve may or may not be
arrows. Directed — one arrow representing the network direction;
Undirected —no arrows; Bi-directed —two arrows one in each side. Next we

present the algorithm outline.

- Assign a different weight to each network type. Between two
subcomponents we may have several different network types. In order to
avoid the overlapping of each network must have a specific weight that will

serve as a measure to get the quadratic curve control points:

int total Net = prettyNane. size();
int i = 0;
Iterator it_prettyName = prettyNane.iterator();
whil e(it_prettyName. hasNext ())
{ String Net _prettyName = (String)it_prettyNane.next();
net wor kWei ght . put (Net _prettyNane, (i *1.0/(total Net*1.0 - 1)));

i ++;

- Get division factor for directed networks. Directed networks need to have
two different weights, one for each direction. We use the division factor to

split one weight into two different weights:

divisionFactor = 1.0/ (total Net*1.0 - 1);

48



- Get maximum number of gene- pairs to be used for thickness:

Iterator it_link = links.iterator();
whi l e(it_link.hasNext())

{
Link link = (Link)it_Iink.next();
maxGenePairs = Mat h. max(link. getListSize(), maxGenePairs);

- Get network width (known as thickness):

net Wdth = (nmaxSi ze/5 + ((nmaxSi ze- maxSi ze/ 5) *1. 0/ maxGenePai r s)
*genePairs.size())/(1.5);

- Get origin and destination center points:

/1l Origin center point

double OCcx = origin.getX() + origin.getWdth()/2;
double OCcy = origin.getY() + origin.getHeight()/2;
/| Destination center point

doubl e Dcx = destination.getX() + destination.getWdth()/2;
doubl e Dcy = destination.getY() + destination.getHeight()/2;

- Get slope of line that connects Origin and Destination center points:

t = ((Ccy-Dcy)*1. 0/ (Ccx-Dex));
- Find bisector of previous line (connects Origin and Destination center

points). The control points will be always on top of bisector line. The next

figure illustrates how we get the bisector line and helps to follow the code.
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Line connecting Orig to

Angle beta

Oy - Dy

—Dest ¢

Figure 22: Algorithm illustration

doubl e h Mat h. sqrt ((Qcx- Dex) *(Ccx-Dex) + (Ccy-Dey) *(Ccy-Dey));
doubl e | h/ Mat h. sqrt (2);

doubl e al fa = Math. asi n( Mat h. m n( Mat h. abs( Gcx- Dcx) , Mat h. abs(Ccy-
Dcy) )/ h);

doubl e beta = Mat h. acos(Mat h. m n( Mat h. abs( Ccx- Dcx), Mat h. abs(Ccy-
Dey) )/ h);

doubl e ganms,;

if (Math.abs(t)<1)

{ gamma = Math.PI/2 - Math.nin(alfa,beta) - Math.PlI/4; }

el se

{ gamma = beta - Math.PlI/4; }

double a = | *Mat h. si n(gamma) ;

double b

| *Mat h. cos(ganms) ;
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- Get bisector start and end points (x1,y1l) (x2,y2):

doubl e x1,y1,x2,y2;
if (t>0)
{ if (Math.abs(t) < 1)

{ x1 = Math. m n(Ccx, Dcx) + a;
yl = Math. nmin(Ccy, Dcy) + b;
x2 = Mat h. max(Ccx, Dcx) -
y2 = Mat h. max(Ccy, Dcy) - b;

}
el se
{ x1 = Mat h. max(Ccx, Dcx) - b;
yl = Mat h. max(Ccy, Dcy) - a;
x2 = Math. m n(Ccx, Dcx) + b;
y2 = Math. min(Cecy, Dcy) + a;
}
}
el se
{ if (Math.abs(t) < 1)
{ x1 = Math. m n(Ccx, Dcx) + b;
yl = Mat h. max(Ccy, Dcy) + a;
x2 = Math. mn(Ccx, Dcx) + a;
y2 = Math. max(Ccy, Dcy) - b;
}
el se
{ x1 = Mat h. max(Ccx, Dcx) + a;
yl = Math. mn(Ccy, Dcy) + b;
x2 = Math. mn(Ccx, Dcx) - a;
y2 = Mat h. max(Ccy, Dcy) - b;
}
}
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- Get quadratic curve (link) control points:
double m= (y2-y1)/(x2-x1);
double ¢ = y1 - mx1,;
double ctrlx, ctrly;
if (mM=0 & m =Doubl e. PCSI TI VE_I NFI NI TY && m =Doubl e. NEGATI VE_I| NFI NI TY)
{ ctrly = Math. nmin(yl,y2) + Mth.abs(yl-y2)*weight;
ctrix = (ctrly - ¢c)/m

}
el se
{
if (me=0)
{ ctrlx = Math. m n(x1, x2) + Mth. abs(x1-x2)*wei ght;
ctrly = y1;
}
el se

{ ctrlx = x1;
Mat h. m n(yl,y2) + Math. abs(yl-y2)*wei ght;

ctrly

- Get curve's origin and destination. If the subcomponents are very close
then these points will be the center points of the subcomponents,
otherwise these points will be the intersection points between the
quadratic curve and the subcomponent shape. Next we show how to get

these values:

/1 - find intersection point for origin SubConponent
if (CQcx-ctrlx 1=0)
{ /] intersects with vertical left ?
X = Qx - origin.getWdth()/2 - netWdth;
y = ml*x + bl;
if (y>=Ccy-origin.getHeight()/2-netWdth &&
y<=Ccy+ori gi n. get Hei ght ()/ 2+net Wdth && y>=Math. mi n(Ccy, ctrly) &&
y<=Mat h. max(Ccy, ctrly))
{ X =x; O =y; }
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/1 intects with vertical right ?

X = Qcx + origin.getWdth()/2 + net Wdt h;

y = ml*x + bil;

if (y>=Ccy-origin.getHeight()/2-netWdth &&
y<=Ccy+ori gi n. get Hei ght ()/ 2+net Wdth && y>=Math. ni n(Ccy, ctrly) &&
y<=Mat h. max(Ccy, ctrly))

{ X =x; O =y}

if (Ccy-ctrly 1=0)
{ /] intects with horizontal top ?
y = Qy - origin.getHeight()/2 - netWdth;
X = (y-bl)/nt;
if (x>=Ccx-origin.getWdth()/2-netWdth &&
x<=QCcx+origin.getWdth()/2+netWdth & y>=Math. m n(CQcy, ctrly) &&
y<=Mat h. max(Ccy, ctrly))
{ X =x; O =y}

/1 intects with horizontal bottom ?

y = Qcy + origin.getHeight()/2 + netWdth;

X = (y-bl)/nt;

if (x>=Ccx-origin.getWdth()/2-netWdth &&
x<=QCcx+origin.getWdth()/2+netWdth & y>=Math. m n(CQcy, ctrly) &&
y<=Mat h. max(Ccy, ctrly))

{ &x =x; O =y}

/1 - find intersection point for destination SubConponent
if (Dcx-ctrlx 1=0)
{ /] intersects with vertical left ?
X = Dcx - destination.getWdth()/2 - netWdth;
y = m2*x + b2;
i f (y>=Dcy-destination.getHeight()/2-netWdth &&
y<=Dcy+desti nati on. get Hei ght ()/ 2+net Wdth &&
y>=Mat h. mi n(Dcy, ctrly) && y<=Math. max(Dcy, ctrly))
{ Dx =x; Dy =y}
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/1 intects with vertical right ?

x = Dcx + destination.getWdth()/2 + netWdth;

y = m*x + b2;

i f (y>=Dcy-destination.getHeight()/2-netWdth &&
y<=Dcy+desti nati on. get Hei ght ()/ 2+net Wdth &&
y>=Mat h. mi n(Dcy, ctrly) && y<=Mat h. max(Dcy, ctrly))

{ x =x; Dy =y}

if (Dcy-ctrly 1=0)
{ /] intects with horizontal top ?

y = Dcy - destination.getHeight()/2 - netWdth;

X = (y-b2)/ne;

i f (x>=Dcx-destination.getWdth()/2-netWdth &&
x<=Dcx+destination.getWdth()/2+netWdth &&
y>=Mat h. m n(Dcy, ctrly) && y<=Math. max(Dcy, ctrly))

{ x =x; Dy =y}

/1 intects with horizontal bottom ?

y = Dcy + destination.getHeight()/2 + netWdth;

X = (y-b2)/ne;

i f (x>=Dcx-destination.getWdth()/2-netWdth &&
x<=Dcx+destination.getWdth()/2+netWdth &&
y>=Mat h. m n(Dcy, ctrly) && y<=Math. max(Dcy, ctrly))

{ x =x; Dy =y}

}
}

- Draw quadratic curve:

g. set Stroke( newBasi cStroke((float)net Wdth, Basi cStroke. CAP_SQUARE,
Basi cStroke. JO N_ROUND) ) ;

curve = new QuadCurve?2D. Doubl e( (doubl e) Ox, (doubl e) Oy, (double)ctrlx,
(doubl e)ctrly, (double)Dx, (double)Dy);

drawCur vedArrows(g, (float)Ox, (fl oat) Oy, (fl oat)Dx, (fl oat) Dy, (fl oat) (netW
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idth), (float)ctrlx, (float)ctrly);

7. Cellstorm Integration

Cellstorm is part of a bigger project called VirtualPlant. Virtual Plant
integrates genomic data and provides visualization and analysis tools for
rapid and efficient exploration of genomic data. Cellstorm belongs to that
group of tools.

Cellstorm is located in the VirtualPlant web  server
/var/www/html/cellstorm and is launched from the VirtualPlant export
page by selecting Cellstorm from the pop- down list together with one or
several group of genes to analyze. Figures 23 and 24 show Cellstorm being
selected and launched from VirtualPlant page.

Mew York University | Biology Department | Coruzzi Laboratory | Shasha Laboratory | Gutierrez Labor&mract Us

Welcome back Ana Newves
( Last visit: 04/12/2007 )

Logout

Home | Query | Analyze | Upload Data | Export | New Features

Your Gene |4 the drop-down menus. 2
Cart
|
Experiments
ISECTION: Experiments
Automati - - - ;
o Edit Sets: (2) | - Select - [w] [Edt ]  Analysis: (2) |- Select - |Qu
! - Select -
Listi L] select all gene sets Unian
List2 [Iselect All Un-grouped Ttems ‘Igrrtersed Oif pls |
L. wmmetric Difference |
Your D + | AutomaticListName75789 BioMaps
Groups: .1 Li Sungear
. | bistl CellStorm
O .| Listt Gene networks
1 Groups LEEE Super Node networks
O . | List2 Get Experiment Data
- Get Al Microamay Data
?@, Refresh D.' Eoillsbein s Vicogenta _DI
OrthaloglD
v Network Statistics 1
= e o Contact Us Copyright © 2003 New York University. All rights reserved. Privacy Policy o
v
= e H

Figure 23: Cellstorm windows
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Mew York University | Biology Department | Coruzzi Laboratory | Shasha Laboratory | Gutierrez Laboratory Contact Us

VirtualPlant 0.9

Home | Query | Analyze | Upload Data | Export | New Features

Your Gene |4

Sy Cellstorm 1.0

Experiments

Analyze:

View: cellular_component Gene count: 110 Networks

Automati
List1
Listl
List2

Positive Regulation

—

— . .
Organelle g— Protein:protein

Your : ) .
[]Rewversible Reaction (important)

Groups: \
0] G Predicted protein:protein
roups
\ Reaction

Irreversible Reaction

¥y Refresh

v

« [S

Zooming &/

I'_t'} |r‘nll -

ry
Browse Da 3
. ‘_‘ [ 3

Figure 24: Cellstorm windows

From the selected group of genes VP makes a file and sends its URL
to Cellstorm in the query string as the “data_url”. VP also sends a few more
parameters that will be used by Cellstorm to send back information to VP.
The most important of these is the URL where VP expects the form
submission to add new group: “export_url”. The data files urls can also be
send in the query string using specific parameters. The following is a

typical query string passed from VirtualPlant to Cellstorm:

http://virtual plant.bio.nyu.edu/cellstorm/cellStorm1.html|?

species=arabidopsis&

data url= http://virtualplant.bio.nyu.edu/virtualplant/temp/temp5117612

2.sun &

export_url= http://virtual plant- prod.bio.nyu.edu/cgi- bin/virtualplant.cgi &
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http://virtualplant-prod.bio.nyu.edu/cgi-bin/virtualplant.cgi
http://virtualplant-prod.bio.nyu.edu/virtualplant/temp/temp872077208.sun
http://virtualplant-prod.bio.nyu.edu/virtualplant/temp/temp872077208.sun
http://virtualplant.bio.nyu.edu/cellstorm/cellStorm1.html?

export_cmd=addGroups&
export_action=session&
export_session_id=cc1f26aa8040f837f772dfel8bc24ffe

8. Use cases

In this section we will present two different test cases. The first case
shows Cellstorm being applied in a biological context. In the second case
Cellstorm is applied in a non- biological context. The second test case is

useful to demonstrate Cellstorm data independence.

8.1 Biological case study

We gratefully thank Miriam Gifford and Ken Birnbaum for supplying

the data for this test case.

In this case study we use Cellstorm to visualize network connections
between five different cell types within the root: Lateral Root Cap (LRC),
Epidermis& Cortex (EpiCor), Endodermis&Pericycle (EndoPeri), Pericycle
(Peri), Stele (Stele).

For each of these cell types we have the group of genes that are
nitrogen induced and nitrogen depressed. We have about 6,000 genes in
total. Note that genes can be nitrogen induced or depressed in more than

one cell type.
The data was grouped as nitrogen induced and nitrogen depressed.

For each of these groups we run Cellstorm for all genes and for cell

specific genes only.
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In this case study the entities are Arabidopsis genes. The
hierarchical categories are: Root, LCR, EpiCor, EndoPeri, Peri and Stele
where the Root is the parent and all the other categories are Root’s
children. The membership is the nitrogen depressed/induced genes for
each cell type and finally the networks are the biological networks. The top
component in this case is the “Root”. Next we present some images from

this Cellstorm application, one per each different data group.

* Nitrogen induced:

View: Root Gene count: 4073 Networks

[¥] Transcriptional Regulation

[¥]

[¥]

[¥] Negative Regulation

[¥] Interaction

[¥] Predicted protein:protein

[¥] Reaction

[¥] Irreversible Reaction

[¥] Reversible Reaction (important)
[¥] Positive Transcriptional Regulation
[¥]

[¥] Reaction (important)

[¥]

[¥] Protein:protein

Zooming

Ler =

View - Root

“epiCor’

Figure 25: Nitrogen induced using all genes
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View: Root Gene count: 2168 Networks

Transcriptional Regulation

[v]

Negative Regulation

Interaction

Predicted protein:protein
Reaction

Irreversible Reaction
Reversible Reaction (important)
Positive Transcriptional Regulation
Reaction (important)
Protein:protein

Zooming

BN .

View - Root

ZpiCor

isibility Threshold

Figure 26: Nitrogen induced using cell specific genes only

* Nitrogen depressed:

View: Root Gene count: 4474 Networks

E

= Tr s :
/\ - 7] Transcriptional Regulation

T Peari~

|»| Predicted protein:protein

|v| Reaction

|¥| Irreversible Reaction

|¥| Rewversible Reaction (important)

|| Positive Transcriptional Regulation

SN EEEEEEEEE

Reaction (importanty

e

] E

b

| Protein:protein

n

Zooming

iLCR |~

View - Root

Endat =ri

Visibility Threshold

Figure 27: Nitrogen depressed using all genes
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View: Root Gene count: 2782 Networks

Transcriptional Regulation
Predicted protein:protein
Reaction

Irreversible Reaction

Rewversible Reaction (important)

Protein:protein

Zooming

Positive Transcriptional Regulation

EndoPeri |LCR

View - Root

Visibility Threshold

P — | I

Figure 28: Nitrogen depressed using cell specific genes only

8.2. Non- Biological case study

In this case study we use Cellstorm to show flight connections
between airports in different continents, countries and cities. The data for
this case study was built manually and does not attempt to represent a

complete set of flight connections.

Cellstorm expects entities, hierarchical categories, membership and
networks. In this case study the entities are airports, the hierarchical
categories are physical locations for example world, continents, countries,
states/regions, cities, the membership is where each airport is located and
finally the networks are the flight connections between different airports.

The top component in this case is the “World”.

Next we show several figures obtained from this case study. Figure
29 shows the top level view where the subcomponents are the 6

continents. Not surprisingly between continents we have more connections

60



for longer flights than for shorter flights.

View: World Gene count: 187 Networks

sdlitn AMETiea= 22 genes Between 9 and 10 hours
Africa Over 12 hours
Under 2 hours
Between 8 and 9 hours
Between 10 and 11 hours
Between 6 and 7 hours

Morth America

El
=n)
[1:]
[3:]
[1:]
Pl
[=]
']

Europe [] Hide self loops

‘.""""--—___—-—"'—‘“ Zooming

Figure 29: Top level with flight connection

By zooming In on Europe we get the next figure that shows the flight
connections between some European countries. In this case, as we were
expecting, the longer flights disappeared and we only have connections for

shorter flights.
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View: Europe Gene count: 43 Networks

Under 2 hours

[] Hide self loops

Zooming

|Austria

\iew - Eurone

E:| |Wor|¢|

Visibility Threshold

T

Figure 30: Zoom in to Europe

Next figure shows the airport locations for United Kingdom. We

obtain this figure by mouse clicking on top of the subcomponent “UK”.

United Kingdom - 6 genes

A216: London
A215: Liverpool
A214: Glasgow
A213: Edinburgh
A212: Birmingham
AZ217: Manchester

OK

Add Remove Intersect

Figure 31: Airport locations for United Kingdom
By mouse clicking in alink we obtain the list of connections between
two locations. Next figure shows the connections “between 2 and 3 hours”
from Portugal and United Kingdom.
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2 gene pairs - Between 2 and 3 hours

AZ216: London - A203: Porto
AZ216: London - A207: Faro

OK

Add Remove Intersect

Figure 32: Flight connections between Portugal and UK

9. Conclusion and Future Work

Cellstorm is a software system that allows a rapid visualization of
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genes and subcellular networks. Given a set of genes, expression levels,
structural hierarchy and network’s data, Cellstorm displays the networks
at any level of the hierarchy and provides a set of user options such as
zooming, network selection and list filtering. In the graphical display the
most important property is that size is aways proportional to quantity, for
example number of genes expressed in a subcomponent or number of

links present in a network connection.

Cellstorm is a generic tool that avoids building in data- specific
assumptions. Although it is targeted to be used in a biological context
Cellstorm can be applied in many other contexts as has been shown in

section 8.

Cellstorm was tested by some biology researchers and proved to be
a helpful tool to visualize networks in large datasets. Based on user
comments a variety of features may be added in the future to Cellstorm.

Here is a list of some suggestions:

e Connect Cellstorm directly from Sungear;

« Make the history (showed at the bottom of the display section)
interactive where clicking in a subcomponent name turns that
subcomponent to the present View level,;

* Allow to view networks between genes/entities; The user would be
able to toggle between: display networks between subcomponents
and display networks between genes;

 Allow to create more than one list of genes and provide a more

flexible interface to add, remove and intersect list of genes;
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