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Abstract 

 

The human visual system sees at any moment a static scene in three 

dimensions.  This 3D view of the world is acquired by two images, one from the left 

eye and the other by the right eye.  Fusing the left and right stereo pair of images 

yields a single cyclopean view portraying depth.  Stereo vision can be applied to the 

field of computer vision via calibrated stereo cameras to capture the left and right 

images.   Given a stereo pair of images, one can compute the field of depth via a stereo 

correspondence algorithm.  We present a new approach to computing the disparity 

(depth) by means the STUMP algorithm. 

The STUMP algorithm presents a solution to the stereo correspondence 

problem.  We propose to solve the problem of discontinuities in disparity within 

epipolar lines by modeling geometric constraints of smooth, tilted, and occluded 

surfaces as well as unicity and opaqueness.  Our algorithm runs upon a framework 

built upon the BP-TwoGraphs belief propagation estimation [17].  As a result, we 

provide a disparity map in the cyclopean coordinate system determined by a 

probability distribution computed in polynomial time. 
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1  Introduction 

 

Binocular vision, known as stereopsis, is the process in which the visual sense 

obtains a perception of depth from a pair of left and right images.  Stereoscopic depth 

is the sensation that emerges from the fusion of two slightly different views of the 

world on the two retinas.  A sense of depth can be obtained by a pair of images either 

biologically or via a pair of cameras.  The difference between the two views as seen by 

both the left and right eyes is referred to as binocular disparity.  Binocular disparity 

occurs from the result of the horizontal separation of the left and right eyes.  The 

discovery that binocular disparity is interpreted as depth by the brain was published by 

Charles Wheatstone in his significant paper to the Royal Society in 1838 [32]. 

Leonardo da Vinci also realized that objects in the world, at different distances 

from the eyes, project an image in the left eye and an image in the right eye which 

differ in their horizontal positions.  However, he concluded that it was impossible for a 

painter to portray a realistic depiction of depth in a scene with a single canvas. 

The question of obtaining a single notion of depth from a pair of views seen by 

the eyes can be translated into the realm of computer vision with the use of a pair of 

specially calibrated cameras.  These cameras will produce a left and right stereo pair 
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of images similar to the views produced by each eye.  Given a stereo pair of images, 

the first task is to detect features which occur in both images.  Next, one must develop 

a correspondence between the features of the stereo pair of images.  Finally, depth can 

be computed by measuring the difference between corresponding feature matches with 

the stereo pair.   

Our approach, takes into account the problem of stereo correspondence by 

utilizing the cyclopean coordinate system, which is a system that represents a single 

fused view of the stereo pair of images.  The cyclopean view was chosen since it is a 

natural way to view depth.  Depth is seen only through a single view fused in the brain 

by images from both eyes.  The STUMP algorithm will contribute to a procedure for 

conducting stereopsis in computer vision. 

The foundation of stereopsis became popular with the modeling of image 

projections in cameras.  Chapter 2 will provide a mathematical model necessary for 

stereo vision consisting of both projective and epipolar geometry.  We will also 

discuss the Bayesian framework, which yields a probability distribution based on 

parameters using a prior model of images.  Chapter 2 will also introduce stereo 

perception, which explains how the world is perceived in three dimensions 

independent of object recognition as well as mentioning the occluded regions within a 

stereo pair of images, which effects the stereo matching.  Next we will introduce the 

current state of stereo computation in the computer vision field and the current 
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algorithms used for stereo correspondence.  Concluding Chapter 2 will be a discussion 

on belief propagation as well as the BP-TwoGraphs estimation contributed by Kai Ju 

Lui [17]. 

Our goal is to provide an estimation of depth in the cyclopean view from the 

images seen by the left and right eyes.  In Chapter 3, we will introduce our solution to 

stereo correspondence, the STUMP algorithm, by first defining the problem in terms 

of the stereo matching space and cyclopean coordinate system.  We will provide a 

detailed explanation of the extraction of features from a stereo pair of images, as well 

as how we model various types of surfaces and how we determine the disparity of 

pixels within the pair of images.   

After our theory of stereo correspondence is discussed in Chapter 3, we will 

illustrate and analyze the STUMP algorithm’s performance on various stereo images 

in Chapter 4.  This will include a comparison to an optimal solution of solving 

disparity for independent horizontal (epipolar) lines via a dynamic programming 

algorithm.  We will show that the STUMP algorithm provides a solution to stereo 

correspondence utilizing marginal probabilities of local disparities.
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2  Previous Contributions 

 

The STUMP algorithm contributes to the computer vision field with a method 

to solve the stereo vision correspondence problem.  Prior to the work of the STUMP 

algorithm, many well-known ideas have been studied and proved quite useful in the 

development and experimentation of the algorithm.  The mathematical geometry used 

to model stereo images dates back to the pinhole camera.  Built upon the projective 

camera model, stereo vision takes into account a pair of cameras and the epipolar 

geometry used in matching the corresponding points between the stereo pair of 

images.   

 

2.1 Projective Geometry & Epipolar Lines 

The intrinsic geometry for stereo vision is epipolar geometry, which is the 

geometric foundation for the projection of an image in 3D space onto two viewing 

planes.  Under the assumption that two cameras (image planes) can be well 

approximated by the pinhole camera model, each camera captures a projected image 

of the 3D world.  In stereo vision, the correspondence problem is the reconstruction of 



the 3-D coordinates of a number of points in a scene given several images (two in our 

case) obtained by cameras of known relative positions and orientations.   

To understand how points in the 3D world are projected onto 2D images, one 

must understand the projective camera model.  In Figure 2.1.1 below, let 

 where a point in the 3D world is represented by a “world” coordinate 

system.  Let  be the center of projection of a camera where a camera reference 

frame is placed.  The camera coordinate system has the 

( , , )OP X Y Z=

O

Z  component perpendicular 

to the camera frame (where the image is produced) and the distance between center O  

and the camera frame is the focal length, f .  In this camera coordinate system, the 

point  is described by the vector ( ,OP X= , )Y Z , ,
T

O OP X Y Z= (O O )
G

 and the projection of 

this point onto the image is given by the point , ,( )T
O O Op x y f=
G  where O O

fp P
Z

=
GG . 
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Figure 2.1.1:  Projective Camera.  The figure above depicts the projection of 
the point  in the 3D world coordinate system (black) onto t
image 2D coordinate system O

( , , )O O OP X Y Z= O he 
( , , )O Op x y f=  (bl

)

ue). 

 

Within the projective camera coordinate system, let 0 0( x x xx q o s= −  and 

0 0( )y y yy q o= − −

{( , ), ( , ),x y x ys s o o f

s  where the intrinsic parameters of the camera are 

.  Let } ( , )x ys s represent the size of the pixels along the x and y 

directions.  Let ( , )x yo o represent the coordinate in pixels of the image and 

f represents the focal length of the camera.   This conversion between the camera 

coordinate system to the image coordinate system can be described by the following 

linear transformation.   This linear transformation is necessary due to the fact that the 

points in the camera coordinate system are continuous.  However, in the image 
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coordinate system, the points are discrete pixel values.  The following equations 

display the conversion from a vector opG  in the camera coordinate system, to a vector 

 in the image coordinate system and vice versa. oqG

G

G G

1
0op Q q−=

G   (2.1.1)    

0oq Qp=   (2.1.2)  

1

0
0 2.1.3)
0 0

x x

y y y

s s o
Q s s o

f

−

−⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

(
x

 

1 0

10 (2.1.4)

10 0

x

x

y

y

o
s f

o
Q

s f

f

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= −⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠  

 

 In stereo vision, two projective cameras are used simultaneously to take two 

2D images of the same 3D scene.  Figure 2.1.2 as shown below, adapted from 

Zisserman [11], depicts a pair of stereo images and a point X  in 3D space.  Points 

 and  are the projections of the point LEFTX RIGHTX X onto the left and right image 
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planes.  The image points , , LEFTX RIGHTX X , and the centers of cameras  and 

 (image planes) are all coplanar.  This plane is known as the epipolar plane, 

denoted by 

LEFTC

RIGHTC

π .   

 

Figure 2.1.2:  Point Correspondence Geometry.  The two cameras are 
indicated by their centers  and  and image planes.  The camera 
centers, the 3D point X, and its images  and  lie in a common 
plane

LEFTC RIGHTC

LEFTX RIGHTX
.π   Note that the centers of the cameras are behind the image planes.  

This image has been adapted from Zisserman [11]. 

 

Under the assumption that we only know , we wish to know how the 

corresponding point  is constrained.  The following figure below depicts the 

epipolar geometry which yields the corresponding epipolar lines between two images.  

The plane 

LEFTX

RIGHTX

π  is determined by the baseline and the ray defined by .  The baseline LEFTX
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is the line along the epipolar planeπ , which connects points  with .  

From Figure 2.1.2 above, we know that the ray corresponding to the unknown point 

lies in

LEFTC RIGHTC

RIGHTX π ; therefore the point  lies on the line of the intersection RIGHTX l′  of π  

with the second image plane.  This line l′  is the image in the second view of the ray 

back-projected from .  Thus, the line lLEFTX ′  is the epipolar line corresponding 

to .  An epipolar line is the intersection of an epipolar plane with the image 

plane.  All epipolar lines intersect at the epipole.  An epipolar plane intersects the left 

and right image planes at epipolar lines, and defines the correspondence between the 

lines.   In relation to a stereo correspondence algorithm, the benefit is that the search 

for the point corresponding to does not need to cover the entire image plane but 

can be restricted to the line 

LEFTX

LEFTX

l′ . 
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Figure 2.1.3:  Epipolar Geometry.  The camera baseline intersects each 
image plane at the epipoles  and ee ′.  Any plane π containing the baseline is 
an epipolar plane and intersects the image planes in corresponding epipolar 
lines and .  This figure has been adapted from Zisserman [11]. l l′

 

Since the epipolar line l′  is the projection in the second image of the ray from 

the point through the camera center of the first camera, there is a mapping LEFTX LEFTC

x l6  from a point in one image to its corresponding epipolar line in the second 

image.  This mapping from points to lines is represented by the fundamental matrix .  

The fundamental matrix is responsible for estimating the epipolar lines.  In a stereo 

system consisting of two projective cameras, each image plane can be thought of as a 

rotation and translation of the other which is computed by the fundamental matrix.   

F

Consider the following diagram in which a single point  in the 

3D world is projected into two projective cameras (stereo pair of image planes).  The 

( , , )P X Y Z=
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transformation of the coordinate system from the left camera into the right camera is 

described by a rotation matrix R and a translation vector .  This means that a point 

described as 

T

( , , )P X Y Z= lP
G

in the left frame will be described in the right frame 

as .  Each 3D point 1(rP R P−=
G G

)
G

l T− ( , , )P X Y Z= defines a plane l rPO O , which is 

shown as the blue triangle in the figure below.  This plane intersects the left and right 

camera frames creating two epipolar lines denoted by and respectively.  The line le re

l rO O will intersect the camera planes at and .  These two intersection points are 

known as the epipoles and are usually outside of the image window of the camera 

plane.  They are not depicted in the diagram below.  The line 

le re

l rO O is common to every 

plane l rPO O and therefore the two epipoles belong to all pairs of epipolar lines.  The 

epipoles can be thought of as the intersection of all epipolar lines. 
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Figure 2.1.4:  Epipolar Lines with Two Projective Cameras.  The diagram 
above depicts a 3D point ( , , )P X Y Z= onto both image (camera) planes 
denoted by the light blue planes.  The point is projected onto the point P

( , , )l o op x y f= in the left image plane by vector lP
G

 (red) and is projected onto 
the point ( , , )r o op x y f=

, , }l l l

in the right image plane by vector  (red).  Each 
image plane contains its relative coordinate system.  The left image is denoted 
as {

rP
G

x y zG G G and the right image as { , ,r r }rx y zG G G with origins denoted as and 
respectively.  The blue triangle defines the plane of the line 

lO

rO l rO O and 
point .  This plane intersects the two image planes creating the two 
corresponding epipolar lines and . 

P
le re

  

Since the two vectors, ( , )lT P
G G G G

, span a 2D plane, their cross product is 

perpendicular to this plane.  As a result we have the following equation (2.1.5).  This 

equation states that a point in the left coordinate system can be written as a point in the 

( )lT P×
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right coordinate system and vice versa by performing a rotation and translation, 

equation (2.1.6).   
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0l =
G G G G

( ) ( )T
lP T T Pα β− ×i  (2.1.5) 

We can substitute
αγ
β

= , yielding ( ) ( )T
l lP T T Pβ γ 0− × =
G G G G

i  

By substituting lP Plγ ′′=
G

 we get ( ) ( )T
l lP T T Pβ γ ′ 0− × =
G G G G

i  

We can then define 1(r lP R P T−
G

)= −
G G

0and get ( ) ( )T
r lRP T Pβ ′ × =
G G G

l

i  

We can then reduce to ( ) 0T T
rP R S T Pβ ′ =
G G

 where  
0

( ) 0
0

z y

z x

y x

T T
S T T T

T T

⎛ ⎞−
⎜ ⎟

= −⎜ ⎟
⎜ ⎟−⎝ ⎠

By letting , known as the essential matrix, we can further 

reduce to 

( , ) ( )TE R T R S T=

( , ) 0T
r lp E R T p′ =
G G   (2.1.6) 

At this moment, points T
rp ′G and lpG are coordinates in the camera coordinate 

system will then need to be transformed into coordinates within the image coordinate 

system via the matrices andQ 1Q−  as previously defined in equations (2.1.3, 2.1.4).  

We can now write equation (2.1.6) using the camera to image transformations 
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Gas .  As a result we can derive the fundamental matrix as: 

   (2.1.7)   

1( , ) 0T T
r r l lq Q E R T Q q− −′ =
G

( , , , ) 0T
r l r lq F R T i i q′ =
G G

( , , , )T
r lR T i i q′

F

The fundamental matrix can be estimated using the “Eight Point 

Algorithm.”  This algorithm states that given two images one must identify eight 

points or more on both images that are non-degenerate meaning that points with 

their correspondence are provided.  Then there are n  linear and homogeneous 

equations q F

F

0l

8n ≥

r =
G

8n ≥

G
 with 9 unknowns which are the components of .  

Since we can only estimate up to some scale factors there are only 8 unknowns to 

be computed from the linear and homogenous equations.  If  then there is a 

unique solution with non-degenerate points. If n  then the solution is over-

determined and Singular-Value-Decomposition can be used to find the best fit 

solution. 

F

F

8=n

8>

 

 2.2 Bayesian Framework 

The Bayesian Framework is an approach to perform analysis by synthesis. The 

goal is to generate a probability model for the disparity values for a given stereo pair 

of cameras and images.  This can be thought of as a disparity field , where 

 belongs to a chosen coordinate system, where a reference camera has the 

( , )d e x

( , , )e x z



coordinates  with  representing disparity values so that the solution can be 

described as ( , .  If we have such a probability model defined as 

, we can then ask: what is the most likely disparity field or what is the 

expected value for the disparity field?  More generally, we can make any estimation of 

 given the probability .  Usually, the maximum a posteriori 

probability estimator (MAP estimator) is considered, which provides the solution that 

maximizes the probability model.  There are other estimators that are also of interest, 

such as the mean posterior probability estimator (MPM).  Let us now consider the 

model in more detail.  The probability to be derived is:  

( , )e x

,e x

)R

( | ,LI I

z

))x( ,d e

)R

( | ,LP d I I

( , )d e x

P d

( | , )L RP d I I

  

 The Bayes rule states: ( , | ) ( )
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( |P d , )
( , )

L R
L R

L R

P I I d P dI I
P I I

=  

 

Thus, the synthesis generates a model of the images from the disparity field 

  

and a model of the preference (bias) of the disparity field  

( , |L RI

( )

)dP I

P d  
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The model of the bias for the images, which is the denominator of the right 

hand side of the Bayes formula, does not need to be derived since it can be obtained as 

the normalization value.  This formulation allows us to focus on developing both the 

synthesis model and the bias model in order to produce a model for stereo vision. 

 

2.3 Stereo Perception 

 The perception of depth is the visual ability to perceive the world in three 

dimensions.  Stereo perception is allowing one to gauge how distant an object is with 

high accuracy through triangulation with a pair of stereo images.  In 1838, Charles 

Wheatstone’s discovery of the stereoscope first demonstrated that disparity gives rise 

to stereopsis which is the process in visual perception leading to stereoscopic depth.  

Stereopsis itself gives us the experience on relative depth.  It enables us to rank-order 

the nearness-farness of object within a region of space around a fixation point.  Recent 

innovations in stereo perception include work done on random-dot stereograms, the 

cyclopean view, as well as considerations of occluded objects. 

 In 1959, Bela Julesz was responsible for the introduction of random-dot 

stereograms which contributed to new insights into binocular depth perception.  

Random-dot stereograms made it possible to portray images or events binocularly or 

binaurally that do not exist even physically on the left and right retina or cochleae 



[15].  The random textures used deprive the subject of any familiarity cues and these 

stimuli individually do not contain any global information on the retinas [15].  Only at 

some central level on the cyclopean retina can the two retinal images be combined to 

portray a cyclopean image [15].  Stereopsis is based on the geometrical fact that two-

dimensional projects of a three-dimensional object on the left and right retinas differ in 

their horizontal positions.  This horizontal shift between corresponding points in the 

two retinal images is called retinal disparity (or just disparity).  The following Figure 

2.3.1 depicts a random-dot stereogram.  The images both have the same random 

distribution of pixels however in one image a centered square is displaced by 4 pixels.  

Fusing the two images yields the appearance of a square emerging into 3D space. 

 

          

Figure 2.3.1:  Random-Dot Stereogram.  The left image is generated by 
randomly assigning black and white values at each pixel.  The right image is 
generated by copying the left image, however an imaginary square inside the 
left image is displaced 4 pixels to the left and the empty space is filled with 
random black and white values.  Fusing the two images shows a square in front 
of the background. 
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With random dot stereograms, each image individually shows only a random 

distribution of pixels.  Only by fusing a pair can one recognize an object in the images.  

This shows that obtaining depth from vision is a separate independent process from 

object recognition.  This statement can be supported further by considering illusory 

contours.  Stereo matching occurs even in the presence of an illusion.  Even if the 

illusory contour is unknown, stereo matching can still occur.  As shown in Figure 

2.3.2 below, each stereo pair of images yields the presence of an illusory from stereo 

matching whether or not illusory figures of the stereo pair even match. 

 

  

Figure 2.3.2:  Illusory Square.  The above pair of images contains 4 black 
squares in the background with a white square in the foreground displaced 4 
pixels.  Fusing the two images yields a single white square in the foreground 
with 4 black squares in the background. 
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Figure 2.3.3:  Illusory Triangle.  The above pair of images contains 3 black 
squares in the background and a white triangle in the foreground.  Fusing the 
two images yields a white triangle in the foreground and 3 black squares in the 
background. 

 

These pairs of images provide evidence that the human visual system does not 

process illusory contours and surfaces before processing binocular vision.  One can 

also conclude that binocular vision is a process that does not require any recognition 

or contour detection a priori. 

The concept of occlusions dates back to half-occlusions noted by Leonardo da 

Vinci.  Half-occlusions are regions of a left image that will have no match in the right 

image and vice-versa.  Unmatched regions contain important information about the 

reconstruction of the scene.  Although these regions can be small, they affect the 

overall matching scheme since the remaining matching must reconstruct a scene that 

accounts for the half-occlusion.   

Leonardo da Vinci noted that the larger the discontinuity between two surfaces 

is, the larger the half-occlusion.  Recent work, done in 1991 by Nakayama and 
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Shimojo [21], has shown in the following figure that inducing occlusions in a stereo 

pair of images affects the overall matching of the stereo pair.  This is done by adding 

an extra dot to one of the images of the stereo pair. 

 

Figure 2.3.4:  Half-Occlusions.  The top stereo pair of images depicts two 
shifted blue dots yielding that the red dot is in the background and that the blue 
dots are in the foreground.  The bottom stereo pair of images is identical to the 
top pair with the exception that the red dot of the right image is missing.  The 
result of fusing the bottom pair also yields the red dot in the background and 
the blue dots in the foreground even though the data for the red dot is missing 
in the right image. 

  

The work on occlusions, done by Nakayama and Shimojo [21], shows that 

unpaired points can be perceived at the appropriate depth if they are near fused targets 

and the eye-of-origin is appropriate.  Unpaired points can also lead to the formation of 

subjective occluding contours seen in front.  Eye-of-origin information is used to 

distinguish which side of the occluded object should be in the back or the front.  There 
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are two ways of using eye-of-origin information for depth, edge and surface 

perception.  Wheatstone’s stereopsis is based on the signed difference in retinal 

disparity while da Vinci’s stereopsis is based on the differential occlusion of image 

points. 

While occlusions and illusory figures stir up quite an interest in stereo 

perception, one cannot neglect the impact of the cyclopean view in the area of stereo 

perception.  Aside from his contribution of the random-dot stereograms, Bela Julesz 

also pioneered the concept of the cyclopean eye.  Inspired by the mythical one-eyed 

Cyclops, Hering and Helmholtz used the term “cyclopean” to refer to a hypothetical 

single “eye”, the “mind’s eye”, that sees a single stereoscopic image given two 

appropriate stimuli in the two eyes [15].  With random-dot stereograms it is possible to 

portray information on the “mind’s retina” – that is, at a place where the left and right 

visual pathways combine in the visual cortex [15].  The cyclopean view is considering 

each point of the stereo images as a single matching point in 3D space.  It is the view 

of fusing the two images together to see one image.  Our algorithm addressed in the 

presented paper is based upon the cyclopean coordinate system (addressed in Chapter 

3) which is constructed from the concept of mapping a both the left eye and the right 

eye to a single cyclopean viewpoint.  This single-eye viewpoint seems to be perhaps 

the natural way of visioning the world in 3D.   
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2.4 Stereo Computation 

 Previous efforts on stereo computation include the concepts of cooperative 

stereo, disparity gradient, and such stereo algorithms as max flow and dynamic 

programming.  Marr and Poggio [20] paved the way for the majority of the work to be 

done on stereo computation.  They presented and defined the problem of extracting 

disparity information from a stereo pair of images.  From this, they also derived a 

cooperative algorithm to solve for disparity. 

 Cooperative algorithms operate on many input elements and reach a global 

organization by means of local and interactive constraints.  The term “cooperative” 

refers to the way in which local operations appear to cooperate in forming global order 

in a well-regulated manner [20].  While the cooperative concept was already well-

known in other disciplines, its importance began to rise in the field of stereo vision.  

Perhaps one of the earliest suggestions similar to cooperative stereo was made by 

Julesz, who claimed that stereoscopic fusion is a cooperative process [15].  Marr and 

Poggio [20] defined the problem of measuring disparity as follows.  First, a particular 

location on a surface in the scene must be selected from one image.  Second, that same 

location must be identified in the other image.  Finally, the disparity in the two 

corresponding image points must be measured.  Defining the problem as stated above 

seems at first to be trivial, however the problem lies in identifying a locations beyond 

doubt in the two images and then the problem would be reduced to a problem of 
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measurement.  Therefore the question of correspondence is the issue.  In order to 

formulate the correspondence computation correctly, one must examine the physical 

world.  Marr and Poggio [20] identified two constraints of importance.  First, a given 

point on a physical surface has a unique position in space at any one time.  Second, 

matter is cohesive and is separated into objects, and the surfaces are generally smooth 

compared with their distance from the viewer.  These constraints apply to locations 

only on the physical surface.  Therefore, in the computation, we must ensure that the 

items to which they belong to in the image are in one-to-one correspondence with 

well-defined locations on a physical surface. 

 After defining the necessary constraints for correspondence, the left and right 

descriptions for each eye can be combined using the concepts of uniqueness and 

continuity [20].  The concept of uniqueness declares that each item from each image 

may be assigned at most one disparity value.  This condition relies on the assumption 

that an item corresponds to something that has unique physical position.  The concept 

of continuity states that disparity varies smoothly almost everywhere.  This condition 

is a consequence of the cohesiveness of matter, and it states that only a small fraction 

of the area of an image is composed of boundaries that are discontinuous in depth.  

Early on, Marr and Poggio [20] presented a cooperative algorithm to solve the 

correspondence problem.  Over time the algorithms have evolved to state-of-the-art 

algorithms such as dynamic programming and later max flow. 
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 A dynamic programming approach to the stereo correspondence problem was 

presented by Ohta and Kanade [22] in 1985.  Their dynamic programming algorithm 

consisted of intra-scanline (finding a matching path on a 2D search plane) and inter-

scanline (search in a 3D space in which is a stack of the previously solved 2D search 

planes) searches.  Our STUMP algorithm presented in this paper will make 

comparisons to results of a dynamic programming solution.  We also implemented a 

dynamic programming algorithm similar to the one presented by Ohta and Kanade to 

test our STUMP algorithm against.  These results will be presented and discussed in 

the following chapters. 

 Currently the state-of-the-art stereo correspondence algorithm is the max flow / 

min-cut algorithm developed first by Cox [26], and improved in Boykov [4] and 

Ishikawa & Geiger [12].  The max flow algorithm requires that the prior model be 

described by a convex function on first order derivatives of the disparity [12].  The 

max flow algorithm has the interesting property that it provides the global optimal 

disparity value, taking into account the interactions among epipolar lines.  We analyze 

the differences between the STUMP method and max flow, although we did not 

implement the max flow algorithm to compare our result to.  Instead we will discuss 

the advantages of STUMP over max flow.  It is worth noting that we do investigate the 

differences of the STUMP and max flow for the test images in common, based on the 

results of the max flow algorithm as presented by Ishikawa and Geiger [12].  



 
 

25 
 

 Perhaps the quintessential difference between STUMP and max flow is that the 

STUMP algorithm utilizes belief propagation to assign disparity values based on the 

probabilities and retains the probability distribution over the disparity values, while 

the max flow only assigns a single (optimal) disparity value.  The advantages of 

having the probability distribution of disparities, is that it allows for a better 

integration with other computer vision models that may have extra information 

regarding depth.  For example, motion is an excellent well-known module used to 

detect occlusions and the relative depth of objects.  Object recognition is another 

model that may contribute to the final depth solution.  The combination of probability 

information is more natural since it contains more information.   Specifically, it 

contains the score information (probability) for any disparity solution.  Therefore, 

different solutions can be ranked.  With the max flow solution, we only have the 

optimal solution and cannot have information about any other solution other than the 

fact that any other solution is not optimal.  These differences in approach cannot be 

test here, since we are not focusing on the integration aspects of stereo.  However, it is 

important to take into account the design of stereo modules.  In the past, when 

researches devised algorithms for edge detection, there was a great emphasis placed on 

obtaining the “best” edge detector, in which decisions were placed at each pixel to 

detect if an edge was present.  Canny’s edge detector [6] was optimal according to a 

signal to noise ratio criteria.  Currently, it is more common to apply “edge detection” 

algorithms that simply return a pixel’s response to contrast rather than obtain a “best” 
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decision on whether a pixel is an edge or not.  Accordingly, we believe that returning 

probability as the output of a stereo correspondence algorithm is more of a complete 

answer to the stereo matching problem. 

Another advantage of choosing the belief propagation technique is that it 

allows us to model discontinuities, both horizontal and vertical, in more flexible ways.  

In the max flow approach, the cost function must be convex [12] and thus, the penalty 

for disparity discontinuities must be a convex function on the disparity difference.  

However, using the belief propagation method, discontinuities can be modeled 

arbitrarily.  There is no reason to greater penalize vertical changes in disparity if the 

changes are larger.  Depth discontinuities occur at object boundaries and different 

penalties should not be placed if objects are closer or further away from the 

background.  Along the epipolar axis more considerations should be placed.  However, 

we prefer a framework where the freedom to choose penalty functions is offered.  This 

is the Bayesian belief propagation framework. 

These two reasons, outputting a probability solution for all disparity values and 

being flexible on the choice of penalties, are the main reasons advocating the belief 

propagation method.  However, one drawback of the Bayesian belief approach is that 

we cannot guarantee an optimal solution.  Nevertheless, studies by researches in 

Bayesian belief propagation methods offer reasonable assurance that the method 

works quite well, and therefore we chose that method. 
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In particular, our algorithm uses the trainable graph combination scheme for 

belief propagation as developed by Kai Ju Liu [17].  This belief propagation scheme, 

called BP-TwoGraphs, will be presented as follows.   

 

2.5 Bayesian Networks Computation (Belief Propagation) 

 Belief propagation in general, has strong limitations such as NP hard solutions, 

expensive computations, and no guarantee of convergence as well as being difficult to 

implement [17].  Instead, the graph combination scheme is used in providing a highly 

accurate and efficient means for belief propagation.   

 The graph combination scheme is comprised of a given Markov random field 

approximated by multiple sets of singly-connected graphs.  The exact belief 

propagation on each set is then combined to yield a final set of marginal values.  The 

non-linear combination of information from each set of graphs improves on the 

performance of each set alone while yielding accuracy approaching the optimal 

produced by the max flow algorithm. 

 In computer vision, many problems including stereo correspondence can be 

expressed in terms of probability theory under a Bayesian framework.  A space of the 

parameters to be estimated is defined, and the model of the relationship between the 

parameters and the resulting image is given as a conditional probability distribution.  



By means of Bayes’ theorem the reverse relationship can be deduced from the values 

of the parameters that occur a priori.  For a given image, the parameters are estimated 

by maximizing this probability.  Since we are often interested in a single parameter 

and consider the others to be unknown, it becomes natural to marginalize the 

remaining parameters by summing over all of their possible values, resulting in the 

marginal probability of the parameter that we wish to estimate.  These marginal 

probability calculations are the foundation of belief propagation since the computed 

beliefs are the marginal probabilities. 

 Traditional belief propagation consists of a pair-wise Markov random field 

which is a graph of vertices connected by edges.  As can be seen in the Figure 2.5.1 

below, each vertex has an observed value and a set of possible statesy X , which are 

denoted for vertex i by iy  and iX .  The objective is to infer information about the 

states i ix X∈ given the observed iy .  In order to take advantage of a Markov random 

field, there must be a relation between a vertex’s states and its observed value as well 

as a relation between neighboring vertices.  This being said, there is an assumption 

that there is a statistical dependency between iy  and i ix X∈ given a non-negative 

compatibility function (i i , )ix yφ .  The relationship between neighboring vertices and i

j is given by another non-negative compatibility function ( , )i jij x xψ , where 

i ix X∈ and j jx X∈ .  The function ψ is also symmetric, meaning 

that ( , )ij i j (ji , i )jx x x xψ ψ= .  Computing the beliefs at each vertex for each given state 
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by propagating messages from neighboring vertices and states can be NP hard in a 

loopy graph.  However, the message computations needed for singly-connected-graphs 

terminate at the leaf vertices allowing beliefs to be computed exactly and efficiently.   

 

Figure 2.5.1:  A Pairwise Markov Random Field on a 5 by 4 Pixel Image.  
Each vertex corresponds to an image pixel.  Each vertex is connected to its 
horizontal and vertical surrounding neighbors.  The filled circles represent the 
observed values iy and the empty circles represent the states iX .  This figure is 
borrowed from Kai Ju Liu [17]. 

 

 Due to the difficulties in solving belief propagation for loopy graphs, the BP-

TwoGraph algorithm was presented which combines belief propagation on a 

collection of singly-connected graphs.  The BP-TwoGraphs algorithm combines the 

information from multiple singly-connected graphs to produce an estimation that is 

comparable to belief propagation on the loopy graphs in an efficient manner with a 
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fraction of the complexity.  The BP-TwoGraphs algorithm captures the connections 

and loops of the original graph of the Markov random field by decomposing the graph 

into multiple singly-connected graphs in the form of rectangular grids.  The selection 

of the dual sets of complementary horizontal and vertical graphs, as shown in Figure 

2.5.2 below, have been demonstrated to be highly effective [17]. 

 

Figure 2.5.2:  BP-TwoGraphs Decomposed Graph Format.  The (a) 
horizontal graph and (b) vertical graph for the filled pixel vertex of interest is 
shown above.  These figures are borrowed from Kai Ju Liu [17]. 

 

The above figure shows the complimentary singly-connected-graphs for a 

given pixel vertex.  By combing both the horizontal and vertical graphs, the pixel 

vertex of interest is connected to all other pixel vertices in the horizontal graph along 

all rows horizontally and vertically along its column (as shown in figure 2.5.2 (a)).  
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Similarly, in the vertical graph the pixel of interest is connected to all other pixel along 

all columns vertically and horizontally along its row (as shown in figure 2.5.2 (b)).  In 

order to combine the two graphs, belief propagation is applied to both graphs to 

generate a set of beliefs for each node and state for each graph.  The final set of beliefs 

will combine the beliefs of both graphs by selecting the beliefs of the higher, more 

accurate graph.  These final combined beliefs will also be normalized and is accounted 

for in the BP-TwoGraphs algorithm.  In the STUMP algorithm, these final beliefs at 

each node correspond to probabilities for each disparity at each pixel vertex.  STUMP 

chooses to select the best disparity (highest probability) for each node (pixel).  Details 

of this process will be explained in the following chapters.  In conclusion, there is a 

general description of belief propagation followed by a short example below 

explaining of how beliefs are propagated within BP-TwoGraphs. 

Considering a Markov random field with n vertices, the joint probability that 

each vertex i is in the state ix is defined by equation (2.5.1) where Z is the 

normalization constant and iy  is the observed value at that node.  To determine the 

most likely arrangement of states one could calculate the joint probability of all 

combinations of states by means of equation (2.5.1) although this would take 

exponential time in the number of vertices to complete. 

1
1 ( )

1( , , ) ( , ) ( , )
n

n i i i ij i
i ij

jp x x x y x x
Z

φ ψ
=

= ∏ ∏…   (2.5.1) 
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When computing the joint probability for all combinations of states it is known 

that many of the terms are identical for many combinations.  As a result belief 

propagation takes advantage of this property to calculate the joint probability 

efficiently.  Considering a system of beliefs and messages one can say that the vertex 

is in state k kx is defined by the following equation (2.5.2).  The term  normalizes 

beliefs so that 

kz

( ) 1
k k

k kx X
b x

∈
=∑  and is the set of the neighbors of vertex .  The 

term 

( )N k k

( )jkm kx is the message that vertex j  passes to vertex  and is defined by 

equation (2.5.3) where  is the set of the neighbors of vertex

k

( ) \N j k j , excluding 

vertex .  This message indicates how likely vertex k j thinks it is, given the knowledge 

accumulated from its ancestors, that vertex k is in state kx .  These messages are 

responsible for storing the common terms between joint probabilities for efficient 

belief propagation. 

( )

1( ) ( , ) ( )k k k k k jk k
j N kk

b x x y m x
z
φ

∈

= ∏     (2.5.2) 

( )\

( ) ( , ) ( , ) ( )
j j

jk k j j j jk j k ij j
x X i N k k

m x x y x x m xφ ψ
∈ ∈

= ∑ ∏   (2.5.3) 
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We will demonstrate a simple example of computing a belief.  Consider the 

graph segment shown in Figure 2.5.3 below.  There are three nodes  with node 

 being the pixel vertex of interest in which we wish to find the belief. 

(1, 2,3)

2

   

 

Figure 2.5.3:  Example of Computing a Belief.  The graph segment above 
shows 3 nodes with respective states 1 2 3( , , )x x x .  The vertex of interest is node 
2 (blue).  The ψ function between nodes 1 and 2 is 12 1 2( , )x xψ and 
theψ function between nodes 3 and 2 is 32 3( , 2 )x xψ .  Below we will explain 
how the belief that node 2 is in state 2x is computed. 

 

In order to determine the most likely arrangement of states one could calculate 

the joint probability for all combinations of states although this would take 

exponential time in the number of vertices to complete so instead we calculate the 

belief.  This approach of solving the joint probability for 1 2 3( , , )p x x x  is given by the 

following equation (2.5.4).   

1 2 3 1 1 1 2 2 2 3 3 12 1 2 32 3 2( , , ) ( , ) ( , ) ( ) ( , ) ( , )p x x x x y x y x x x x xφ φ φ ψ ψ=    (2.5.4) 
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This equation (2.5.4) can be rewritten as the following equation (2.5.5) which 

we will show that this equation (2.5.5) will be equivalent of computing the belief of 

vertex 2 at state 2x . 

1 1 3 3

2 1
,

( ) ( , , )
x X x X

p x p x x x
∈ ∈

= ∑ 2 3   (2.5.5) 

The belief that vertex 2 is in state 2x  is defined by equation (2.5.6) with 

messages from vertex 1 to vertex 2 and messages from vertex 3 to vertex 2 defined in 

equations (2.5.7, 2.5.8) respectively, which are responsible for storing the common 

terms between joint probabilities to make belief propagation efficient. 

2 2 2 2 12 2 32 2( ) ( , ) ( ) ( )b x x y m x m xφ=   (2.5.6) 

1 1

12 2 1 1 12 1 2( ) ( , ) ( , )
x X

m x x y x xφ ψ
∈

= ∑   (2.5.7) 

3 3

32 2 3 3 32 3 2( ) ( , ) ( , )
x X

m x x y x xφ ψ
∈

= ∑   (2.5.8) 

Given equations (2.5.7, 2.5.8), equation (2.5.6) can be rewritten as the 

following equation (2.5.9).  This equation shows that the product of the terms φ  and 

ψ  is exactly the joint probability 1 2 3( , , )p x x x . 

1 1 3 3

2 2 1 1 1 2 2 2 3 3 3 12 1 2 32 3 2( ) ( , ) ( , ) ( , ) ( , ) ( , )
x X x X

b x x y x y x y x x x xφ φ φ ψ ψ
∈ ∈

= ∑ ∑  (2.5.9) 
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As a final result of equations (2.5.4, 2.5.5, 2.5.9) we can conclude 

that .  Calculating beliefs rather than joint probabilities yields a great 

improvement in complexity presented by Kai Ju Liu [17].  Following the formulaic 

example of propagating beliefs, we will now show how messages propagate within the 

horizontal and vertical graphs.  Figure 2.5.4 as displayed below, shows how messages 

within the horizontal graphs propagate to node 8. 

2 2 2 2( ) ( )b x p x=

 

Figure 2.5.4:  Horizontal Graph Message Propagation.  The belief at node 8 
(black node), is calculated via the following 
messages , satisfying the equation 78 8 58 8 98 8{ ( ), ( ), ( )}m x m x m x

8 8 78 8 98 8 58( ) ( ) ( ) (x m x m x m8 8 8( ) )b x x= Φ where is assumed to have a
been calculated. 

58 8( )m x lready 
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The following Figure 2.5.5 below shows how messages are propagated within 

the vertical graph for the node 8.  Between both the horizontal and vertical graphs, 

values can be reused.  Within the horizontal graph, the horizontal messages do not 

need to be recalculated.  The same is true for the vertical graph in that the vertical 

messages also do not need to be recalculated.  However, messages in the horizontal 

graph cannot be reused within the vertical graph and vice versa. 

 

 

Figure 2.5.5:  Vertical Graph Message Propagation.  The belief at node 8 
(black node), is calculated via the following 
messages , satisfying the equation 78 8 58 8 98 8{ ( ), ( ), ( )}m x m x m x

8 8 78 8 98 8 58( ) ( ) ( ) (x m x m x m8 8 8( ) )b x x= Φ

58 8 98 8( ), ( )}m x m x
where the messages 

are assumed to have already been calculated. 78 8{ ( ),m x
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Concluding our explanation of belief propagation under the BP-TwoGraphs 

algorithm, we will mention briefly the complexity as stated by Kai Lu Liu [17].  

Assuming that there are  nodes in the Markov random field (meaning  is the 

number of pixels of the stereo pair) and  is the number of states (meaning that  is 

the range of disparity), then for the BP-TwoGraphs algorithm there are 

multiplications, additions, and stores.  These numbers will be 

introduced once again as we discuss the final complexity of the STUMP algorithm in 

chapter 4.  
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3  Stereo Correspondence 

 

We will now introduce our contribution to the stereo correspondence problem.  

First we will define the matching space which will state which pixels can correspond 

to each other in the stereo pair of images.  Next we will model the problem in the 

cyclopean coordinate system indicating the advantages and intuition for it.  Before we 

introduce our algorithm we will first explain how we extract the data from our images 

(features).  Then we will explain the constraints used and how we model our surfaces.  

Afterwards we will explain how we incorporate belief propagation into our 

correspondence algorithm and finally we will discuss a multi-scale approach.  

Following our theory will be a series of experiments and analysis. 

 

3.1 The Matching Space 

 The matching space of the stereo correspondence algorithm can be defined as 

the space containing the pairs of pixels belonging to the epipolar lines between the left 

and right images.  A point in the matching space represents the match of a pixel in the 

left image with a pixel in the right image.  Consider the following figure 3.1.1, which 

depicts points on a surface (the shaded region) projecting through the stereo pairs of 



cameras onto the left and right epipolar lines of the image planes.  Some of the points 

on the surface can be seen by both cameras, (points F, D, C, A) while other points can 

only be seen by either the left camera (point B) or right camera (point E).  Depth 

discontinuities and strongly tilted surfaces can yield the same images with half 

occluded pixels.  One may also notice in the figure below that due to pixel 

discretization, points A and C in the right image plane are neighbors. 

 

Figure 3.1.1:  Matching Space.  The above diagram depicts the points of each 
epipolar line projecting onto a surface through each camera.  Some points on 
the surface can be seen by both cameras while other points can only be seen 
through either the left or the right camera. 
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Figure 3.1.2:  Matching Space Graph. This graph depicts the matching space 
as described by Figure 3.1.1.  The blue segments show the pixel matches in the 
left and right image planes while the breaks in the blue curve show the 
occluded and tilted surfaces which indicate a change in depth or disparity. 

 

The matching space can be thought of as a graph, G(V,E), where nodes or 

vertices describe the matching of pixels.  As we will address later in the following 

section, the graph also includes the match of sub-pixels, which are the locations 

halfway between pixels.  Edges in this graph represent the link between nodes, and in 

particular neighborhood relations (edges) in the graph will be examined. 
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3.2 Cyclopean Coordinate System 

In stereo vision it is perhaps more intuitive to consider a cyclopean coordinate 

system, rather than two separate coordinate systems for the left and right image planes 

independently.  Bela Julesz [15] mentioned that the stereo correspondence is 

determined within a single view: the cyclopean view, which is derived by fusing both 

the left and right views of a stereo pair.  Given the left and right coordinate systems, 

defined by coordinates  and , we can derive the cyclopean coordinate system 

with coordinates  as shown in Figure 3.2.1.  The coordinate  is the epipolar 

line which is unchanged under the transformation from left and right into cyclopean 

coordinate systems.  The coordinates  and  are the pixels along each epipolar line 

for the left and right coordinate systems respectively.  The linear transformation (45 

degree rotation) can be described as follows.  In order to change from the left and right 

coordinate systems into the cyclopean coordinate system, the equations (3.2.1a, 

3.2.1b) are used.  Similarly, in order to change from the cyclopean coordinate system 

into the left and right coordinate systems, equations (3.2.2a, 3.2.2b) are used. 

( , )e l

w

( , )e r

l

, ,e x e

r

e

2
r lx +

=  (3.2.1a)   
2

r lw −
=  (3.2.1b) 

2
x wr +

=  (3.2.2a)   
2

x wl −
=  (3.2.2b) 
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Alternatively the above equations (3.2.1a, 3.2.1b and 3.2.2a, 3.2.2b) 

respectively can be written as equations (3.2.3 and 3.2.4). 

1 11
1 12

x r
w l
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (3.2.3)  

1 11
1 12

r x
l w
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (3.2.4) 

The triplet  represents a node in the graph of the cyclopean coordinate 

system.  This coordinate system is interpreted as follows.  Instead of representing a 

match by the two image points on the left and right images, the cyclopean eye 

represents a match by a coordinate 

( , , )e x w

x  and a disparity .  Since the disparity  is 

mapped to depth, one may say that the coordinate system represents a match by its 3D 

representation, meaning a generalized coordinate 

w w

x  and e  (replacing the left and right 

eyes) and the corresponding depth.  It is worth noting that we do have more x  values 

than  or l  values, as l  varies from 0 to  and r  varies from 0 to N  while r N x  varies 

from to0 2N .  The cyclopean eye will see the 3D points that perhaps one eye may 

not see due to an occlusion.  More precisely, a point on the left eye that does not 

correspond to any point in the right eye such as a half occluded point, may land on 

some x  coordinate and disparity .  Analogously, the right eye occluded points will 

have an 

w

x  and  coordinate.  Consider the following Figure 3.2.1.   w
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Figure 3.2.1:  Cyclopean Eye.  Cyclopean coordinate system defined as 
( , )x w  for each epipolar line.  x  is the single eye coordinate system and  is 
the disparity axis.  Since we are only restricted to integer values for  and , 
not every ( ,

w
rl

)x w  pair has a correspondence to l  and .  For r ( )x w even+  we 
have integer values for  and .  For l r ( )x w odd+  we have sub-pixel locations 
for l  and r .  This figure depicts the 45 degree rotation of  and ( , )l r ( , )x w . 
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The above figure shows the transformation of left and right pixel  

coordinates mapped into cyclopean coordinates (

( , )l r

x axis) along with a disparity 

( axis).  This linear transformation of coordinates is shown by equations (3.2.3, 

3.2.4) above.  In the diagram above (Figure 3.2.1), the dark blue square (location of 

interest) shows the transformation between coordinate systems.  Assuming that the 

blue square is at location 

w

3l =  and 5r =  in the  coordinate system, then by ( ,l r)



equations (3.2.1a, 3.2.1b), the blue square is at 8x =  and 2w =  in the ( , )x w  

cyclopean coordinate system.  Since l and  are pixel coordinates, we are restricted to 

integer values.  Therefore l r

r

1, 0, N,= −…  and 0,x , 2 2N= −…  and 

.  When (1, ,0, , 1w N N= − + −… … )x w+  is even, pixels l  and r  are integer values. 

However, when ( )x w+  is odd, we have sub-pixel locations.  Therefore the cyclopean 

coordinate system for integer values of ( , )x w includes a sub-pixel image resolution. 

The cyclopean coordinate system therefore represents disparity values  with 

sub-pixel accuracy, meaning that  corresponds to pixel matching and sub-pixel 

matching from the left and right images. 

w

w

  

3.3 Features 

 The question of matching pixels in a stereo pair of images can be thought of as 

matching the features of the scene portrayed in the stereo pair.  Each pixel contains 

data, and features are the data which is extracted from these pixels.  Currently we use 

grayscale source images; therefore the data of the pixels (features) are derived from 

grayscale values. 

 A feature in the left image can match a feature in the right image and a score 

function for the matching can then be assigned.  In the cyclopean coordinate system, 
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the score function will be assigned to a coordinate .  Next we will investigate 

the use of features based on intensity values (grayscale) averaged over some scale  

and orientation

( , , )e x w

s

θ .  These features are referred to as ˆ ( , ,L , )I e l sθ  and ˆ ( , , , )RI e r sθ  as is 

illustrated in Figure 3.3.1 below.   

 

 

Figure 3.3.1:  Window Matching.  Two left eye windows, with 0θ =  and 
θ π= , are considered (red and blue) to match two corresponding right eye 
windows (red and blue).  The averaged value of each window is actually used 
to establish the match.  We also consider matching windows with / 2θ π= and 

3 / 2θ π= .  Other scoring functions could be considered.  In this example the 
scale is set to 3. 

 

In the Figure 3.3.1 above, each pixel of both the left and right images contains 

a window of size scale  for a given orientations θ .  The images (a) show a magnified 
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view of the green square stereo pair (b).  In actuality the images (a) can be of any pixel 

of the stereo pair (b), not just the edge of the square. 

The precise formula for ˆ( , , , )I x y sθ , for 0, / 2, ,3 / 2θ π π π=  is given by 

( ) ( ) ( ( ) , ,y yI x R e sθ θ+ −
G G� ) ( )( )1ˆ( , , ) , , ( ) , ,

4 xI x s I x s I x s I x R e sθ θ θ θ= + + + =
G G G G� � �( ) , ,R eθ θ+

G G

( , , , ) ( sin , cos , , )

( cos ,

s
I x y

θ+

+ +� �

1 0
,

0 1
e R

1
4 ( sin , cos , , )

I x y s I x y
I x y s

θ θ θ

θ θ θ θ

+ − +

+ −

� �
(3.3.1)

sin , , )sθ θ

⎛ ⎞
⎜ ⎟⎜ ⎟+⎝ ⎠

cos sin
,

sin cos

 

where  
, , ( )x y

x
x e

y
θ θ

θ
θ θ

− ⎞
= ⎟

⎠

⎛ ⎞ ⎛ ⎞ ⎛
= =⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝

G G ⎛ ⎞
⎜ ⎟
⎝ ⎠

G

 

1

0

1( , , , ) ( cos ,i y si
s

i
I x y s I x i

s
n )θ θ θ

−

=

= + +∑�
 

In the equation above ( , )I i j  is defined as the intensity of pixel ( , .  The 

scale measures the window size in which the average is to be taken.  Note that 

)i j

s

)( ,x y

ˆ ( ,L

is to be replaced by  or  accordingly if one wants to compute ( , )e l ( , )e r

, , )I e l sθ  or ˆ ( , , ,R )I e r sθ . 

We want to create a score function and following Geiger, Ladendorf and Yuille 

[8] we take into consideration that near half occlusions on one side of the window will 

have a better match than the side that is not half occluded.  We have considered the 

following window matching formula: 
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( ) ( )( )2 2

( , , , ) ( , , , )

ˆ ˆ ˆ ˆmin ( , , , ) ( , , , ) , ( , , , ) ( , , , ) (3.3.2)

e e

L R L R

W e x w s W e l r s

I l e s I r e s I l e s I r e sθ θ θ π θ π

= =

− + − +
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)When (x w+ is odd, the coordinates l  and  are half integers, therefore an 

interpolated average value for the intensity values needs to be computed.  For half 

integer values of l  and r  we use the following formulas. 

r

( )1ˆ ˆ ˆ( , , , ) ( , 1, , ) ( , , , ) (3.3.3)
2

L L LI e l s I e l s I e l sθ θ θ= + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

( )1ˆ ˆ ˆ( , , , ) ( , 1, , ) ( , , , ) (3.3.4)
2

R R RI e r s I e r s I e r sθ θ θ= + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

where x⎢ ⎥⎣ ⎦  is the floor value of x .  Our proposed score function is 

0 /2( ,W e , , ) ( , , , )
, , , ) 2 (3.3.5)

x w s W e x w s
Cost x w s

T T
θ θ π= == + +(Pixel e  

where T  is a parameter to be estimated.  So in order to evaluate the quality of a match 

we are matching horizontal window features (0, )θ π= and vertical window features 

( / 2, 3 / 2)θ π π= .  If the intensities match perfectly then the window scores are zero 

and the cost is 2 which is the minimum cost.  We also assign a score function for the 

match of intensity differences which are edges.  We propose the following formula 

0 /2

0 /2

( , , , , ) 1 ( , , , , ) 1
( , , , ) (3.3.6)

( , , , , ) 1 ( , , , , ) 1
D e x w s D e x w s

CostEdge e x w s
D e x w s D e x w s

θ θ π

θ θ π

θ θ
θ θ

− −
= =
+ +
= =

+ +
= +

+ +
  



where the intensity differences in the left and right eyes are defined as follows 

ˆ ˆ ˆ( , , , ) ( , , , ) ( , , , ) (3.3.7)L L LDI e l s I e l s I e l sθ θ θ π= − +

ˆ ˆ ˆ( , , , ) ( , , , ) ( , , , ) (3.3.8)R R RDI e r s I e r s I e r sθ θ θ π= − +

 

 

and matching differences as described in the cyclopean coordinates, requires the terms 

ˆ ˆ ˆ( , , , ) ( , , , ) ( , , , ) (3.3.9)R LDI e x w s DI e r s DI e l sθ θ θ+ = +

ˆ ˆ ˆ( , , , ) ( , , , ) ( , , , ) (3.3.10)R LDI e x w s DI e r s DI e l sθ θ θ− = −  

The quantity ( , , , )D I e x w sθ
+

 
captures how much magnitude of the left and right 

intensity differences there is for a given angle direction, if they are the same sign.  If 

they are of opposite signs, it yields very small values.  The quantity ( , , , )D I e x w sθ
+

 

shows how similar the two derivatives of left and right images are.  The similar, the 

smaller is the value.  Note that for homogenous regions, both the Cos and 

gives an equal score of 2.  In this scenario the intensities match very well 

and the derivatives are near zero value, therefore the matching between them is also 

good.  Moreover, well defined intensity edges will yield even lower C values, 

and therefore will be the best features to match.  Our total score function is then 

tPixel

ostEdge

(3.3.11)

CostEdge

( , , , )e x w s ( , , , ) ( , , , )CostPixel e x w s CostEdge e x w sφ = +  

which leads to a probability model:  

( , , , )1( , |L RP I I , , ) (3.3.12)e x w se x w e
Z

φ−=   
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where ( , , , )e x w sφ =  

0 /2

0 /2

0 /2

( , , , )

( , , , , )
( , , , , )

W e x w s

D e x w s
D e x w s

( ,

( , , , )
2

1 ( , , , , ) 1
(3.3.13)

1 ( , , , , ) 1

W e x w s
T T

D e x w s
D e x w s

θ θ π

θ θ π

θ θ π

θ θ
θ θ

= =

− −
= =
+ +
= =

+ + +

+ +
+

+ +

 

Occlusions are regions in which feature matching does not occur.  In order to consider 

occlusions we introduce an occlusion field , which is 1 if an occlusion 

occurs at location and zero otherwise.  Thus the likelihood of left and right 

images given the feature matching must take into account the occurrence of an 

occlusion.  We modify Equation (3.3.12) to include occlusions as 

( , , )O e x w

, )e x w

(1 ( , , )) ( , , , )1( , (3.3.14)O e x w e x w sP I e| , , )L RI e x w
Z

φ− −

,1

=

( , , ) 0O e x w =

  

 where  

 

3.3.1 Multi-Scale Feature Integration and Entropy 

 The feature matching thus far, ( , , , )e x w sφ , varies at different scales.  Ishikawa 

[14] has shown a method of integrating features from different scales.  He combines 

different features (such as features at different scales) using a convex linear 

combination of the type 
 1

( , ) (
S

s
s

a e x φ
=
∑( , , ) , , , ) (3.3.15)e x w e x w sΦ =
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swith , where the main idea is to look for a given feature at 

one location ( , and a positive coefficient  that is chosen according to the 

feature discrimination power across different  disparity values .  We do know that 

features are being used to discriminate which disparity  is best assigned to each 

location .  A measure of discrimination power can be described as follows.  Each 

feature response assigns, via Equation (3.3.12), a probability of preferring a 

disparity  as 

1
( , ) 0, 1 ( , )

S

s
s

a e x a e x
=

≥ =∑

)e x

( , )e x

w

( , )sa e x

w

w

( , , , )1( ) (3e x w sP w e, ,e x s .3.16)
Z

φ−=

( , , , )
D

e x w s

w D
e φ−

=−
∑

 

 
 where .  This probability has entropy ( ,Z e , )x w = H  associated to it 

defined as        (3.3.17).  

The smaller the entropy is, the greater the discrimination.  As a result, the distribution 

is peaked at the best (smaller) matches 

, , , ,) ( ) log , ,
D

s e x s
w D

P w P x
=−

= − ∑

( ,

( ,H e x ( ) loge x s w =

, , )e x w s

(Z e ) φ+ (e, , )s x s

φ .  We can consider a quantity that is 

a type of complement of the entropy   

where 

,)s ex H= −( , ,H e�

( , )s

(x H e )s x (3.3.18)

,e x
1

S

s
H H e x

=

= ∑ .  Therefore the larger ( ,s )H e x�

( ,sa e

 is, the more discrimination 

found.  We can then simply use the coefficients  to be proportional to )x ( , )sH e x�
 

and normalize it.  More precisely, 

,

( , )1
( 1)−

�
( ,sa e )x (3.3.19)s

e x

H e x
s H

=  



In this way we can construct the feature match that is scale 

invariant:
  

and we also obtain the data probability that a three dimensional surface coordinate 

 will produce a feature match 

1
( , , ) ( , ) ( , , , ) (3.3.20)

S

s
s

e x w a e x e x w sφ
=

Φ = ∑

( , , )e x w( , , )e x w Φ  including modeling occlusions 

as { }
2

(1 ( , , )) ( , , )

1 1

1( ,P I

( , )e x

( , )e x

| , ) (3.3.21)
N N

L R

e xI

I O w e
Z

− −

= =

= ∏∏

w

P )

O e x w e x wΦ

P

( ,e x

P

 

We now focus on the prior knowledge that we have regarding the structure of the 

surfaces that appear in the real world. 

 

3.4 Uniqueness – Opaque Constraint 

We define our uniqueness – opaque constraint to state that there should only be 

one disparity value (a single depth value) associated to each cyclopean coordinate 

 as is shown in the following Figure 3.4.1.  There is an underlying assumption 

that objects are opaque and so a 3D point  can be seen by the cyclopean coordinate 

 and disparity  which will not allow all other disparity values (to be seen).  

Points that are closer than  along the same  coordinate must be transparent air, 

and further away points will not be seen since  is already seen and is opaque.  

However, multiple matches for the left eye points or the right eye points are allowed.  

This is indeed required to model not only tilted surfaces but also occluded surfaces as 
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we will later address.  This constraint is physically motivated and can be easily 

understood in the cyclopean coordinate system. 

Uniqueness-Opaque

Left Epipolar Line 

w 

w=2 

Right Epipolar Line 
x 

x=8

r+1 

 

r=5 

 

r-1 

l-1     l=3     l+1 

NO: Uniqueness 

x=8

YES,  multiple match for 
the right eye 

YES, multiple match for 
the left eye 

NO: 

 

Figure 3.4.1:  Uniqueness-Opaque Constraint.  Given that the  and 
 pixels are matched (blue square), then the red squares represent 

violations of the uniqueness-opaqueness constraint, while the yellow squares 
represent unique matches in the cyclopean coordinate system, but multiple 
matches in the left or right eye coordinate system. 

3l =
5r =
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3.5 Smooth Surface Constraint 

In nature most surfaces are smooth in depth compared to their distance to the 

observer, yet depth discontinuities also occur.  Many authors claim that smoothness 

implies an ordering constraint, where points to the right of lqG  (defined in equation 

2.1.17) cannot match points to the left of rqG  as shown in Figure 3.5.1 below. 

x Right Epipolar Line 
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Figure 3.5.1:  Ordering Constraint.  Given that the l 3=  and  pixels 
are matched (blue square), then the red squares represent violations of the 
ordering constraint while the yellow and green squares represent smooth 
matches.  The yellow (flat) and green (tilted or occluded) squares represent the 
type of surface as will be discussed next. 

5r =

 

Left Epipolar Line 

x=8

Ordering Constraint

r+1 

 

r=5 

 

r-1 

l-1     l=3     l+1 

x=8

Ordering Violation

 Ordering Violation 
YES

w 

w=2 



Note that in order to account for the tilted surfaces solution, the order 

constraint must accept points to the right of lqG rqG to also match  and points to the right 

of  to also match  as shown in Figure 3.4.1.  Further examination of a 

configuration with occlusions will show that discontinuities in disparity will result in 

half-occlusions, meaning pixels in one eye that do not have any correspondence (see 

Figure 3.5.2).  Moreover, in these half occlusion cases, some pixels from one eye will 

not be matched to any pixel in the other eye ("

rqG G

"

lq

l 1+ in Figure 3.5.2).  Other pixels in 

one eye will have multiple matches in the other eye (" 1r "−  in Figure 3.5.2).  In fact, 

the number of pixels unmatched in the left image is the same as the number of 

multiple matches in the right image and vice-versa.  In the cyclopean eye, this is 

described as discontinuities in the disparity field . ( , )xw e
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x Right Epipolar Line 
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"

 

Figure 3.5.2:  A Valid Surface and a Violation of the Ordering Constraint.  
While our approach adopts the ordering constraint, for simplicity of 
computations, it can be extended to cases such as in this figure where the 
ordering constraint is violated.  Note that in these cases, some pixels will not 
be matched to any pixel, e.g. " 1l + an

"
d other pixels will have multiple 

matches, e.g. " .  In fact, the number of pixels unmatched in the left image 
is the same as the number of multiple matches in the right image. 

1r −

 

If we restrict the changes of the disparity field to be limited to one unit for 

neighbor coordinates x , then our model is a combination of the ordering constraint 

and the uniqueness constraint, which imposes a disparity gradient constraint.  More 

precisely, from  to ( , , the disparity  cannot change in magnitude 

by more than 1, meaning 

( ,e x 1)− )e x ( , )w e x

( , )w e x ( , 1)w e x 1− − ≤ .  In our work, we will utilize this 

Left Epipolar Line 

x=8

r+1 

r=5 

r-1 

l-1     l=3     l+1 

x=8

Ordering Violation

w 

w=2 
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constraint and examine in detail the possible scenarios in 3D corresponding to the 

disparity gradient constraint so as to formulate our model of stereo. 

 

3.5.1 Occluded, Tilted, and Flat Surfaces 

Why do we need to further analyze a prior model for surfaces beyond simply 

imposing a smooth constraint?  Why do we need to investigate the differences 

between flat surfaces, tilted surfaces, and occluded surfaces?  These surfaces compete 

among themselves to be the optimal solutions, and against any arbitrary (and more 

complex) surfaces.  Here are some examples to illustrate the need for modeling these 

surfaces. 

 

 

 

 



 

 

Figure 3.5.3:  Flat Plane versus Double Tilted Plane.  The data and the score 
of matching data in (a) and (b) are the same.  Since we are not considering 
curvature preferences, the preference for flat surfaces must be built as a prior 
model of surfaces.  The geometrical views (a) and (b) are shown in the 
cyclopean view of the graph via the X path for the flat plane solution and via 
the arrow path for the double tilted solution. 

 

In order to examine occluded surfaces and to compare them with tilted or 

occluded surfaces we must first choose a representation for occluded solution in the 
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 as a 

ng 

t constant disparity.  This representation is depicted in the following Figure 

3.5.4. 

 

 

matching space.  A node in the matching space represents either a match between 

pixels or a match between sub-pixels.  An occluded surface will be represented

path of varying disparity values through the sub-pixel matching nodes, while 

competing tilted surfaces will be represented by a path of varying disparity values 

through the pixel matching nodes.  This choice is arbitrary.  A flat surface, which is a 

surface of constant disparity, will be a path through both sub-pixel and pixel matchi

nodes a



 

Figure 3.5.4:  Flat Plane versus Occluded Plane.  The data and the score of 
matching the data in (a) and (b) are the same, if we simply set  at 
Equation (3.3.21).  Thus, modeling the occlusion and introducing some penalty 
for setting  is necessary (otherwise 

( , ) 0O e x =

( , ) 1O e x = ( , ) 1O e x =  will always be the 
lowest cost).  Some cost for occlusion should be added to bias the solution 
towards a flat surface.  Moreover, occlusions are really not described by a 
match of features, but rather by a lack of a match of features.  Thus, a better 
modeling of occluded solutions must be considered. 
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Figure 3.5.5:  Flat Plane versus Occluded Plane (Color).  The occlusion 
solution in this case, should be slightly better than the solution in the previous 
case in Figure 3.5.4.  With the red color replaced by blue, there exists a 
contrast which improves the chances of a discontinuity in depth. 
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Figure 3.5.6:  Flat and Occluded Planes versus Tilted Planes.  We do 
expect these solutions to be close, although the tilted plane may be slightly 
more likely to occur by human perception.  Again, the occlusion solution 
should not reflect any matching between features that are not matched. 

 

3.6 Modeling Surfaces 

Taking into consideration the constraints mentioned above, we will now 

proceed to model surfaces.  It is worth noting that all constraints mentioned above are 
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constraints on the tangent plane near a matching point.  Essentially there is a bias for 

the tangent planes to be flat, although they may be tilted or discontinuous (occluded). 

The flat surface bias and the tilted surface bias can be described within the 

smoothness constraint by imposing different criteria for the transitions of the disparity 

values.  It is also possible to model occlusions in this fashion.  As we will show, it is 

possible to insure that all these surfaces can be modeled by specifying the transition 

probabilities of the disparities that satisfy the disparity gradient 

limit ( ) ( 1) 1w x w x− − ≤ . 

We are modeling the occlusion path through the nodes of varying disparity 

representing sub-pixel matches, which are described by ( )x w+  odd values.  We can 

then constrain this solution by setting ( , , ) 0O e x w =  for any location where ( )x w+  is 

even, so an occlusion cannot occur at pixel matches.  Tilt is represented by a path 

through the nodes of varying disparity representing pixel matches, which are described 

by ( )x w even+  values.  Moreover, since the disparity changes are limited to one unit, 

we can model both tilt and occlusion with the following probability model. 
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( )( )
1 2 1

0 0

({ ( , , ), ( , )})

1 mod( ,2) ( , ') (mod( ,2)) ( , , ') (3.6.1)
N N

tilt occl
e x

P O e x w w x e

x w P w w x w P O w wθ θ
− −

= =

=

⎡ ⎤− + + +⎣ ⎦∏∏
 

where    

1 if 0
( )

0 otherwise

1 if x+w odd
mod( ,2)

0 if x+w even
0,1, ' 1, , 1  

y
y

x w

O w w w w

θ
>⎧

= ⎨
⎩

⎧
+ = ⎨

⎩
= = − +

Combining this prior model with the data probability, we obtain the posterior model as 

( )( ) ( , , )1 2 1

(1 ( , , )) ( , , )
0 0

({ ( , ), ( , , )} | , )

1 mod( ,2) ( , ')1 (3.6.2)
(mod( ,2)) ( ( , , ), , ')

L R

e x wN N
tilt

O e x w e x w
e x occl

P w x e O e x w I I

x w e P w w
Z x w e P O e x w w w

θ

θ

−Φ− −

− − Φ
= =

=

⎡ ⎤− +
⎢ ⎥
⎢+ + ⎥⎣ ⎦

∏∏
  

where    

1 if 0
( )

0 otherwise

1 if x+w odd
mod( , 2)

0 if x+w even
' 1, , 1

0 if even
( , , )=

0,1 otherwise

y
y

x w

w w w w
x w

O e x w

θ
>⎧

= ⎨
⎩

⎧
+ = ⎨

⎩
= − +

+⎧
⎨
⎩
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3.6.1 Tilted Surfaces 

 A simple model for tilted surfaces is to introduce a constant bias for the tilted 

surface to differentiate from the flat surface solution.  We propose: 

' 1, , 1
'1( , ') 1 2 (3.6.3)

w w w w
TitltCost w w TitltCost

tiltP w w e C e
C

= − +
− − −= → = +  

 

 

Figure 3.6.1:  Tilted Surface Model.  We assume the pixel pair ( 3  
or ( 8  is a match (blue). Since (

, 5l r= = )
) ), 2x w= = x w+  is even, then the transition 

from ( 1, )x w′−
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 (yellow) where 1, , 1w ww w′ = − +  to ( , )x w
w

 where 
 (blue) is modeled as a flat surface for  ′ = w( 8, 2)x w= =  (denoted as X, a 

sub-pixel match) and as a tilted surface for 1, 1ww w′ = − + . 
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wThis prior model includes a normalized probability term  as ( , , ) ( , ')e x w
tilte P w−Φ

( )

( )

( , , )
' 1

(3.6.4)

' 1

w

w

( , , , ') 1 '

TiltCost
e x w

tilt
tilt TiltCost

e w
eP e x w w w w

Z
e w

−

−Φ

−

⎧ = −
⎪

= =⎨
⎪ = +⎩

 

 

3.6.2 Occluded Surfaces 

 We model occlusions as the path of nodes transitioning from a sub-pixel match 

to a sub-pixel match.  We guarantee this representation by constraining that the field 

 can only take a value 1 if  represents a node of a sub-pixel to sub-

pixel match, meaning that 

( , , )O e x w ( , , )e x w

)(x w+  is odd (Equation 3.6.3).  Moreover, when an 

occlusion transition occurs ( 1,ww w′ 1w→ = − + ) we do not want to measure it by the 

data-match cost, , since no match takes place, meaning ( , ,e x wΦ )D+ ( , , ) 1O e x w = .  

We then model ( ( ,occlP O , ), ,e x w w )w′  as follows: 

( )

max

max

( , , )( , , ) 1

1 ( , , )

( , , )( , , ) 1

' 1
1( ( , , ), , ') ' (3.6.5)

' 1

L

L

R

R

D e x wO e x w OcclusionCost
D

O e x w
occl

occl
D e x wO e x w OcclusionCost

D

e w w

P O e x w w w e w w
Z

e w w

η

η

⎛ ⎞
⎜ ⎟− −
⎜ ⎟
⎝ ⎠

− −

⎛ ⎞
⎜ ⎟− −
⎜ ⎟
⎝ ⎠

⎧
⎪ = −⎪
⎪= =⎨
⎪
⎪
⎪ = +⎩

 



Note that a fixed penalty is charged at the transitions, when .  The 

penalty is proportional to an  parameter and can be diminished if an 

intensity edge exists.  An intensity edge in the left eye, is an indication that a depth 

discontinuity is more likely to occur, seen from the left eye.  The same holds true for 

the right eye.  Thus the parameter 

( , , ) 1O e x w =

OcclusionCost

η controls how much the likelihood of a disparity 

discontinuity varies due to the intensity edges.  Finally, the normalized occlusion 

probability  is described by: (1 ( , , )) ( , , , , , ')O e x w e x w e x w− − Φ ) ( ( , , )s
occle P O w w

max

max

( , , )1

( , , , )

( , , )1

' 1
1( , , , ') ' (3.6.6)

' 1

L

L

R

R

D e x wOcclusionCost
D

e x w s
occlusion

occl
D e x wOcclusionCost

D

e w w
P e x w w e w w

Z

e w w

η

η

⎛ ⎞
⎜ ⎟− −
⎜ ⎟
⎝ ⎠

−Φ

⎛ ⎞
⎜ ⎟− −
⎜ ⎟
⎝ ⎠

⎧
⎪ = −⎪
⎪= =⎨
⎪
⎪
⎪ = +⎩

 

where the decision of 1w w′− =
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( , , ) 1O e x w =  always occurs for ( ) and x w odd+ , 

meaning that an occlusion occurs for these odd nodes when a change of disparity 

occurs.  Thus, (Equation 3.6.6) does not need to explicitly consider the occlusion field, 

since its optimal values are already known (in all cases). 

 

 



 

Figure 3.6.2:  Occluded Surface Model.  This figure shows the occlusion 
path from ( 1
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, )x w′−  to ( , )x w indicated by the three arrows.  We assume that 
the pixel pair at the green square is a match for ( , )x w .  The transition through 
constant disparity (flat surface) is shown coming from the red square ( )w w′ = , 
while the transition through an occlusion is shown via the yellow squares 

. ( 1, 1w +w w′ = − )

 

 

 

 

 



3.6.3 Posterior Model 

 Our posterior model is then 

( )( )
1 2 1

0 1

({ ( , )} | , )
1 1 mod( ,2) ( , , , ') (mod( ,2)) ( , , , ')  

L R

N N

tilt occlusion
e x

P w x e I I

x w P e x w w x w P e x w w
Z

θ θ
− −

= =

=

⎡ ⎤− + + +⎣ ⎦∏∏
 

where   

 

1 if 0
( )

0 otherwise

1 if x+w odd
mod( ,2)

0 if x+w even
' 1, , 1

y
y

x w

w w w w

θ
>⎧

= ⎨
⎩

⎧
+ = ⎨

⎩
= − +

The optimal values of the occlusion field  have already been 

estimated.  More precisely, 

( , , )O e x w
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( , , ) 0O e x w =  everywhere except at ( ) and x w odd+

1w w′− =  where O e( , ,x ) 1w = . 

 

 

 

 

 



3.7 Epipolar Line Interactions 

 There is sufficient evidence supporting that the disparity solution produced by 

human vision reflects interdependence among disparity values at different epipolar 

lines.  The illusory rectangle stereo pair, shown in Figure 3.7.1 below, provides such 

evidence.  In the middle of the rectangle, a white line in the left image (without any 

distinct feature) matches a white line in the right image producing a disparity 

that varies along x( , )w e x , which reflects the interdependence of the other epipolar 

line solutions.  The white line solution “gets carried” by the other neighboring epipolar 

line solutions. 

 

Figure 3.7.1:  Stereo Pair of an Illusory Rectangle.  Considering the stereo 
pair of a white square in front of 4 black squares, there is a vertical interaction 
of epipolar lines.  The larger the intensity edges along the vertical axis are, the 
higher the probability of have a disparity change across epipolar lines. 
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Figure 3.7.2:  Vertical Epipolar Line Interaction.  Considering the vertical 
interaction between epipolar lines in the cyclopean coordinate system, a 
coordinate and  can have a relationship with all  of the previous 
coordinate .  In this case, 

w′( , )e x
( 1e −

w
) w D D′ = − +… , instead of equation , x

( ( , ) ( ,w e x− −1) 1)w e x ≤ in the case of the smoothness constraint for the 
horizontal interactions. 
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Figure 3.7.3:  Modeling Disparity across Epipolar Lines.  When modeling 
the vertical interactions across epipolar lines, in order to model disparity 
changes between  with the previous epipolar line ( 1  we must 
match the l  values in one image with the 

( , )e x ,e x− )
i+ r i+  values in the other image 

and vice versa.  This is necessary since fixing x  and varying w  requires that 
the and  values in both images need to be compensated. l r

 

In order to model the epipolar interaction we consider that the larger the 

intensity edges across epipolar lines, the less of a cost there is to have a disparity 

change across the epipolar lines.  We also allow for any disparity change across 

epipolar and do not enforce a vertical disparity gradient in our model, as is shown in 

Figure 3.7.2.  In order to model vertical disparity changes across epipolar lines, it is 

worth noting that window matching in the left and right stereo pair is reversed 

between the two images.  Figure 3.7.3 explains this property of reversed window 

matching when fixing x  and varying  due to equations (3.2.1, 3.2.2).  With this 

being said, we propose the following model. 

w
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Our final model for the probabilities given is: 

( )( )1 2 1

1 1

({ ( , )} | , )

1 mod( ,2) ( , , , ')1 ( , '')
(mod( ,2)) ( , , , ')
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where    

1 if 0
( )

0 otherwise

1 if x+w odd
mod( ,2)

0 if x+w even
' 1, , 1

y
y

x w

w w w w

θ
>⎧

= ⎨
⎩

⎧
+ = ⎨

⎩
= − +

This model has the following parameters that need to be estimated: T , 

, T , η μOcclusionCost iltCost , and .  We will introduce the section describing the 

experiments by studying the role and value for these parameters.  The robustness of 
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this model is assessed by the range of parameter values that yield good solutions.  By 

studying difficult imagery, one can also study the power of the model. 

 

3.8 Belief Propagation Implementation with BP-TwoGraphs 

Our final model of the probabilities is given as: 

( )( )1 2 1

1 1

({ ( , )} | , )

1 mod( ,2) ( , , , ')1 ( , '')
(mod( ,2)) ( , , , ')

L R

N N
tilt
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P w x e I I

x w P e x w w
P w w

Z x w P e x w w

θ

θ

− −

= =

=

⎡ ⎤− + +
⎢ ⎥

+⎢ ⎥⎣ ⎦
∏∏

 

This can then be written in a form to apply a belief propagation scheme as: 

( )
1 2 1

, , 1 1,
1 1

1({ ( , )} | , ) , ' , "
N N

L R
e x e x e x

e x

P w x e I I w w w
Z
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= ∏∏   
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Therefore, the belief propagation scheme, equation (2.5.1), is then set for the 

ψ
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 above and ( , ) 1i i ix yφ = .  We can also divide the ψ  term into a vertical interaction 

term and horizontal interaction term as follows:  



( ) ( ) ( ), , 1 1, , , 1 , 1,, ' , " , ' , "e x e x e x H e x e x V e x e xw w w w w w wψ ψ ψ− − − −=

( )

 

where  

( )( )

( )

, , 1

, 1,

1 mod( , 2) ( , , , ')
, '

(mod( , 2)) ( , , , ')

, " ( , '')

tilt
H e x e x
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V e x e x epip

x w P e x w w
w w

x w P e x w w

w w P w w

θ
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−

−

⎡ ⎤− + +
= ⎢ ⎥

+⎢ ⎥⎣ ⎦

=

 

This decomposition is useful for the belief propagation scheme described in 

Chapter 2.5. 
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4  Experiments and Results 

 

We will present the different stages and evolution of the STUMP algorithm.  

First we will explain our preliminary setup for the experiments, the parameters which 

we used for our model, a walkthrough of our implementation, and an explanation of 

our results.  Following the setup of our experiments, will be series of different 

experiments categorized into three rounds.  We will show our solution of STUMP for 

various stereo images, illustrate parameter configurations, and finally display a 

comparison of STUMP with an implementation of a dynamic programming algorithm. 

The complexity of the STUMP algorithm can be estimated in terms of the 

number of pixels of the stereo pair of images (width by height), the range of disparity, 

and the number of scales used in extracting features.  According to the complexity 

discussed by Lui [17], an estimation of the complexity can be stated at  

where 

2 ,NS NSα β+
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( , )α β  are two constant coefficients,  is the total number of pixels of the 

cyclopean coordinate system, , and  is the range of disparity from .  

The complexity the feature extraction is 

N

N L

S( , )e x D to D− +

N′′ , where γ  is the number of pixels of 

the images in the stereo pair and  is the number of scales used, and is a L γ  constant.  

The complexity for the φ  and ψ NSLδ functions of the STUMP algorithm are  and 



, where 2NSε ( , )δ ε

NS′ ′+ +

 are two constant coefficients.  Combining all of the complexities 

as one, we can introduce a quadratic polynomial complexity 

as: , where 2 NSL NLα β γ δ′ ′+ ( , , , )α β γ δ′ ′ ′ ′

2( )O NS

NS are constant coefficients.  The 

number of scales used is not large and usually varies between 1 and 10, and therefore 

we can simply say that the STUMP algorithm is . 

 

4.1 Settings 

 In order to present a full detailed explanation of the experiments conducted on 

the STUMP algorithm, we must first introduce the preliminary stages used to construct 

the algorithm.  At a first glance, our algorithm takes a pair of stereo images as input.  

Specifying two images of the same dimensions and resolutions, already with epipolar 

lines configured along the vertical axis of the images, we begin to perform data 

extraction.   

 The basic implementation of extracting data, which can also be understood as 

detecting features among the stereo pair of images, is via differences in intensities at 

pixel levels as well as edge detection at a sub-pixel level.  As mentioned in the 

previous chapter, the function captures the data-matching aspect of the algorithm.  

Initially, each pixel of each image undergoes intensity measurements by computing 

the difference in the intensities for neighboring pixels horizontally and vertically.  

Φ
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Also as part of the initialization process, a given scale is defined in which the number 

of pixels measured is averaged.  For the first round of experiments we set the scale 

parameter to be 3 pixels, meaning that for each pixel , the intensity computed 

was an average of 

( , )i j

0
intensity( , )

scale

s
i s j s

=

+ +∑ in the directions (orientations) for a given 

3{0, , , }
2 2
π πθ π= .  The function, as defined previously, performs data-matching 

based upon average intensity differences along with edge detection.  Edge detection is 

determined by the differences in derivatives for the intensities measured for a given 

pixel.  Due to the mapping of pixels  into the cyclopean system of , half of 

the values in the cyclopean coordinate system occur at the pixel level, while the other 

half occur at the sub-pixel level.  At a sub-pixel level the intensity measurements for a 

given pixel is averaged among the intensity computation for pixels and the 

previous with respect to a given horizontal or vertical axis.  The derivative at a 

given location , in which is at the pixel level, is computed as the measured 

intensity difference between the previous ( , and the next .  However, at the 

sub-pixel level the derivative is determined by the difference between ( ,  and the 

previous . 

Φ

( , )i j

)i j ( , )i j

( , )e x

( ,i j

)i j

( , )i j

)i j

( ,

)i j

)

( ,

( ,

)i j ( , )i j

 Now that data can be measured and extracted from our stereo image input, we 

will address how to process our data via adjusting well-defined parameters.  During 

the following test round, our parameters of interest include{ , , , , }D tilt occlusionη μ .  
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The parameter is defined as the disparity range for a given experiment.  In all 

experiments the disparity ranges from 

D

to D− D+ .  The disparity range determines 

how near or far objects are in our disparity map result-image.  Negative disparity 

values map to darker pixels where as positive disparity values map to lighter pixels 

within the disparity map result-image.  For all experiments, there is a slight bias along 

the border of the image towards disparity zero.  The parameter η is defined as the 

“edge-ness” for our ψ function for the areas in which edges are considered.  Within 

our ψ function, edges are considered for odd values of ( )x w+ , since in our cyclop

coordinate system these “odd” values correspond to sub-pixels which can be 

understood as edges between pixels.  The parameter 

ean 

η can range from 0 to 1

for most experiments we fix 

, although 

η at 0.6.  The par eters cclusion are c

coefficients given to the 

tilt and oam  onstant 

ψ function for areas in which there is thought to be either a 

tilted surface or an occluded surface.  These values vary from experiment to 

experiment.  Finally the parameter μ defines how much of a vertical interaction 

should there be between epipolar lines.  The parameter μ may vary in experiments 

with respect to changes of tilt and o .  Now that our initial setup is presented 

and the parameters are explained, we will proceed to display the results of the 

following experiments.  

cclusion

The cyclopean coordinate assigns disparity to subpixel-subpixel matching as 

well as pixel-pixel matching and therefore has twice as many points. When displaying 
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the disparity map STUMP results, it appears that the image is stretched, due to the 

extra sub-pixel values.  It is worth noting that the epipolar lines for the cyclopean 

coordinate system are the same, thus stretching does not appear along epipolar lines. 

Our experiments output disparity solutions in the cyclopean system.  However, 

after the resulting disparity map is computed, the disparity map can undergo a 

transformation back into the image coordinate system, if one wishes to see how the 

result would appear in either the left or right eye.  This is shown during the first round 

of experiments as well as in Figure 4.1.1 below.   

 

 

 

 

 



a)  
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b)  c)  

Figure 4.1.1:  Cyclopean Disparity Map as Seen From the Left and Right 
Eyes.  Image (a) shows the disparity map for the STUMP result for the 
pentagon stereo pair as shown in Experiment 1.3.  Image (b) is the same 
disparity map solution of image (a) but transformed back into the left 
coordinate system to show a disparity solution as seen by the left eye.  
Likewise, the same is done for the right eye in image (c).  It is also worth 
noting that the black pixels (difficult to see at the resolution of this paper) of 
images (b) and (c) are points in which there is no solution in the left or right 
coordinate system ( ,  for a solution of the cyclopean coordinate system )l r
( , )x w . 

 



In the event that one wishes to see the cyclopean disparity map as seen from 

either the left or right eye, one must realize that not all the ( , )x w

)

 values of the 

cyclopean solution will translate back to values in the  coordinate system.  This 

being said, one can notice the black pixels (although difficult to see at the resolution of 

this paper) in the images (b) and (c) of Figure 4.1.1.  In order to display a 3D result of 

either the left or right source image overlaid over the disparity map, the pixels in 

which there is no solution in the left or right disparity map are averaged.  This 

procedure is only intended to show a 3D representation (in the first round of 

experiments) of how one would see an image (either left or right) given a disparity 

map.  Our intended purpose of the STUMP algorithm is to provide a disparity map in 

the cyclopean eye, not the left and right eyes independently. 

( ,l r

 

4.2 Results 
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 Our first round of experiments will show the disparity map for a stereo pair of 

images using the STUMP algorithm.  Following this result for each stereo pair will be 

a second round of experiments to show how the parameters for each test are 

configured.  This second round will both display the effect of each parameter as well 

show the robustness of our algorithm as we vary each parameter.  Finally, there will be 

a third round of experiments in which the result of STUMP algorithm for each stereo 

pair of images is compared to the results of a dynamic programming implementation.  



This round demonstrates the difference of dynamic programming compared to 

STUMP, both with and without vertical interactions.   

 

Experiment Round 1: STUMP Disparity Map Results for Various 

Pairs of Stereo Images 

6D =Experiment 1.1:  Random-Dot Stereogram in which , 0η = , 

, , 50tilt = 100occlusion = , and a weighted scale s =50μ = {1, 2,3, 4,5,6,7} .  This 

stereogram was constructed in the same manner as the stereogram presented 

previously in Chapter 2, with a displaced square area of pixels in the center.  Figure 

(a) shows the original input for the 64x64 pixel left and right images of the random dot 

stereogram.  Figure (b) is the result of running the STUMP algorithm.  Since there is a 

centered square region of pixels displaced by 4 pixels, fusing the two images will yield 

a 3D square of random dots emerging from the random dot background.  Figure (b) 

shows the background at a constant disparity further back (light gray) and a 3D square 

of constant disparity in the foreground (dark gray).  Figure (c) shows the translation of 

the disparity map from the cyclopean coordinate system back into left and right 

images as scene by each eye.  Finally, figure (d) shows the left image of figure (a) 

combined with the disparity map for the left image of figure (d) to show a 3D version 
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of the fused random dot image as seen from the left eye.  The same can also be done 

for the right image, although it is not shown. 

  a) 

 b) 

  c) 

d)  

 

 

6D = 30tilt = 40occlusion =Experiment 1.2:  Illusory Square in which , , , , 0.5η =

, and a weighted scale .  Once again figure (a) shows the left and {1, 2,3}s =45μ =
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right stereo pair for an image of 4 black squares in the background and a single white 

square in the foreground displaced 4 pixels.  Fusing both images yields a 3D white 

square in the foreground and the 4 black squares in the background.  Figure (b) shows 

the results of the disparity map from the STUMP algorithm.  Our algorithm shows the 

correct solution for the disparity of the illusory square due to epipolar line interaction.  

Although the epipolar lines in the center do not contain any data supporting the 3D 

square, the vertical interaction of STUMP connect the top of the white square with the 

bottom of the white square to give the illusion of a 3D square, although neither image 

contains a white square.  It is also worth noting that the left and right edges of the 

square display a disparity gradient which is modeled by the smooth surface constraint, 

( , ) ( , 1) 1w e x w e x− − ≤  (Chapter 3.5).  While this disparity gradient is modeled, it is 

not strictly enforced due to the belief propagation.  Figure (c) shows the translation of 

the disparity map from the cyclopean coordinate system back into left and right 

images as seen by each eye.  Finally figure (d) shows the left image of figure (a) 

combined with the disparity map for the left image of figure (d) to show a 3D version 

of the fused illusory square.    
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a)   

 b) 



c)   

d)  

 

 

15D = 10tilt =
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Experiment 1.3:  Pentagon in which , 0.5η = , , , 40occlusion = 1μ =  

and a weighted scale .  This experiment shows how the STUMP 

algorithm performs on real world images.  The pentagon stereo pair is a pair of 

grayscale 512x512 images.  Figure (a) shows the left and right stereo pair of input 

images.  Figure (b) shows the result of the disparity map for STUMP.  One can see 

clearly that the pentagon is at a different disparity from the ground.  Figure (c) shows 

the translation of the disparity map from the cyclopean coordinate system back into 

left and right images as seen by each eye.  Finally figure (d) shows the left image of 

{1, 2,3, 4,5,s = 6,7}



figure (a) combined with the disparity map for the left image of figure (d) to show a 

3D version of the fused pentagon.   

a)   

 b) 

  c) 
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d)  

 

 

15D = 60tilt =
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Experiment 1.4:  Cube in which , 0.5η = , , , 80occlusion = 2μ = , 

and a weighted scale .  This experiment also shows how the 

STUMP algorithm performs on real world images.  The cube stereo pair is a pair of 

grayscale 212x134 images.  Figure (a) shows the left and right stereo pair of input 

images.  Figure (b) shows the result of the disparity map for STUMP.  Figure (c) 

shows the translation of the disparity map from the cyclopean coordinate system back 

into left and right images as seen by each eye.  Finally figure (d) shows the left image 

of figure (a) combined with the disparity map for the left image of figure (d) to show a 

3D version of the fused cube. 

{1, 2,3,s = 4,5,6,7}



a)   

b)  

c)   

d)  
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25D = 60tilt =
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Experiment 1.5:  Fruit in which , 0.5η = , , , 40occlusion = 2μ = , 

and a weighted scale .  This experiment also shows how the STUMP 

algorithm performs on real world images.  The fruit stereo pair is a pair of grayscale 

512x512 images.  Figure (a) shows the left and right stereo pair of input images.  

Figure (b) shows the result of the disparity map for STUMP.  Due to the fact the stereo 

pair of images contains bad data (such as the black speck in the right image), the 

disparity map solutions are noisy and capture the mismatches of bad data.  Figure (c) 

shows the translation of the disparity map from the cyclopean coordinate system back 

into left and right images as seen by each eye.  Finally figure (d) shows the left image 

of figure (a) combined with the disparity map for the left image of figure (d) to show a 

3D version of the fused fruit. 

{1,3,5,s = 7}

  a) 



b)  

  c) 

d)  
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Experiment Round 2: STUMP Parameter Configurations 

Experiment 2.1.1:  Configuring the  parameter for the random dot stereo pair 

from Experiment 1.1.  The bottom right image with 

scale

1, 2,3, 4,5,6,7scale = (red) is the 

default scale parameter as used in Experiment 1.1.  All other images of the following 

table show the results of the disparity map from the STUMP algorithm with different 

scales.  Some images use a single scale while others use a combined weighted scale 

for Φ as explained previously in Equation (3.3.20).  This illustrates our entropy model 

discussed in (Chapter 3.3.1), in which one can see the average of , 1scale = 3scale = , 

and  combined in the result of 5ale =sc . 1,3,alesc 5=

 

scale 5 scale 1 scale 3 

 

scale 135 scale 7 scale 123 

 

scale 1234567 scale 1357 scale 12345 
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Experiment 2.1.2:  Configuring the  parameter for the illusory square stereo 

pair from Experiment 1.2.  The middle image with 

scale

1, 2,3scale = (red) is the default 

scale parameter as used in Experiment 1.2.  All other images of the following table 

show the results of the disparity map from the STUMP algorithm with different scales.  

Some images use a single scale while other use a combined weighted scale for Φ as 

explained previously in Equation (3.3.20).  The image with was chosen 

as the default since it modeled the disparity gradient for epipolar lines at the 

boundaries of the occluded square well.  Varying the parameter also illustrates 

our entropy model discussed in (Chapter 3.3.1), in which one can see the average of 

, , and 

scale

scale

1, 2,3=

1scale = 2scale = 3scale =  combined in the result of . 1, 2,3ale =sc

 

scale 3 scale 1 scale 2 

 

scale 7 scale 5 scale 123 

 

scale 1234567 scale 135 scale 12345 
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Experiment 2.1.3:  Configuring the  parameter for the pentagon stereo pair 

from Experiment 1.3.  The top image (a) with 

scale

1, 2,3, 4,5,6,7scale =  is the default 

scale parameter as used in Experiment 1.4.  Image (b) shows while image (c) 

shows .  The image with 

scale =

3, 4,5,6,7

1

7scale = 1scale , 2,= was chosen as the default 

since it averages the images (b) and (c) rather well, although it is difficult to see pixel 

differences at the resolutions printed on paper. 

a)  

b)  
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c)  

 

 

 

Experiment 2.1.4:  Configuring the  parameter for the cube stereo pair from 

Experiment 1.4.  The top image (a) with 

scale
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1scale = .  Image (b) shows  while 

image (c) shows a weighted 

7scale =

scale =1,2,3,4,5,6,7 , which is the default scale 

parameter as used in Experiment 1.4.  The image with weighted 

was chosen as the default since it averages the images (a) and (b) 

rather well using our entropy model.  Finally, image (d) shows a weighted scale of 

. 

1, 2,3, 4,5,6,7scale =

1,3,5,7,9,11,1scale = 3,15



a)  

b)  

c)  

d)  
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Experiment 2.2.1:  Configuring the η  parameter for the random dot stereo pair from 

Experiment 1.1.  The first image below 0η =  (red box), is the default image chosen 

since the random dot stereo pair does not take into account any edge since no intended 

edges exist.  By varying η , one can see its role in the STUMP algorithm.  High values 

of ηwill detect much unwanted noise rather than intended edges. 
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0η =    0.1η = 0.5η =

 

  0.9η = 1η =

 

 

 

 

 

 



Experiment 2.2.2:  Configuring the η  parameter for the illusory square stereo pair 

from Experiment 1.2.  The image below 0.5η =  (red box), is the default image chosen 

since we wish not to make a bias for or against edges, given that edges do exists in the 

stereo pair.  By varying η , one can see its role in the STUMP algorithm and how 

STUMP is quite robust for a range of η . 
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0η =  

 

0.1η =   0.5η =

 

  0.9η = 1η =

 

 

Experiment 2.2.3:  Configuring the η  parameter for the cube stereo pair from 

Experiment 1.4.  The image (c) below 0.5η = , is the default image chosen since we 

wish not to make a bias for or against edges.  By varying η , one can see its role in the 

STUMP algorithm and how STUMP is quite robust for a range of η .  The effect of the 



parameter η  does not influence real world images as much as our test images since 

there is an abundant amount of data in the real world images. 

  a) 0η =

  b) 0.1η =

  c) 0.5η =

  d) 0.9η =
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  e) 1.0η =

 

 

μExperiment 2.3.1:  Configuring the  parameter for the random dot stereo pair from 

Experiment 1.1.  The image below, μ, was chosen as the default value for the 50μ =  

parameter for the random dot stereo pair since it is the lowest value which strengthens 

the vertical interaction of the epipolar lines.  One can also see that the μ  parameter is 

quite robust, although upon a certain threshold, the vertical interaction becomes too 

overbearing (such as in the case of ).  100μ =

  0μ = 10μ = 25μ =

 50μ = 75μ = 100μ =
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μExperiment 2.3.2:  Configuring the  parameter for the illusory square stereo pair 

from Experiment 1.2.  The image below, 45μ = , was chosen as the default value for 

the μ  parameter for the random dot stereo pair since it is the lowest value which 

strengthens the vertical interaction of the epipolar lines.  This value of μ  also displays 

the disparity gradient at the left and right edge of the illusory square.  Once again, one 

can also see that the μ  parameter is quite robust, although upon a certain threshold, 

the vertical interaction becomes too overbearing (such as in the case of ).  100μ =

 

  0μ = 10μ = 30μ =

 45μ = 75μ = 100μ =

 

 

Experiment 2.3.3:  Configuring the μ  parameter for the pentagon stereo pair from 

Experiment 1.3.  The images below depict the pentagon result for 0
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μ =  (a), 5μ =  

(b),  (c).  Since this example contains real data, less vertical interaction is 10μ =



necessary because the data-matching at each epipolar line is quite strong.  It is difficult 

to distinguish these 1024x512 images at the resolution of this paper. 

a)  

b)  
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c)  



μExperiment 2.3.4:  Configuring the  parameter for the cube stereo pair from 

Experiment 1.4.  The image below, μ, was chosen as the default value for the 2μ =  

parameter for the cube stereo pair since it is the lowest value which strengthens the 

vertical interaction of the epipolar lines without blurring the image.   
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a)   0μ =

  b) 2μ =

  c) 5μ =
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d)   10μ =

 

 

Experiment 2.4.1:  Configuring the til  parameter for the random dot stereo pair f

Experiment 1.1.  The variations of the tilt  parameter are displayed below in which

default parameter for this image (red) yields the best disparity solution.  This 

parameter is also quite robust among a variety of values as shown below. 

rom 

 the 

t

 0tilt = 10tilt = 20tilt =

   50μ = 60μ = 80μ =

 



Experiment 2.4.2:  Configuring the til  parameter for the illusory square stereo pair 

from Experiment 1.2.  The variations of the til  parameter are displayed below in 

which the default parameter for this image (red) yields the best disparity solution.  

This parameter is also quite robust among a variety of values as shown below. 

t

t

 0tilt = 5tilt = 10tilt =

  20μ = 30μ = 80μ =

 

 

Experiment 2.4.3:  Configuring the til  parameter for the cube stereo pair from 

Experiment 1.4.  The variations of the  parameter are displayed below in which the 

default parameter for this image ti

t

til

60

t

lt =  yields the best disparity solution.  This 

parameter is also quite robust among a variety of values as shown. 
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a)   0tilt =

b)   10tilt =

c)   60tilt =

d)   100tilt =
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Experiment 2.5.1:  Configuring the oc  parameter for the random dot stereo 

pair from Experiment 1.1.  The variations of the  parameter are displayed 

below in which the default parameter for this image (red) yields the best disparity 

solution.  This parameter is also quite robust among a variety of values as shown 

below. 

clusion

occlusion

0occlusion = 10occlusion = 50occlusion =   

100occlusion = 150occlusion = 200occlusion =   

 

 

Experiment 2.5.2:  Configuring the oc  parameter for the illusory square stereo 

pair from Experiment 1.2.  The variations of the  parameter are displayed 

below in which the default parameter for this image (red) yields the best disparity 

solution.  This parameter is also quite robust among a variety of values as shown 

below. 

clusion

occlusion
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0occlusion = 10occlusion = 20occlusion =   

40occlusion = 50occlusion = 70occlusion =   

 

 

Experiment 2.5.3:  Configuring the oc  parameter for the cube stereo pair from 

Experiment 1.4.  The variations of the  parameter are displayed below in 

which the default parameter for this image 

clusion

occlusio

occl

n

us 80ion =  yields the best disparity 

solution.  This parameter is also quite robust among a variety of values as shown 

below. 

a)   10occl =
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b)   40occl =

c)   80occl =

d)   120occl =

 

 

Experiment Round 3: STUMP Algorithm compared with an 

implementation of the Dynamic Programming Algorithm 

6D =Experiment 3.1:  Random-Dot Stereogram in which , 0η = , 

, , 50tilt = 100occlusion = , and a scale .  This result, using the STUMP 50μ = 3s =
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algorithm, is image (a).  Image (b) is the same as image (a) with the exception that 

0μ = .  This illustrates the absence of vertical interaction of epipolar lines.  Image (c) 

is the result of using the dynamic programming algorithm.  One can notice that result 

(a), STUMP with vertical interactions, yields the best solution.  It is also worth noting 

that STUMP with no vertical interaction (b) is still an improvement over the dynamic 

programming result of (c).  This shows that even without the vertical interaction of 

epipolar lines in STUMP, the belief propagation is favored over the optimal solution 

performed by dynamic programming. 
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a)     b)      c)   

 

 

6D =Experiment 3.2:  Illusory Square Stereo Pair in which , 0.5η = , , 

, 

30tilt =

occlus 40ion = , and a scale 45μ = 3s = .  This result, using the STUMP algorithm, 

is image (a).  Image (b) is the same as image (a) with the exception that 0μ = .  This 

illustrates the absence of vertical interaction of epipolar lines.  Image (c) is the result 

of using the dynamic programming algorithm.  One can notice that result (a), STUMP 

with vertical interactions, yields the best solution, and perhaps the only correct 

solution.  It is also worth noting that STUMP with no vertical interaction (b) is still an 



improvement over the dynamic programming result of (c), even though the center of 

the square will never be part of the solution without vertical interactions.  The STUMP 

algorithm can provide a solution to illusory figures where as a dynamic programming 

(optimal epipolar line) solution cannot. 
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a)     b)      c)   

 

 

15D =Experiment 3.3:  Pentagon Stereo Pair in which , 0.5η = , , 

, 

10tilt =

40occlusion = , and a scale 1μ = 3s = .  This result, using the STUMP algorithm, is 

image (a).  Image (b) is the same as image (a) with the exception that 0μ = .  This 

illustrates the absence of vertical interaction of epipolar lines.  Image (c) is the result 

of using the dynamic programming algorithm.  One can notice that result (a), STUMP 

with vertical interactions, yields the best solution.  It is also worth noting that STUMP 

with no vertical interaction (b) is still an improvement over the dynamic programming 

result of (c). 



 a) 

 b) 

 c) 
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15D =
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Experiment 3.4:  Cube Stereo Pair in which , 0.5η = , , 

, 

60tilt =

80occlusion = , and a scale 2μ = 5s = .  This result, using the STUMP algorithm, is 

image (a).  Image (b) is the same as image (a) with the exception that 0μ = .  This 

illustrates the absence of vertical interaction of epipolar lines.  Image (c) is the result 

of using the dynamic programming algorithm.  One can notice that the STUMP 

algorithm results (a,b), yield a better solution over the dynamic programming (c). 

a)  

b)  

c)  

 



25D =
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Experiment 3.5:  Fruit Stereo Pair in which , 0.5η = , , 

, 

60tilt =

60occlusion = , and a scale 2μ = 3s = .  This result, using the STUMP algorithm, is 

image (a).  Image (b) is the same as image (a) with the exception that 0μ = .  This 

illustrates the absence of vertical interaction of epipolar lines.  Image (c) is the result 

of using the dynamic programming algorithm.  One can notice that result (a), STUMP 

with vertical interactions, yields the best solution.  It is difficult to notice the 

difference of μ  at the resolution of this paper.  It is also worth noting that STUMP 

with no vertical interaction (b) is still an improvement over the dynamic programming 

result of (c). 

a)  



b)  

c)  
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5  Conclusion 

 

The STUMP algorithm provides an approach to computing disparity from a 

stereo pair of images by modeling occlusions, discontinuities, and epipolar line 

interactions.  The algorithm solves the correspondence problem in a polynomial time 

using an estimation of belief propagation in the cyclopean view.  We have modeled 

binocular stereo, including the ordering and smooth surface constraints.  We have 

chosen to solve the problem based on a probability distribution rather than optimal 

matches along epipolar lines and thus being able to provide a solution for illusory 

figures.  As demonstrated in our results section, the STUMP algorithm provides an 

accurate estimation of the depth field for stereo images. 

Although we are satisfied with the results of our algorithm, there are perhaps 

other areas to explore.  We have considered future ideas regarding a true multi-scale 

approach of the matching scheme in the cyclopean view.  Our future work will include 

an implementation of a multi-scale pyramid based on the ψ  values used in our cost 

functions to determine the cyclopean disparity map.  We also have an interest of 

exploring more options for using the full probability distribution of disparities.  

Although one can always imagine other possibilities, we believe that we have made a 

significant contribution in presenting a solution to the stereo correspondence problem.
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