
Written Qualifying Exam
Theory of Computing

Fall 2002
Friday, September 27, 2002

This is a three hour examination. All questions carry the
same weight. Answer all of the following six questions.

• Please check to see that your name and address are
correct as printed on your blue-card.
• Please print your name on each exam booklet. Answer
each question in a separate booklet, and number each
booklet according to the question.

Read the questions carefully. Keep your answers legi-
ble, and brief but precise. Assume standard results, except
where asked to prove them.

1

PROBLEM 1 New booklet please. [10 points]
A box is a subset of the Euclidean plane of the form B = [x1, x2)× [y1, y2) ⊆

R
2 as shown Figure 1(a). It has four edges, viewed as closed line segments,

named the North, South, East and West. These edges are eN , eS , eE , eW in
Figure 1(a). The split of B is a set of 4 boxes B0, B1, B2, B3, all with the same
dimensions, and such that B is the union of the Bi’s.

eEeW

eS

eN

B

u3u2u1u0

x1 x2

y1

y2

(a) Box B = [x1, x2)× [y1, y2)

B0 B2

B1 B3

(b) Split(B) = {B0, B1, B2, B3}

(c) Mesh Tree

u

Figure 1: Mesh Tree

A mesh tree T is a rooted tree in which each non-leaf u has exactly four
children u.0, u.1, u.2, u.3 such that (a) u is associated with a box u.Box, and
(b) if u is not a leaf, then the boxes of its children forms the split of u.Box.
If the index i of u.i is equal to ab ∈ {0, 1}2 in binary, then we also write
u.i = u.ab. Thus u.0 = u.00, u.1 = u.01, u.2 = u.10, u.3 = u.11. The type of
u.ab is (a, b). Also, the x-type of u.ab is a, and the y-type is b. Each node u
also maintains a pointer u.p to its parent. When u is a leaf, we call u.Box a leaf
box. If B,B′ are disjoint boxes, we say B abuts B′ if an edge e of B is contained
in an edge e′ of B′. This relationship is asymmetric in general. If e is a North
edge, then e′ must be a South edge, and we say B abuts B′ to the north.
Similarly for the other compass directions. Assume every leaf u maintains 4
pointers u.N, u.S, u.E, u.W to other leaf nodes whose boxes u.Box abuts. In
summary, u maintains the pointers u.p, u.i(i = 0, . . . , 3), u.D(D = N,S,E,W)
where any of these pointers may be null. HINT: in the following, it may be
useful to first consider the 1-dimensional version of mesh trees, as these are just
binary trees.

2

(a) Suppose depth(u) ≥ depth(v) where depth(u) is the length of the path
from the root to u. Use node types to characterize the condition “u.Box abuts
v.Box to the East”.

(b) Give an algorithm Split(u) which, given a leaf u, refines the mesh tree by
creating four children for u. In particular, describe how to initialize the pointers
u.i.N, u.i.S, u.i.E, u.i.W at any child u.i of u (you may just do it for i = 0).
State any assumptions needed to implement your algorithm.

(c) Call a node u smooth if for any compass directionD ∈ {N,S,E,W} such
that u.D is non-null, we have depth(u)− depth(u.D) ∈ {0, 1}. The mesh tree is
smooth if every node in T is smooth. Give an efficient algorithm Smooth(u)
which, given the root u of the mesh tree, will refine the mesh tree into a smooth
tree by repeated calls to Split(w). Upper bound the complexity of your algo-
rithm as a function of n, the number of leaves in the original tree.

SOLUTION

Solution (a): u.Box abuts v.Box to the East iff there is are two sequence of
nodes u1, u2, . . . , uk and v1, v2, . . . , v` such that
(i) u = u1 and v = v1,
(ii) ui.p = ui+1 (i = 1, . . . , k − 1), and vj .p = vj+1 (j = 1, . . . , `− 1),
(iii) uk = v` and depth(u)− depth(v) = k − ` ≥ 0,
(iv) the x-type of u1, . . . , uk−2 are all 1 but the x-type of uk−1 is 0,
(v) the x-type of v1, . . . , u`−2 are all 0 but the x-type of u`−1 is 1,
(vi) the y-type of v1, . . . , v` is equal to the y-type of uk−`, . . . , uk.

Solution (b): To split u, we create four children u.0, u.1, u.2, u.3 and ini-
tialize the parent and child pointers. Consider how to initialize the pointers
u.0.N, u.0.S, u.0.E, u.0.W . Clearly, u.0.N = u.1 and u.0.E = u.2. What about
u.0.S and u.0.W? It is simply equal to u.S and u.W , respectively. If u.S is
undefined, then u.0.S would be undefined.

Solution (c): Starting from node u, we use a BFS method to find all
the leaves, and put them into a queue Q. This queue is just a list Q =
(L1, L2, . . . , Lr) of lists Li. Each list Li contains leaves at a fixed depth di,
and d1 > d2 > · · · > dr. We extract the top element of the queue, namely the
first item u in list L1, and process it as follows: check each node v that u abuts.
If depth(u) − depth(v) > 1, and v is a leaf, then proceed to split v and move
to the child c1 of v that u abuts. We keep doing this, giving us a sequence of
nodes: c1, c2, . . . , cm such that depth(u) − depth(cm) = 1. If u.D = v, we now
change it to u.D = cm. What if v is not a leaf? Since v was a leaf when u was
originally put in the queue, this means that v has been split. So we trace down
the descendents of v to find the current leaf box which u abuts. It is important
to see that we do not descend below the depth of u in this process.

Note some newly created nodes may not be smooth, and so they need to
be put into the queue as well. All the cascaded costs are charged to u. It is
not hard to that the cost charged to any node at depth D is O(D). Hence the
overall time is O(nD) where D is the depth of the mesh tree and there are n

3

leaves. But we can actually argue O(n) time, by an amortized analysis.

PROBLEM 2 New booklet please. [10 points]
The Sawzall lumber yard computes the price of a wood board as follows. A

board of length n is viewed as an array A of length n. Location A[j] contains a
number that indicates the quality of the board over the interval (j, j + 1).

The quality of the board is defined to be min0≤j<nA[j]. (Here larger values
mean higher quality, so that the wood is rated according to its worst interval.)
The price of a board of length m is equal to

n2P [min
0≤j<m

A[j]],

where P is a pricing table for the different quality ratings. The lumber yard
can cut boards to produce higher quality pieces which might increase the sum
of the values of the pieces even though the pieces are shorter.

However, each cut costs the company $1.00 in expenses.
(a) Present, at as high a level as you like, a program, recursive program or

system of recursive equations that can be efficiently computed to maximize the
company’s profit for a board. That is, you are to maximize the sum of the prices
for the different pieces minus the number of cuts.

(b) State, with a brief justification, the running time of your program de-
scription.

SOLUTION
Solution (a)

Define

Cost(i, j) =

P [A[i]], if i = j;
max{(j − i+ 1)2P [mini≤k≤j A[k]],
−1 + maxi≤k<j{Cost(i, k) + Cost(k + 1, j)}}, if i < j.

Use a lookup table in the dynamic programming to make the programming
efficient. The maximum profit for the board is C[0, n − 1]. Standard path
recovery can record the locations of the cuts.

Solution (b)
The time is Θ(n3) because there are Θ(n2) table entries that, on average,

require Θ(n) work per entry.

PROBLEM 3 New booklet please. [10 points]
Senator Gerry B. Mander recently proposed that most roads be painted red

or blue. A few, he thought, should be left unpainted, with the color selection
to be made at a later date.

The B-Mander single-source-shortest paths problem is the following: Let
G = (V,E = Er ∪Eb ∪Eu,W [i, j]) be a directed graph with positive edge costs
W [i, j] for (i, j) ∈ E. Let V = {1, 2, 3, . . . , n} be the vertices. Let vertex 1 be

4

the source. Let Er, Eb, Eu denote the red, the blue, and the uncolored edges of
G, respectively.

The legal paths are sequences of edges that alternate in color beginning with
red, and ending with blue, so that a permissible path could have a red edge
followed by a blue, or a red-blue-red-blue sequence, etc. However, an uncolored
edge could be used as a substitute for a colored edge, so that, for example, r, u,
and u, b, u, u, r, u are also colorings that could be assigned to the consecutive
edges in a legal path.

Formally, the colorings are sequences in the regular expression ((r + u)(b+
u))∗.

(a) Present an efficient algorithm to compute, for all destinations v, the
length of the shortest legal path from vertex 1 to v in the B-Mander SSSP
problem.

Note that an uncolored edge could be a substitute for an r edge in some
shortest paths and a b edge in others.

(b) Explain how to implement path recovery.

SOLUTION
Solution(a)

The easiest solution is to construct an new graph H as follows.
Duplicate the vertex set, so that vertex i has its duplicate as vertex i+n, for

i = 1, 2, . . . , n. For each red edge (i, j) ∈ Er, insert its representative edge from
i to n + j. For each blue edge (i, j) ∈ Eb, insert its representative edge from
i + n to j. For each uncolored edge (i, j) ∈ Eu, insert the two representatives
(i, j + n), and (i+ n, j)

Now run your favorite SSSP algorithm (such as Dijkstra’s) from vertex 1.
The B-Mander SSSP distance from 1 to i, for i ≤ n, is the computed SSSP

cost from 1 to i.
Solution (b)
Path recovery is now standard, and needs no explanation. In terms of the

original vertices, each vertex has two predecessors in the solution “tree.” One
predecessor of v would connect to v via a blue edge, and the other would connect
via a red edge.

PROBLEM 4 New booklet please. [10 points]
Let E be a Boolean formula and #(E) denote the number of satisfying

assignments to the variables occuring in E. Let SAT , UNIQUE and DOUBLE
denote (respectively) the set of Boolean formulas E such that #(E) ≥ 1, #(E) =
1 and #(E) = 2.

(a) Show that UNIQUE can be solved in polynomial time if we have an
oracle for SAT .

(b) Repeat part (a) for DOUBLE in place of UNIQUE.

SOLUTION
Let Ebi denote the formula E where the ith variable is set to b. Similarly, write
Ebcij for setting the ith and jth variables.

5

(a) Note that #(E) = 1 iff the following is true

E ∧
∧∧

i(E0
i 6≡ E1

i)

(b) Note that #(E) ≥ 3 iff there is some b, c ∈ {0, 1} and some i < j such
that the following formula is true:

Ebcij ∧ Ebcij ∧ Ebcij .

If THREE(b, c, i, j) denotes this formula then #(E) = 2 iff

E ∧ ¬UNIQ(E) ∧
∧∧

b,c,i,j¬(THREE(b, c, i, j))

where UNIQ(E) is the predicate of part (a).

PROBLEM 5 New booklet please. [10 points]
Let φi denote the ith partial recursive function, K = {i : φi(i) ↓} and

TOT = {i : φi is total}. Show that the complement of the set TOT is K-r.e.,
i.e., there is an partial recursive function that uses K as oracle, and on any
input n, halts iff n 6∈ TOT .

SOLUTION
An index n is in the complement of TOT if and only if there is an x such that
Φn(x) ↑. Using the parameter theorem, it is easy to see there is a recursive
function g(n, x) such that for all n, x,

Wg(n,x) =
{
∅ if Φn(x) ↑
N else

Thus Φn(x) ↓ if and only if g(n, x) ∈ K. Hence to see if n is in the complement
of TOT , we keep asking the K-oracle whether g(n, x) ∈ K for x = 0, 1, 2, . . .
until we succeed.

PROBLEM 6 New booklet please. [10 points]
TRUE or FALSE. Provide a counter-example or give a proof.
(a) L = {anb2nan : n ∈ N} is context-free.
(b) The class of languages accepted by a “Queue Automata” is context-free.

A Queue Automata (QA) is like a pushdown automata (PDA), except that it
pushes and pops symbols from a first-in first-out queue. It can also detect if the
queue is empty, and can make nondetermistic moves.

(c) The class in part (b) is context-sensitive, i.e., languages that are accepted
by LBA’s (a nondeterministic Turing machine operating in linear space).

SOLUTION
(a) FALSE: use pumping lemma to show non-context-freeness. Note that this
language LOOKS like some context-free ones.

(b) FALSE: consider the language {w#w : w ∈ {0, 1}∗}. This language is
not a CFL (e.g., let w = 0p1p#0p1p and apply the pumping lemma with p the

6

pumping number). But a QA can accept it trivially. As another example a QA
can accept {anbncn : n ≥ 0}, another non-CFL. You can let the QA perform a
simultaneous push and pop if you like but in the presence of non-determinism,
this adds nothing new.

(c) TRUE: a LBA can easily simulate a QA.

7

