
(VERSION WITH ANSWERS)
CORE EXAMINATION

Department of Computer Science
New York University
September 28, 2007

This is the common examination for the M.S. program in CS. It cov-
ers core computer science topics: Programming Languages and Compilers,
Operating Systems, and Algorithms. The exam has two parts. The first
part (PL&C) lasts three hours and covers the first two topics. The second
part (Algo), given this afternoon, lasts one and one-half hours, and covers
algorithms.

You will be assigned a seat in the examination room.

Use the proper booklet or answer sheet for each question. Each booklet is
marked with the Area and Question number, in the form PL&C1, PL&C2,
PLC&C3, OS1, OS2, ALGS1 and ALGS2. But ALGS3 question has an
answer sheet and not a booklet. DO NOT put your name on the exam
booklet or answer sheet. Instead, your exam number must be on every
booklet.

You will be graded according to your exam number, shown on the enve-
lope containing the booklets. Remember your exam number: when grades
are given out, they will be published according to this number, not by name.

Make sure your name and signature are on the envelope. This is the
only place where your name appears. Please include all the booklets inside
the envelope. You can keep the exam.

Good luck!

1

Programming Languages, Compilers and
Operating Systems Questions

Question 1 – please use the Exam Booklet labeled PL&C1

Concurrency: For this question, you need to know either Java or Ada95,
but not both.

There are many modern programming languages, including Java and
Ada, that have constructs for expressing concurrency.

1. What is meant by “concurrency” in this context, particularly if pro-
grams are executed on a single-processor machine?

Answer: In this context, concurrency means the simultaneous
execution – from a logical perspective, not necessarily actual simul-
taneity – of multiple portions of a program. Each portion is typically
referred to as a “task” (as in Ada) or “thread” (as in Java). Because
tasks or threads might not actually execute simultaneously, as is the
case on a single-processor machine, concurrency means that the rel-
ative order of events (e.g. instructions) in two concurrent tasks or
threads is left unspecified.

2. Write a simple example in Java or Ada of a program that exhibits
concurrency.

Answer: Java:

class MyThread extends Thread {

int n;

MyThread(int j) {

n = j;

}

public void run() {

for(int i = 1; i <= 5; i++) {

System.out.println(n + i);

}

}

}

public class test {

2

public static void main(String[] args) {

MyThread t1 = new MyThread(10);

MyThread t2 = new MyThread(100);

t1.start();

t2.start();

}

}

Ada:

with Text_Io;

use Text_Io;

procedure F is

package Int_Io is new Integer_Io(Integer);

use Int_Io;

task One; -- spec

task body One is

X: Integer:=6;

begin

for I in 1..10 loop

Put(X+I);

end loop;

end One;

begin

for J in 90..100 loop

Put(J);

end loop;

end F;

2

3. Both Java and Ada allow variables to be accessed by portions of a
program that are running concurrently. Thus, some synchronization
between these portions is required in order to avoid bugs due to race
conditions. In Java or Ada, briefly describe and give simple examples
of two different ways to express synchronization (that is, using two
different syntactic constructs provided by the language).

Answer:

Java (any two of the following is fine):

(a) Class-wide Synchronization: Attaching “synchronized” to a static
method f of a class C means that, if f is running, then no other
synchronized static method of class C can be running.

3

class C {

static synchronized void f() { ... }

...

}

(b) Statement/Block synchronization: Using the construct

synchronized(o) { ... }

where o is an object, means that while the block ... is being
executed, no other block that is also synchronized on the same
object can be executing.

class C {

int[] a = new int[20];

void f() {

synchronized(a) {}

...

}

...

}

(c) Object Synchronization: Attaching “synchronized” to a non-static
method G of a class C means that if, for a given object o of class
C, if o.G is running, then no other synchronized method of o can
run. Writing

synchronized void G { }

is equivalent to writing

void G { synchronized(this) { ... } }

An example is:

class C {

synchronized void G() { ... }

synchronized int H(..) { ... }

}

Ada:

(a) Using a task to control access to a variable: Have a single task
that “manages” a variable, providing other tasks with access to
the desired data through entry calls or procedure calls.

4

task stack_call is

entry push(x:integer);

entry pop(y:out integer);

end stack_call;

task body stack_call is

begin

loop

select

accept push(x: integer) do

... -- push x onto the stack

end push;

or

accept pop(y:out integer) do

... -- pop y off the stack

end pop;

or

terminate;

end select;

end loop;

end stack_call;

(b) Using a protected type, which ensures that only one procedure
declared within the protected type can be running at any one
time.

protected P_Stack is

procedure Protected_Push(X:Integer);

function Protected_Pop return Integer;

end P_Stack;

protected body P_Stack is

procedure Protected_Push(x:integer) is

begin

...

end;

function Protected_Pop return integer is

begin

...

end;

end P_Stack;

2

5

Question 2 – please use the Exam Booklet labeled PL&C2

Fun with Functional Lists: Remember that both Scheme and ML have a
built-in list data structure, where a list is either a NULL or a pair comprising
of a head and a tail. The tail is (recursively) a pointer to a list. Given this
structure, it’s straight-forward to write a function length that counts the
number of elements in a (non-circular) list.

Please keep your answers within the specified limits; LONGER AN-
SWERS WILL BE IGNORED.

1. (2 Points) Write the (recursive) definition of length in Scheme. Keep
your answer to 5 lines of code or less.

Answer:

(define (length lst)

(if (null? lst)

0

(+ 1 (length (cdr lst)))))

2

2. (2 Points) Write the (recursive) definition of length in ML. Keep your
answer to 5 lines of code or less.

Answer:

One version in Standard ML:

fun length nil = 0

| length (_::t) = 1 + length t ;

Another version in O’Caml:

let rec length = function

| [] -> 0

| _::t -> 1 + length t ;;

2

3. (2 Points) What is the static Scheme type of length as determined by
a Scheme compiler? Keep your answer to one sentence or less.

Answer: There is none; Scheme is dynamically typed.

4. (2 Points) What is the static ML type of length as determined by an
ML compiler? Keep your answer to one sentence or less.

6

Answer: ’a list -> int

5. (2 Points) For each of the following Scheme or ML programs indicate
(a) whether the program will compile, (b) if so, what happens when
you run it, and (c) why? Keep each answer to one sentence: “The
program does x because of y”.

(a) Scheme: (length 1)

Answer: The program compiles and terminates with an error be-
casue 1 is neither null nor a pair.

(b) ML: length 1;

Answer: The program does not compile because ML’s type checker
detects that 1 is not a list.

(c) Scheme: (length ’(1 "two"))

Answer: The program compiles and evaluates to 2 because Scheme
lists may contain any (type of) value.

(d) ML: length [1, "two"];

Answer: The program does not compile because ML lists must
contain elements of a single type but 1 is of type int and "two" is
of type string.

(e) ML: length [1, 2]; or length ["one", "two"];

Answer: Both programs compile and evaluate to 2 since the lists
are well-typed.

7

Question 3 – please use the Exam Booklet labeled PL&C3

Consider the following five context-free grammars (A)—(E) below. For each
grammar, we have corresponding string.

Grammar String

A) S → 0S1 | 01 “000111”

B) S → +SS | ∗SS | a “+∗aaa”

C) S → S + S | S ∗ S | (S) | a “(a+a)∗a”

D)
S → (L) | a
L → L, S | S

“((a,a),a,(a))”

E) S → aSbS | bSaS | ǫ “aabbab”

For each grammar and its corresponding string, answer the following
questions:

1. Give a leftmost derivation for the string.

2. Is the grammar ambiguous or unambiguous? Justify your answer.

3. Describe the language generated by this grammar.

4. Is this grammar LL(1)? If so give the predictive parsing table.

8

Answer:

A) 1. A leftmost derivation of the string “000111” is given by

S =⇒ 0S1 =⇒ 00S11 =⇒ 000111

2. The grammar is unambiguous. It can be shown to be an LL(2)
grammar, and such grammars are always unambiguous.

3. The grammar defines the language of all strings of the form
{0n1n | n > 0}.

4. The grammar is not an LL(1) grammar. The two production
rules for S start with the same terminal symbol 0.

B) 1. A leftmost derivation of the string “+∗aaa” is given by

S =⇒ +SS =⇒ +∗SSS =⇒ +∗aSS =⇒ +∗aaS =⇒ +∗aaa

2. The grammar is unambiguous. As we show below, it is an
LL(1) grammar, and such grammars are always unambiguous.

3. The grammar defines the language of all arithmetical expres-
sions over “a” with the operations + and ∗, written in Polish
(prefix) notation. An equivalent characterization is that in
any word in the language the number of operations (+, ∗) is
smaller by 1 than the number of operands (a) and, in any
proper prefix of a word, the number of operations is smaller
by more than 1 than the number of operands.

4. The grammar is an LL(1) grammar with the following LL(1)
parsing table:

+ ∗ a

S S → +SS S → ∗SS S → a

9

Answer:

C) 1. A left derivation of the string “(a+a)∗a” is given by

S =⇒ SS =⇒ S ∗ S =⇒ (S) ∗ S =⇒ (S + S) ∗ S =⇒ (a + S) ∗ S =⇒
(a + a) ∗ S =⇒ (a + a) ∗ a

2. The grammar is ambiguous. The string aaa has the follow-
ing two different leftmost derivations:

S =⇒ SS =⇒ aS =⇒ aSS =⇒ aaS =⇒ aaa
S =⇒ SS =⇒ SSS =⇒ aSS =⇒ aaS =⇒ aaa

3. The grammar defines the language of all regular expressions
over the single symbol “a”.

4. The grammar is not LL(1) because it is ambiguous and also
left-recursive.

D) 1. A left derivation of the string “((a,a),a,(a))” is given by

S =⇒ (L) =⇒ (L, S) =⇒ (L, S, S) =⇒ (S, S, S) =⇒
((L, S), S, S) =⇒ ((S, S), S, S) =⇒ ((a, S), S, S) =⇒
((a, a), S, S) =⇒ ((a, a), a, S) =⇒ ((a, a), a, (L)) =⇒
((a, a), a, (S)) =⇒ ((a, a), a, (a))

2. The grammar is unambiguous. It can be shown to be SLR(0)
and is, therefore unambiguous.

3. The grammar defines the language of all list expressions over
the atom “a”.

4. The grammar is not an LL(1) grammar since it is left recur-
sive.

E) 1. A leftmost derivation of the string “aabbab” is given by:

S =⇒ aSbS =⇒ aaSbSbS =⇒ aabSbS =⇒ aabbS =⇒ aabbaSbS =⇒
aabbabS =⇒ aabbab

2. The grammar is ambiguous. Following are two different left-
most derivations of the string “abab”:

S =⇒ aSbS =⇒ abS =⇒ abaSbS =⇒ ababS =⇒ abab
S =⇒ aSbS =⇒ abSaSbS =⇒ abaSbS =⇒ ababS =⇒ abab

3. The grammar defines the language of all strings over {a, b}
which have equal numbers of a’s and b’s.

4. The grammar is not LL(1) because it is ambiguous.

10

Question 4 – please use the Exam Booklet labeled OS1

Demand Paging: Recall that one millisecond (1ms) is 1/1000 seconds,
one microsecond (1µs) is 10−6 seconds and one nanosecond (1ns) is 10−9

seconds. For this question, assume that one kilobyte (1KB) is 1,000 bytes
(not 1024 bytes), and one megabyte (1MB) is 1,000,000 bytes.

Consider a system with demand paging but no segmentation, which
preloads programs before they begin execution. All instructions that do
not page fault require the same amount of time.

1. (1 point). When the system is equipped with a huge memory, a cer-
tain program P requires 50 seconds to complete, during which time P
executes exactly 10 billion instructions and encounters no page faults.
How long does each instruction take in this case.

Answer: 50 seconds for 10 billion instructions gives 5ns per in-
struction.

2. (1 point). When the system is equipped with a modest memory and
the page size is 4KB, the page fault rate is 1 per million instructions,
with one tenth of the victim pages being dirty.

How many faults occur with a modest memory, and how many I/Os
are required to service all these faults.

Answer: 1 fault per million for 10 billion instructions gives 10,000
faults.
1/10 dirty gives 1000 writebacks and 11,000 total I/Os.

3. (6 points). EACH page fault requires executing an additional 1000
instructions that are guaranteed NOT to page fault (they are not
counted in the page fault rate, and each takes the same time as you
calculated for part 1).

EACH I/O triggered by a page fault takes 15ms + PageSize/(20MB/second)

How long does P require to complete when run with a modest memory.

Answer: 1000 extra instructions per fault for 10,000 faults gives
10 million extra instructions at 5ns per instruction gives 50ms extra
compute time.
Each I/O takes 15ms + 4KB/(20MB/sec) = 15ms + 0.2ms = 15.2ms.
Total time = 50sec + 50ms + 15.2ms = 50.0652 seconds.

11

4. (2 points). An analyst predicts that every time the page size is doubled
(within a certain range) the fault rate would be multiplied by 0.7.

If this prediction is correct, what is the run time as a function of the
page size? That is, how long would P require to complete when run
with a modest memory and a page size of S kilobytes?

Answer: Fault rate is multiplied by 0.7log(SKB/4KB).
Let F be the number of faults = 0.7log(S/4) ∗ 10, 000.
Number of I/Os = 1.1 ∗ F
Number of extra instructions = 1000 ∗ F , which requires 5 ∗ F µs
(microseconds)
Time for each I/O is 15ms + S/20ms = (15 + S/20) ms.
Time for all I/Os is 1.1 ∗ F ∗ (15 + S/20) ms.
Total time is 50s + 5Fµs + 1.1F (15 + S/20)ms = (50 + .000005F +
.0011(15 + S/20)F) seconds.

12

Question 5 – please use the Exam Booklet labeled OS2

Memory Management: Consider a memory management system that
uses paging.

1. Typical page size range from 512 Bytes to 16 MBytes. What are the
trade-offs in choosing smaller versus larger page sizes? List at least 3
considerations for full credit.

Answer: Smaller pages means proportionally less internal frag-
mentation. Larger pages means smaller page tables. Larger pages
leads to more efficient disk I/O.

2. What are the advantages of making page sizes a power of two?

Use a concrete example to illustrate.

Answer: This allows bits in a physical memory address to be
divided into two disjoint parts: page address and page offset, with
the property that the page offset occupies the lower order bits of the
addresses. Example: if the physical address has n bits, and the page
size is 2m, then the page offset forms the the lower-order m bits of
address.

3. Consider the following scenario:

(a) Physical memory is 8 gigabytes (GB)

(b) Logical address space is 64-bit where each logical address refers to
a byte of memory

(c) Page size is 128 kilobytes (KB)

(d) Each entry in the page table stores a frame number, together with
a byte of protection information (valid bit, read-write permission,
etc).

Use this scenario to compute the size of a page table, illustrating the
following remark: “In 64-bit computer systems, the size of the page
table is a serious issue.” Assume that processes use the entire 64-bit
logical address space. In this question, the prefixes kilo-, mega-, giga-,
etc, refers to powers of two: 210, 220, 230, etc.

13

Answer: Page table size is 3× 247 bytes. Hence a page table needs
about 400 terabytes. This is a serious issue because each process is
associated with one such table, and normally, the page table would
be loaded in memory with the process.
Calculations: The number of frames is (physical memory size)/(page
size) = 233/217 = 216.
So each frame number is a 16-bit number. Thus each page table
entry needs 16 + 8 bits or 3 bytes.
The number of page table entries is (logical memory size)/(page size)
= 264/217 = 247.

4. “To reduce the memory requirements for a process table in the above
scenario, we could use hierarchical page tables. But this would use
3 levels of page hierarchies, and it becomes essential to use hardware
techniques to make it practical.”

Justify this remark about 3 levels of page hierarchies, and describe the
hardware techniques needed.

Answer: Typically, the page table hierarchy is a tree whose internal
nodes are pages. Since each page has 217 bytes, and each frame
number uses 2 bytes, it follows that each node of the hierarchy has
217/2 = 216 children. Since the page table has 247 entries, we need
⌈47/16⌉ = 3 levels in the tree hierarchy. Assuming the root of the
page hierarchy is always in memory, each address reference requires
up to 3 disk accesses: 2 disk accesses to get to nodes of the page
hierarchy, and one more disk access to obtain the referenced data.
This factor of 3 slowdown is unacceptable. The usual solution is
to use caching to store some of the recently used pages in memory.
Moreover, we need a TLB (translation look-aside buffer) to quickly
detect if a referenced page is in the cache. Assuming a high cache hit-
ratio, the expected access time can go down to just a small fraction
of a single disk access.

14

