
CORE EXAM: SYSTEMS PART
Fall 2006

(Version with Answers)

PL&C: Question 1

Consider the following piece of C code:

int intsqrt()
{

int n = 500;
int y = 0;
int w = 1;
while (n >= w) {

w += 2* (y++) + 3;
}
return y;

}

1. Give three-address code for the body of the function intsqrt.

Answer:

1. n := 500
2. y := 0
3. w := 1
4. if n < w goto 10
5. t1 := y * 2
6. t2 := t1 + 3
7. w := w + t2
8. y := y + 1
9. if n >= w goto 5
10.

2. Suppose your code is processed by an optimizing compiler that implements common subexpression
elimination, copy propagation, dead-code elimination, code motion, induction variable elimination, and
strength reduction. Give the resulting optimized three-address code.

Answer:

After copy propagation:

1. n := 500
2. y := 0
3. w := 1
4. if 500 < 1 goto 10

5. t1 := y * 2
6. t2 := t1 + 3
7. w := w + t2
8. y := y + 1
9. if 500 >= w goto 5
10.

After dead-code elimination:

1. y := 0
2. w := 1
3. t1 := y * 2
4. t2 := t1 + 3
5. w := w + t2
6. y := y + 1
7. if 500 >= w goto 3
8.

After strength reduction:

1. y := 0
2. w := 1
3. t1 := 0
4. t2 := t1 + 3
5. w := w + t2
6. y := y + 1
7. t1 := t1 + 2
8. if 500 >= w goto 4
9.

After induction variable elimination:

1. w := 1
2. t1 := 0
3. t2 := t1 + 3
4. w := w + t2
5. t1 := t1 + 2
6. if 500 >= w goto 3
7. y := t1 / 2

3. How many assembly instructions will be executed if your code is compiled and run?

Answer:

Each three-address instruction corresponds to a single assembly instruction. Lines 3 through 6 get exe-
cuted 22 times while the others get executed only once each. Thus, the total number of instructions is
91.

PL&C: Question 2

1. Write a function calledrev in ML or Scheme that takes as input a list L and returns a list consisting of the
same elements as L but in reverse order.

Answer:

Scheme:

(define (rev L)
(cond ((null? L) ())

(else (append (rev (cdr L)) (list (car L))))))

ML:

fun rev [] = []
| rev x::t = (rev t) @ [x];

2. Suppose thatlist.h consists of the following C++ code:

template <class T>
class List {

class ListElem {
public:

T _data;
ListElem * _next;
ListElem(const T& data, ListElem * next) : _data(data), _next(next) {}

};
ListElem * _top;

public:
List() : _top(NULL) {}
˜List();
void insert(const T& data) { _top = new ListElem(data, _top); }
void reverse();

};

Write the code for the functionreverse as it would appear in a file that includeslist.h. The function
should reverse the elements in the list without allocating or freeing any additional memory.

Answer:

template <class T>
void List<T>::reverse()
{

if (_top == NULL) return;
ListElem * prev;
ListElem * next = _top->_next;
_top->_next = NULL;

while (next) {
prev = _top;
_top = next;
next = _top->_next;
_top->_next = prev;

}
}

PL&C: Question 3

Consider the alphabetΣ1 = {0, 1,+,×}, where we refer to the letters0 and1 asoperandsand the symbols+
and× asoperators. A well-formed arithmetic expression is a string whose first and last symbols are operands
and, within the string, operands and operators alternate.

A) (3 points) Construct a finite-state automaton that accepts the language of all well-formed arithmetic expres-
sions.

Answer
The automaton is defined as follows:

• States:{q0, q1}.
• Initial state:q0.

• Accepting state:q1.

• Transition function defined by the following table:

{0, 1} {+,×}
q0 q1 −
q1 − q0

B) (3 points) Construct a finite-state automaton that accepts the language of all arithmetic expressions which
evaluate to a positive (non-zero) value. Note that× has higher priority than+. Thus,0 + 1 × 0 should be
interpreted as0 + (1× 0) rather than0 + (1× 0). You may present your automaton either as a graph with nodes
representing the states and edges labeled by letters, or in a tabular form.

Answer
An NFA (non-deterministic automaton) which recognizes the language of positive expressions is presented in
Fig. 1. Note that the initial states are{q0, q2}, and the accepting states are{q3, q5}.

+,×

q1 q2 q3 q4 q5q0

0, 1 + 1 + 0, 1

+,××

Figure 1: Automaton for Question B

C) (4 points) Extend the alphabet toΣ2 : {0, 1,+,×, (,)}. That is, allow parenthesis within the arithmetic
expressions. Construct a push-down automaton that accepts all proper arithmetic expressions overΣ2 evaluating
to 0. An arithmetic expression is proper if its parentheses structure is balanced.

Answer
As a first step, we construct a context-free grammar which generates the language of arithmetical expressions
overΣ2 whose value is 0. In this grammar the start symbol isE0.

E → T | E + T
T → P | T × P
P → 0 | 1 | (E)
E0 → T0 | E0 + T0

T0 → P0 | T0 × P | T × P0

P0 → 0 | (E0)

Next, we use the standard construction which builds a non-deterministic push-down automaton which recognizes
the language generated by the above grammar. The automaton is presented in Fig. 2. A word is accepted iff it
may cause the automaton to reach the accepting stateq2.

State Stack Top Input New State Stack Replacement

q0 − ε q1 E0Z

q1 E ε q1 T

q1 E ε q1 E + T

q1 T ε q1 P

q1 T ε q1 T × P

q1 P 0 q1 −
q1 P 1 q1 −
q1 P (q1 E)
q1 E0 ε q1 T0

q1 E0 ε q1 E0 + T0

q1 T0 ε q1 P0

q1 T0 ε q1 T0 × P

q1 T0 ε q1 T × P0

q1 P0 0 q1 −
q1 P0 (q1 E0)
q1 + + q1 −
q1 × × q1 −
q1)) q1 −
q1 Z ε q2 −

Figure 2: Push-down automaton for Question C

OS: Question

1 Operating Systems: Concurrency

Many applications, notably network servers, require concurrency in that they can perform many different activ-
ities, such as processing different requests, more or less at the same time.

1.1 The Thread Abstraction

A popular abstraction for expressing concurrency arethreadsof execution, running within the same process.

• In one concise sentence, what is the conceptual facility provided by a thread?

Answer: A thread effectively virtualizes the CPU, providing the illusion that the thread owns the CPU.

• In one concise sentence, the threading package (i.e., the code implementing the thread abstraction) needs
to keep what stateper thread?

Answer: The stack, register set (including program counter), and any internal book-keeping information.

• In one concise sentence, how does this compare to a traditional Unix process?

Answer: A traditional Unix process also virtualizes memory, while threads share the same address space.

1.2 User-Level v Kernel-Level Threads

The threading package can be implemented at the user-level or the kernel-level (or both).

• For any common thread operation, such as acquiring a lock, how many system calls have to be executed
for a user-level implementation? Please limit your answer to one word or number.

Answer: None.

• For any common thread operation, such as acquiring a lock, how many system calls have to be executed
for a kernel-level implementation? Please limit your answer to one word or number.

Answer: One.

• Based on the previous two answers and in one concise sentence, which implementation is likely to perform
better and why?

Answer: User-level threads are likely to be faster because they do not require system calls.

Imagine an application with two threadsS andT, with S currently running andT leisurely lounging on the ready
queue. Now, imagine that threadS initiates an I/O operation, such asfwrite() or fflush() .

• For a user-level threading package implementation, what will happen toT? Please limit your answer to
one concise sentence.

Answer: Nothing, as the kernel has no knowledge of the user-level ready queue.

• For a kernel-level threading package implementation, what will happen toT? Please limit your answer to
one concise sentence.

Answer: The threading package will schedule threadT after movingS onto the busy queue.

• Based on your previous two answers and in one concise sentence, which implementation is likely to
perform better in the presence of frequent I/O operations, such asfwrite() or fflush() , and why?

Answer: Kernel-level threads are likely to perform better because the scheduler knows which threads are
blocking on I/Oandwhich threads are ready to execute.

1.3 Events

Event-based programming provides an alternative to threads that can avoid some of the limitations/trade-offs
explored in the previous questions. However, to support event-based programming, the interaction between
applications and the kernel needs to be changed as well. Notably, I/O operations need to beasynchronous, i.e.,
return as soon as possible and not wait for completion of the I/O. Furthermore, the kernel needs to provide a
new system call, such asselect() , that notifies applications of completed I/O operations. Finally, for each
received notification, i.e.,event, the application needs to run the appropriate code, i.e.,event handler.

• Kernel notifications may arrive faster than the event handlers complete their processing. Consequently,
the application’s event package needs to keep what state?

Answer: A queue of pending event handlers.

• In one concise sentence, how does this state compare with that of a threading package?

Answer: There’s less (no stack) and it’s not as low level (no registers).

• Consider the following sequence of (abstract, high-level) operations in a threaded system:

void sequence() {
compute1();
read();
compute2();
write();
compute3();

}

How would this sequence be implemented in an event-based system? Use the same C-like function nota-
tion as above, making all event handlers explicit and using descriptive names for each operation.

Answer:

void sequence_part1() {
compute1();
start_read();

}

void sequence_part2() {
compute2();
start_write();

}

void sequence_part3() {
compute3();

}

• Based on your previous answer and in one concise sentence, why is event-based programming often
considered harder than threaded programming?

Answer: Since sequences of operations performing I/O need to be broken into several functions, the
logical flow of a program is more obscure than for threaded programs.

