
CORE EXAMINATION
Department of Computer Science

New York University
September 22, 2006

This is the common examination for the M.S. program in CS. It covers
core computer science topics: Languages and Compilers, Operating Systems,
and Algorithms. The exam has two parts. The first part lasts three hours
and covers the first two topics. The second part, given this afternoon, lasts
one and one-half hours, and covers algorithms.

Use the proper booklet or answer sheet for each question. Each booklet
is marked with the Area and Question number, in the form PL&C1, PL&C2,
PLC&C3, OS1, OS2, ALGS1 (this question has an answer sheet and not a
booklet), ALGS2, ALGS3. Use the appropriate booklet for each question.
DO NOT put your name on the exam booklet. Instead, your exam number
must be on every booklet.

You will be graded according to your exam number, shown on the enve-
lope containing the booklets. Remember your exam number: when grades
are given out, they will be published according to this number, not by name.

Make sure your name and signature are on the envelope. This is the
only place where your name appears. Please include all the booklets inside
the envelope. You can keep the exam.

Good luck!

1

Basic Algorithms

Question 1

Instructions for short answer question: please try to write only in the boxed
areas provided for each question. At our option, we may choose not to grade
any answers outside the boxes.

a. [4 points]. Let G = (V,E) be an undirected graph in which each vertex
v ∈ V is associated with a positive weight W (v) > 0. A subset S ⊆ V
is independent if for all u, v ∈ S, there is no edge between u and v, i.e.,
(u, v) 6∈ E. We want to compute an independent subset S ⊆ V whose
weight W (S) :=

∑
u∈S W (u) is maximum. For each proposed algorithm

below, give a counterexample, i.e., an example on which it does not compute
a maximum weight independent set. Assume that V = {v1, . . . , vn} and
W (v1) ≤W (v2) ≤ · · · ≤W (vn).

BONUS point if you find a single example that is a counterexample to
both algorithms.

PART a(i):

S ← ∅ (empty set)
For i = n downto 1

If S ∪ {vi} is independent,
append vi to S.

RETURN (S)

ANSWER:

PART a(ii):

S ← V
For i = 1 to n

If there is some u ∈ S such that (u, vi) ∈ E,
remove vi from S.

RETURN (S)

ANSWER:

2

b. [6 points]. We want a data structure for storing a set of keys, supporting
the following operations: (a) insert a key, (b) lookup a key, (c) delete a key,
(d) list all the keys in sorted order. We compare three implementations,
using (respectively) a balanced binary tree, an unsorted linked list, and
a sorted linked list. Do not assume any additional permanent structures
such as a pointer to the node containing an item to be deleted; however,
your procedures may construct and use additional temporary structures as
needed. For each operation and data structure (12 pairs), write, in the
corresponding entry in the table below, the asymptotic order of the worst-
case time to implement the indicated operation for the given data structure.
One entry has been filled in – note that time is given as a function of n, the
size of the current set of keys.

Balanced Binary Tree Unsorted Linked List Sorted Linked List
(a) Insert log n

(b) Lookup

(c) Delete

(d) List

PLEASE USE A NEW EXAM BOOKLET

3

Question 2

Two neigboring countries, Equalistan and Unfairstan, have very similar
types of highway system. In each, the highway system could be viewed
as a directed graph G = (V,E), where nodes V represent the major cities,
and edges E respresent the major highways connecting some pairs of cities.
Each such edge e connecting two cities a and b has a certain toll, which will
be defined slightly differently for the two countries, as described below. The
cost of a path between two cities is the sum of the tolls which need to be
paid along its edges. A driver starting with the inital wealth w and origi-
nating in the capital city s of the corresponding country wishes to compute
the following two arrays for every city u ∈ V [G]:

• d[u], which is the smallest cost of a path from s to u, provided this
cost is at most w, and ∞ if no such path exists.

• previous[u], which is undefined if u = s or d[u] = ∞, and otherwise
equals the predecessor of u along a cheapest path from s to u.

For each of the following toll functions, complete the corresponding vari-
ation of the Dijkstra’s algorithm to correctly compute the values d[u] and
previous[u] for all u ∈ V . The initial common segment is given below, and
you only have to continue the code.

function Distances(G, w, s, cost-params)
for each vertex v in V [G]

d[v] :=∞;
previous[v] := undefined;

d[s] := 0;
Q := V [G]; {Q is a priority queue}
while Q is not an empty set

. . .

a. [4 points]. In Equalistan, the toll for each edge e = (a, b) is equal to fe =
f(a, b) ≥ 0, and is the same for every driver. Thus, cost-params = {fe}e∈E .
This is similar to the standard variant of Dijkstra’s single source shortest
path algorithm (but not exactly the same because of the parameter w) .

b. [6 points]. In Unfairstan, the toll for traversing an edge e = (a, b)
includes not only the fixed cost fe = f(a, b) ≥ 0, but in addition each driver
is required to pay a certain fraction pe = p(a, b) ∈ [0, 1) of its current wealth
x (initially equal to w). Namely, the toll is equal to pe ∗ x + fe (notice,
Equalistan simply corresponds to a special case of Unfairstan where all pe =
0). For example, if a driver has $100 at point a, pe = 0.25 and fe = 50,
then the toll for the edge e = (a, b) for this driver is 0.25 ∗ 100 + 50 = $75,
which means that this driver will have only $25 after traversing this edge.

4

On the other hand, if a driver had only $60 at point a, then the toll would
be 0.25 ∗ 60 + 50 = $65, which is greater than $60, implying that the driver
does not have enough wealth to traverse this edge.

Thus, cost-params = {pe, fe}e∈E . Please change a few lines in your
solution to part A to correctly fill in the values d[u] and previous[u]. Briefly
argue why your algorithm is correct.

PLEASE USE A NEW EXAM BOOKLET

5

Question 3

The webservice WhyWhatWhere is selling advertizing slots associated with
a collection of keywords. In this problem we will consider only a single
keyword, the word exam. The word exam appears repeatedly over time, and
for each occurrence there is an associated advertizing slot. WhyWhatWhere
sells each of these slots to the highest bidder as they appear. A buyer B
can enter a bid at any time; her bid consists of a pair (price, total), price
being the amount B will pay for each slot it receives, and total being the
total amount B will pay; e.g. if B bids ($2, $100), it means that B will pay
$2 each time she is given the slot for keyword exam, and B wants to pay for
this up to 50 times (100/2).

When a slot is available it is sold to the highest bidder who has already
bid and who still has enough funds, and the bidder’s available budget is
decreased accordingly.

Bidders can join at any time. Suppose that there are n bids altogether
and m slots for the word exam.

For example we might have the sequence of actions: B1 bids ($4, $4), B2

bids ($3, $6), fill-slot, fill-slot, B3 bids ($5, $10), fill-slot. Then the first slot
is given to B1 at a price of $4, the second slot to B2 at a price of $3, and
the third slot to B3 at a price of $5.

a. [6 points]. Give a data structure that allows the webservice to allocate
slots and include new bidders in O(log n) time per operation.

b. [4 points]. Show how to obtain a total time of O(n log n + m).
Hint. How many times can the buyer of the word exam change?

6

Solution, Question 1

a. The following example works for both parts. v1 has weight 2, all the other
nodes have weight 1. v1 is connected to every other vertex, and there are no
other edges in the graph. Both algorithms end up with an independent set
consisting of just the vertex v1 of weight 2; the complementary set of weight
n− 1 is the maximum weight independent set here.

b.
Balanced Binary Tree Unsorted Linked List Sorted Linked List

(a) Insert log n 1 n

(b) Lookup log n n n

(c) Delete log n n n

(d) List n n log n n

Solution, Question 2

A. Full code is below:

function Equalistan(G, w, s, {fe})
for each vertex v in V [G]

d[v] :=∞;
previous[v] := undefined;

d[s] := 0;
Q := V [G];
while Q is not an empty set

u := Extract Min(Q);
if d[u] > w

d[u] :=∞;
previous[u] = undefined;
continue to the next loop interation;

for each edge (u, v) outgoing from u
if d[u] + f(u, v) < d[v]

d[v] := d[u] + f(u, v);
previous[v] := u;

B. Full code is below:

function Unfairstan(G, w, s, {pe, fe})
for each vertex v in V [G]

d[v] :=∞;

7

previous[v] := undefined;
d[s] := 0;
Q := V [G];
while Q is not an empty set

u := Extract Min(Q);
if d[u] > w

d[u] :=∞;
previous[u] = undefined;
continue to the next loop interation;

for each edge (u, v) outgoing from u
if d[u] + p(u, v) ∗ (w − d[u]) + f(u, v) < d[v]

d[v] := d[u] + p(u, v) ∗ (w − d[u]) + f(u, v);
previous[v] := u;

Solution, Question 3

a. We use a maxheap to store the bidders, using the bid value as the key. For
each bidder, its record also stores its remaining amount of unspent money.
A simple implementation, such as the standard Floyd heap, suffices. To add
a new bidder, simply insert it into the heap; this takes O(log n) time.

To fill a slot, do a findmax; the returned bidder receives the slot and is
charged her bid value; this charge is deducted from the bidder’s remaining
unspent money. If the new unspent sum is smaller than the bidder’s bid,
then this bidder is deleted from the heap. This all takes O(log n) time.

b. By keeping a pointer to the current maximum value item in the heap,
a fill slot operation can be done in time O(1) plus the O(log n) time for a
deletemax if one is performed.

There is one insertion per bidder and at most one deletemax. These
take time O(n log n) overall. The remaining time used by the m fill slot
operations is O(m), giving an overall runtime of O(m + n log n).

8

