
Core Examination May, 1995

Page 1

CORE EXAMINATION
with Solutions

May 1995
Department of Computer Science

New York University
May 22, 1995

Programming Languages & Compilers

PL&C1 . Consider the following program fragment:

var s: array [1..3] of char ;
var i,j: integer ;

procedure P (x: integer , y: char);
var j: integer ;
begin

j:=2;
x := x+1;
output (y);
output (i);

end ;

s[1]:='A'; s[2]:='B'; s[3]:='C';
i:=0; j:=1;
P(i,s[i+j]);
output (i);

What values are output under the following calling conventions:

(a). (1 point) Call by value
(b). (2 points) Call by value-result
(c). (2 points) Call by reference
(d). (5 points) Call by name

PL&C2 . Recall that a container class is an abstract type whose purpose
is to represent a collection of values of some type. An iterator is an abstract type associated with a
container class, by means of which one can apply some operation to all the values in the container.

(a). In the language of your choice, write the complete specification for an iterator over a collection of
integers. No implementation is required yet.

Solution:
a. A, 0, 0
b. A, 0, 1
c. A, 1, 1
d. B, 1 ,1

Core Examination May, 1995

Page 2

(b). Using the parametrization mechanism of the language you chose, write an iterator that applies to
homogeneous collections of any arbitrary type.

(c). Assume that the collection is to be represented as a linked list. Write the implementation of the iterator
operations.

(d). Suppose that the collection is to be represented as a doubly-linked list. In the language you chose, can
you use inheritance to define this new class in terms of the class defined in part (c) above?

(e). In C++ it is often the case that an iterator class is defined as a friend class of the corresponding
collection. Explain why.

Please remember: this question is about programming languages, so syntax matters. Your answer should
not be an approximation in pseudo-code, but should be correct in a specific language.

Solution:

a) There are three related types (or classes) to consider: some element, a container for such elements, and
an iterator over these containers. The iterator has some internal state that indicates the current element of
the container that is being processed. Given a container, we must be able to create an iterator over it. Given
an iterator, we must be able to obtain the first and the next element, and determine whether there are further
elements to process. This leads to the following Ada code:

package Containers is
type Container is private;
type Iterator is private;
function Create (C : Container) return Iterator;
function First (I : Iterator) return Integer;
procedure Next (I : in out Iterator; Elmt : out Integer);
function Done (I : Iterator) return Boolean;
private
...

end Containers;

with this definition, the elements of a container can be processed as follows:

It : Iterator := Create_Iterator (Cont);
E : Integer;

if not Done (It) then
E := First (It);
while not Done (It) then

... process E.
Next (It, E);

end while;
end loop;

b) To parametrize this definition to handle containers of arbitrary elements, we make it into a generic
package:

generic
type Element is private;
package Containers is
...

and replace Integer throughout with the generic type Element.

c) If the container is a list, we can declare it as follows (in the private part of the package):

Core Examination May, 1995

Page 3

type Node;
type Link is access Node;

type Node is record
Value : Element;
Next : Link;

end record;

type Container is record
First : Link; -- pointer to head of list.
Last : Link; -- pointer to tail of list.

end record;

An iterator holds a link (in this simple case it could just BE a link):

type Iterator is record
Current : Link;

end record;

The package body will contain the following subprograms:

function Create_Iterator (C : Container) return Iterator is
begin

return (Current => C.First);
end Create_Iterator;

function First (I : Iterator) return Element is
begin

return I.Current.Value;
end First;

procedure Next (I : in out Iterator; Elmt : out Integer) is
begin

I.Current := I.Current.Next;
E := I.Current.Value;

end Next;

function Done (I : Iterator) return Boolean is
begin

return (I.Current = Null);
end Done;

d) In Ada83 it is not possible to extend a type by inheritance. We can copy the specification of the
package, and modify the private part to describe doubly-linked lists. In Ada95, as in C++, we can extend
the container type (or class) by adding another data member to it (a backward pointer). The iterator
functions are inherited without modification, but we can now add an operation Previous to traverse the list
in both directions. The point of this exercise is to emphasize that the user code is not affected by this
change of representation, and previous loops over containers continue working without modification, even
if we choose more complext representations for containers (trees, hash-tables, etc).

e) Section 8.3.4 of " The C++ Programming Language", by B. Stroustrup, discusses iterators in great
detail.

PL&C3. Suppose we want to add a “parallel assignment” construct to Pascal or Ada with the syntax:

(nam1, nam2, nam3 ...) := (expr1, expr2, expr3, ...);

Core Examination May, 1995

Page 4

where the names on the left are any legal left hand sides and the expressions on the right are any legal
expressions of the corresponding types. The number of names must be the same as the number of
expressions. The semantics is similar to:

nam1 := expr1;
nam2 := expr2;
nam3 := expr3;
 ...

except that all the expressions are evaluated before any of the assignments is done, so that for example, a
swap can be written as:

(i,j) : (j,i);

It is possible to write a context free grammar for this construct:

PASSIGN ::= (NAME MORE EXPRESSION)
MORE ::=) := (
 | , NAME MORE EXPRESSION ,

(a). Verify that this grammar works by showing the parse tree for

(i,j) := (j,i).

(b). This grammar is unfortunately not at all convenient for the purposes of building a parser. Why?

(c). Describe how this construct would be handled in the parser, giving grammar rules appropriate for use
with YACC or a similar tool. Briefly state what is done by the parser, and what is done during semantic
analysis.

In the general case, e.g., in the swap example above, temporaries are required to keep the right semantics,
but in other cases, such as (a,b) := (c,d); a permissible optimization allows the assignments to be
done directly without temporaries.

(d). Briefly state the exact conditions for enabling this optimization.

(e). In a sentence or two, state what techniques would be required in the compiler to determine whether
these conditions were met.

Solution:
To be supplied by Professor Dewar.

Operating Systems

OS1 A page replacement algorithm should minimize the number of page faults. We can do this
minimization by distributing heavily used pages evenly over all memory, rather than having them compete
for a small number of page frames. We can associate with each page frame a counter of the number of
pages that are associated with that frame. Then, to replace a page, we search for the page frame with the
smallest counter.

(a). Define a page-replacement algorithm using this basic idea. Answer the following issues:

1) What is the initial value of the counter;
2) When is the counter increased and when is the counter is decreased; and
3) How is the page to be replaced selected?

Core Examination May, 1995

Page 5

(b). How many page faults occur for your algorithm for the following reference string, for four page-
frames:

1,2,3,4,5,3,4,1,6,7,8,9,5,4,5,4,2.

(c). What is the minimum number of page faults for an optimal page-replacement strategy for the same
reference string using four page-frames?

(d). What is Belady’s anomaly?

(e). Does Belady’s anomaly occur using our paging scheme for the reference string above, using:

1) 3 frames
2) 4 frames
3) 5 frames

Solution:
(a). Define a page replacement algorithm such that:
The initial value of the counter is zero;
The counters are increased whenever a new page is associated with that frame, and a counter is decreased
whenever one of the pages associated with that frame is no longer needed;
A page to be replaced is selected as the frame with the smallest counter, with a FIFO queue to break ties.
(b). 14 page faults.
(c). 11 page faults.
(d) To be supplied by Professor Palem.
(e) To be supplied by Professor Palem.

OS2. Consider a file consisting initially of 100 blocks. Assume that the file control block (and the index
block, in the case of indexed allocation) is already in memory. In cases a) through c) below, one block will
be added. In cases d) through f), one block will be removed. Calculate how many disk I/O operations are
required for contiguous, linked, and indexed (single-level) allocation strategies in each of the cases a)
through f). That is, fill in the table to the right (copied to your exam booklet). Note that:

• In the contiguous allocation case, assume that there is no room to grow in front of the beginning, but
there is room to grow at the end;

• Assume that the block information to be added is stored in memory.

a) The block is added at the beginning

b) The block is added at the middle

a) The block is added at the end

b) The block is removed from the beginning

c) The block is removed from the middle

d) The block is removed from the end.

Solution:

Number of I/O Operations
Contiguous Linked Indexed

a) 201 1 1
b) 101 52 1
c) 1 3 1
d) 198 1 0
e) 98 52 0
f) 0 100 0

Core Examination May, 1995

Page 6

. ALGORITHMS
ALGS1. The following recursive algorithm computes the minimum value in an array A[i..j] :

function min(var A: array of integer; i, j : integer):integer
var min1, min2: integer;
begin

if i = j then
min := A[i];

else
begin

min1 := min(A, i, (i+j) div 2);
min2 := min(A, (i+j) div 2 + 1, j);
if min1 < min2 then

min := min1
else

min := min2
end

end

Calling a recursive algorithm (like min) generates a tree of recursive calls. For , define

T(i,j) to be the number of calls (including the original call) generated by the call min(A, i, j) . Write
an exact recurrence equation for T. Treat the base case i j= and the recursive case i j< separately.

(b). Fine an exact solution T(i,i), T(i,i+1), and T(i,i+2). Then find the more general solution for T(i,j) for
every i j< . Hint : Use your recurrence from part (a).

Solution:
(a). If i j= , then T i j(,) = 1, since in that case there are no calls besides the original call. If i j< , then the

two calls result in

T i j T i
i j

T
i j

j(,) , , .= +

 + +

+

 +

2 2
1 1

The first term on the right is the number of calls generated by the recursive call
min(A,i,(i,j) div 2). The second term is the number of calls generated by the recursive call
min(A, (i,j) div 2+1, j). The last term 1 is for the original call itself.

(b). The base case above showed that T i i(,) = 1 (for every integer i). For the next case j i= + 1, we have

T i j T i
i i

T
i i

i(,) , ,=
+ +

 +

+ +

+ +

 +

1

2

1

2
1 1 1

= + + + + = + + =T i i T i i(,) (,)1 1 1 1 1 1 3.

For the next case j i= + 2 , we have

T i j T i
i i

T
i i

i(,) , ,=
+ +

 +

+ +

+ +

 +

2

2

2

2
1 2 1

Core Examination May, 1995

Page 7

= + + + + + = + + =T i i T i i(,) (,)1 2 2 1 3 1 1 5 .

The pattern is now clear. For every i j≤ , we claim that t i j j i(,) ()= − +2 1 . We prove this by induction.

Let P d() be the statement that for every integer i, T i i d d(,) .+ = +2 1 We have already verified P(0)

above, and also P(1) and P(2). Suppose that P P d(), , ()0 1� − are true for some d ≥ 1; we will verify that

P(d) is true. We have:

T i j T i
i i d

T
i i d

i d(,) , ,=
+ +

 +

+ +

+ +

 +

2 2
1 1

= +

 + +

+ +

 + =

+

 + −

−

 +

 + = +T i i

d
T i

d
i d

d
d

d
d, ,

2 2
1 1 2

2
1 2

2
1 1 1 2 1

ALGS2. Let A[1..n], B[1..n], C[1..n], and D[1..n] be four arrays of numbers.

(a). For this part only, suppose that A and B are sorted (in increasing order). Design an algorithm to decide
whether there exist two indices i and j with 1≤ i ≤ n and 1≤ j ≤ n such that A[i]+B[j]=0 . Your
algorithm should run in O n() time.

(b). Now A and B are general (not necessarily sorted). Design an algorithm to decide whether there exist
two indices i and j with 1≤ i ≤ n and 1≤ j ≤ n such that A[i]+B[j]=0 . Your algorithm should run
in O n n(log) time.

(c). Design an algorithm to decide whether there exist four indices i, j, k , and l in the range 1..n

such that A[i]+B[j]+C[k]+D[l]=0 . Your algorithm should run in O n n(log)2 time.

Solution:
(a). One way to solve this problem is to reduce it to merging. Namely, construct an array Y[1..n] as
follows:

Y[m]=–B[n+1-m] (for all m in 1..n).

That is, Y is the reversal of the negation of B. It is easy to see that Y is also sorted in increasing order. Now
we just need to check if A and Y share any common elements. This task can be solved by applying the usual
“two-finger” merging algrotihm (i.e., the usual MERGE algorithm) to A and Y, looking for any equalities
along the way. The running time is O n() to create the B array and O n() to perform the merge.

A different way to solve the problem is to write an explicit algorithm. Here is an algorithm that is similar to
the MERGE algorithm above, but operates on the A and B arrays, walking left to right in A and right to left
in B.

i := 1;
j := n;
while (i <= n) and (j >= 1) and (A[i]+B[j] <> 0) do

if A[i]+B[j] < 0 then
i := i + 1

else
j := j - 1

if (i <=n) and (j >= 1) then
write(‘Yes’)

else
write(‘No’)

Core Examination May, 1995

Page 8

This algorithm runs in O n() time since the value of j i− necessarily decreases by 1 in each iteration

through the loop, and since it begins at n − 1 and cannot get smaller than 1− n , there are at most iterates.

The algorithm works by successively eliminating rows or columns in ()i j, space, so that if i and j are

currently being considered, then the search for A[i´]+B[j´]=0 must occur with i´ ≥i and j´ ≤j.

(b). We first sort the elements of A and B, using an O n n(log) algorithm, such as MERGESORT, and then

apply the O n() algorithm from part (a).

(c). Construct two dimensional arrays E(1..n,1..n) and F(1..n,1..n) given by:

E(i,j)=A(i)+B(j) F(k, l)=C(k)+D(l).

Then flatten the arrays E and F to become one-dimensional arrays of length 1..n 2 in any arbitrary
fashion. (This construction takes time O n()2 .) Finally, apply the algorithm from part (b) to these two one-

dimensional arrays. The complexity is ()() () ()O n n O n n O n n2 2 2 22log log log= = .

ALGS3. Let G=(V,E) be an undirected graph with no self-loops (that is, no edges from a vertex to itself).
Let x be a vertex in V. Define the elimination graph G[x] to be the graph obtained from G by removing the
vertex x (and all edges containing x) and inserting edges between every pair of neighbors of x. More
precisely, set []G x V E= ′ ′(,) where { }′ = −V V x and where (for every two distinct vertices y and z in

′V) we have

{ }y z E, ∈ ′ if and only if { }y z E, ∈ or ({ }y x E, ∈ and { }x z E, ∈)

Let x x xn1 2, ,� be an ordering of all the vertices in V. Consider the sequence of graphs

[] [][] [][] []G G x G x x G x x xn, , , ,1 1 2 1 2� � . (That is, the vertices are eliminated one at a time in the order

x x xn1 2, ,� .) Define the cost of the ordering to be the maximum number of edges of any graph in this

sequence. I.e.:

Definition : The cost of x x xn1 2, ,� is:

max(# edges in G, # edges in []G x1 , ... , # edges in [][] []G x x xn1 2 �).

(a). Find a graph G and two orderings of the vertices of G such that the two orderings have different costs.

(b). Find a planar graph G and two orderings of the vertices of G such that with the first ordering all of the
graphs in the elimination sequence are planar, whereas in the second ordering not all of the graphs are
planar.

Recall that a graph is planar if it can be drawn in the plane with no pair of edges crossing. The two graphs
below are not planar.

Core Examination May, 1995

Page 9

Solution:
The following examples serve for both (a) and (b). Consider:

(a). In the left graph, in the first elimination step, G v[],1 we obtain the complete graph of five nodes, which

has 10 edges (see the pentagon example above). Successive eliminations reduce the number of edges, so the
cost is 10. Using the ordering on the right, each elimination removes one edge, so that the total cost is the
number of edges in the original graph, which is 5.

(b). There are many examples that work, but the two orderings of the graph from the solution in part (a)
work. Notice that the graph is planar, since it is drawn in a plane. After performing the first elimination
using the ordering on the left, planarity is lost, as the resulting graph is the complete graph on five vertices,
which is not planar. On the other hand, each elimination step using the ordering on the right simply
eliminates a single node and edge, and thus all graphs in the elimination sequence are planar.

v1

v2
v3
v4
v5
v6

v1

v3
v4
v5

v6

v2

