CORE EXAMINATION
Department of Computer Science

New York University
January 23, 1998

This is the common examination for the M.S. program in CS. It covers
core computer science topics: Languages and Compilers, Operating Systems,
and Algorithms. The exam has two parts. The first part lasts three hours
and covers the first two topics. The second part, given this afternoon, lasts
one and one-half hours, and covers algorithms.

Attempt all of the questions. You are not required to take the algorithms
section of the exam if you have passed the FOCS exam in the past.

Use the proper booklet for each question. Each booklet is marked with
the Area and Question number, in the form PL&C1, PL&C2, PLC&C3,
051, 052, ALGS1, ALGS2, ALGS3. Use the appropriate booklet for each
question. DO NOT put your name on the exam booklet. Instead, your exam
number must be on every booklet.

You will be graded according to your exam number, shown on the envelope
containing the booklets. Remember your exam number: when grades are
given out, they will be published according to this number, not by name.

Make sure your name and signature are on the envelope. This is the only
place where your name appears. Please include all the booklets inside the
envelope. You can keep the exam.

Good luck!

Programming Languages and Compilers

Question 1

a) Describe briefly the purpose of an exception mechanism in a modern high
level language (e.g. Ada, C++, or Java). Explain how a exception propa-
gates in Ada.

b) What output does the following Ada program produce when executed?

with Text_Io; use Text_Io;
procedure demo 1is
E : exception;

procedure P (N : Integer) is
F : exception;
begin
Text_TIo.put (" Call P");
if N = 2 then raise E: end if;
if N = 3 then raise F; end if;
exception
when E => Text_Jo.Put_Line ("E1");
when others => Text_Io.Put_Line ('"Othersi');
end P;

begin

P (1); P (2); P (3); P (4);
exception

when E => Text_Jo.Put_Line ("E2");

when others => Text_Io.Put_Line ("others2));
end;

Solution

a) Exceptions and exception handlers in both Ada and Java are designed
to handle situations when the normal program execution has to be inter-
rupted to perform some special processing. For example: error conditions
(arithmetic overflow, out-of-bound array references, unexpected end-of-file),
unpredictable conditions, tracing and monitoring, etc.

An exception can be raised either by a language-defined primitive opera-
tions (e.g. constraint-error on arithmetic or an index out of bounds), or by
an explicit action in the user-code (raise_statement in Ada, throw in Java or
C++). The effect of the raise, regardless of its origin, is to transfer control
to the handler that is dynamically associated with the exception being raised.

The handler (if any) is determined by following the dynamic chain of sub-
program activations leading up from the frame that raised the exception,
until a handler is found for the exception being raised. If none is found, the
program terminates.

b)The program prints:

Call P
Call P
E1l

Call P
othersl
Call P

Question 2

In the following, you are asked to write some code in the language of your
choice. Your answer will be judged on the correctness, the clarity and the
generality of your code in that language. Pseudo-code is not acceptable.

e In Ada, C, C++, or Java, write a type definition for a singly-linked
list. Using your definition, write a code fragment in the same language
that adds an element to an existing list.

e How can your definition be used to define lists with different element
types (lists of integers, lists of lists of strings, etc.)?

e Can your definition be used to define heterogenous lists, that is to say
lists that contain different element types? What are consequences of
hetero- geneous lists for type-safety, in your chosen language?

e Using your definition, write a function or method that returns the length
of a list, that is to say the number of elements it contains.

Solution

e Everyone can write a linked structure in one of the proposed languages.
The link is expressed as a pointer type in C or C4++ (T* for some
T) or as an access type in Ada (type Link is access Node). In Java,
reference semantics makes it possible to write the simple self-referential
definition:

class Node {
int value;
Node next;

e The most general solution is a generic one, in which the type of the item
stored in each node of the list is a parameter to the definition. This
means a generic package in Ada, or a class template in C++. No such
facilities are available in C or Java. In C, one may use void* to indicate
that the item type is arbitrary. The use of the root class Object in Java
has the same effect.

e The C and Java solutions mentioned above allow the creation of arbi-
trary heterogeneous lists. In C+4 and Ada, heterogeneous lists can be
created only for types (or classes) related by inheritance. For example,
in C++. one might define the element type to be T*, in which case any
descendant of T can be stored in a list node.

In all cases, heterogeneous lists are not statically typed, and type-
checking may have to take place at run-time, either in the form of dy-
namic dispatching, or with explicit casts. This means that some kind of
run-time identification must be available. Ada tagged types, C++ and
Java classes carry type identification, so that the run-time can verify
the legality of a cast or conversion. No such is available directly in C,
so one would have to program explicitly the equivalent of discriminated
types to encode type information.

e Writing a loop that traverses a list in not a big problem. If the list
has an explicit header (rather than being represented by a pointer to its
first node) it is reasonable to define a class member that holds the count
of the number of elements in the list. The count must be maintained
correctly under insertions and deletions, which is not necessarily cheap
if these operations happen in the middle of the list.

Question 3

Suppose we want to add dynamic arrays to C, so we now allow declarations
of the form:

int x (n);

where n is an expression. Such declarations are to be allowed only within
functions, e.g.

int funcl (int param) {

int twice [param * 2];
int big [param * param];

big [x] + twice [yl

e One possible implementation is to allocate such a variable on the stack
frame of the function. Using a picture, show exactly how this would
be done. Your answer should handle the general case of more than one
such variable on a given stack.

e If the approach in 1 is followed, it may be necessary to allocate a frame
pointer where none was previously needed. Explain.

e lor the first such variable in a frame (or the only one if there is only
one), an optimization is possible if the stack builds up in memory (but
not if it builds down in memory). Explain using appropriate diagrams.

e Another approach is to allocate the array on the heap. What are the
advantages and disadvantages of this approach.

Solution

e The stack frame must be divided into two parts, the fixed length part
and the variable length part. The variable length objects are allocated
in the variable length part (using the equivalent of alloca), and a pointer
is allocated for each such array. The pointer is placed in the fixed part
of the frame and initialized to point to the start of the array in the
variable length part.

An access to the array picks up the pointer and uses it to access the
array.

For example, suppose the stack builds up in memory (high memory at
top of page), and there are two such arrays a and b, then the frame

would look like:

B ittty + <--- stack pointer
/ | |
array b
variable . I I
part . tommm +
| |
. array a
\ | |
pommm e +
/ | ptr-to-b |
fixed . B ittty +
part . | ptr-to-a |
\ Hommmm o + <--- frame pointer

o If the frameis fixed length, then, referring to the picture above, the fields
in the frame can be addressed using (negative) offsets from the stack
pointer. But if the frame has components whose length is not known

till execution time, then we have to have a separate frame pointer as
shown in the diagram, and fields in the fixed part of the frame can be
addressed using (positive) offsets from the stack pointer.

Referring to the above diagram, the start of array a is actually at a
fixed offset from the frame pointer, so it is no necessary to allocate a
pointer to it, instead we can address it using this fixed offset. This is
only possible if the start of the array is nearest to the frame pointer, i.e.
if the stack builds up in memory. This is one of the only cases in which
the choice of stacks building up and down in memory is not equivalent.

In this approach we still alocate a pointer in the frame, but the refer-
enced array is on the heap.

The advantage is that the stack frame is still fixed length. This means
that the frame pointer can be omitted, freeing up a register, and there
are also other optimizations possible if all frame sizes are fixed, notably
the possibility of a nested function ”reaching up” to access the frame of
its enclosing function directly without bothering to use the static chain
if the language allows nested procedures (like GNU C).

The disadvantage is that allocation on the heap is generally more expen-
sive. Also to avoid memory leaks, the storage allocated for this purpose
must be freed on exit from the function. This takes much more time
than just popping the frame off the stack. Ensuring tha the memory is
released is even more tricky if the language supports exceptions (like
C++ or Ada) since then we have to ensure that the storage is released
if an exception propagates through this frame.

Operating Systems

Question 1

Consider a demand-paged memory. The page table is held in registers. It
takes 8 milliseconds to service a page fault if an empty page is available or
the replaced page is not modified, and 20 milliseconds if the replaced page is
modified. Memory access time is 100 nanoseconds.

In the application program you are evaluating, the page to be replaced is
modified 70% of the time. What is the maximum acceptable page-fault rate
for an average access time of at most 200 nanoseconds?

Solution

Let the maximum fault-rate be F. Then:
200nanosecs > (1 — F) x 100nanosecs + 0.3p X 8msecs + 0.7p X 20msecs
Solving for F we get F=1/164000, or approximately 0.000006.

Question 2

a) Describe briefly the two-phase locking protocol and the timestamp protocol
for concurrency control.
Consider the following two histories (time flows downward in the diagrams):

b) two transactions T'1, T2 perform the following:

T1 T2
read A

write B
read B

Show that this history is feasible under the two-phase locking protocol, but
not under the timestamp protocol.

c) three transactions T1, T2, T3 perform the following:

T1 T2 T3
write A
write A
write A
write B
write B

Show that this history is feasible under the timestamp protocol, but not
under the two-phase locking protocol.

Solution
a) From any textbook.

b) Under the two-phase locking protocol, it is possible for T2 to acquire
a lock on B just before writing, and releasing it just after, and for T1 to
acquire that lock on B before releasing the lock on A. Under the timestamp
protocol this cannot happen, because the timestamp of T1 is lower than that
of T2, but T2 attempts to access B (in an incompatible mode) before T1.

¢) Under the timestamp protocol the interleaving is feasible because all ac-
cesses on any given variable are in timestamp order. This is not feasible
under two-phase locking, as can be seen from the following argument: before
T3 could lock A, T1 and T2 had to both lock and unlock A. but after that
both T1 and T2 would have to lock B, so at least one of them had to acquire
that lock after relinquishing A, which violates the two-phase condition.

CORE EXAMINATION
Department of Computer Science

New York University
January 23, 1998

This is the common examination for the M.S. program in CS. It covers
core computer science topics: Languages and Compilers, Operating Systems,
and Algorithms. The exam has two parts. The first part lasts three hours
and covers the first two topics. The second part, given this afternoon, lasts
one and one-half hours, and covers algorithms.

Attempt all of the questions. You are not required to take the algorithms
section of the exam if you have passed the FOCS exam in the past.

Use the proper booklet for each question. Each booklet is marked with
the Area and Question number, in the form PL&C1, PL&C2, PLC&C3,
051, 052, ALGS1, ALGS2, ALGS3. Use the appropriate booklet for each
question. DO NOT put your name on the exam booklet. Instead, your exam
number must be on every booklet.

You will be graded according to your exam number, shown on the envelope
containing the booklets. Remember your exam number: when grades are
given out, they will be published according to this number, not by name.

Make sure your name and signature are on the envelope. This is the only
place where your name appears. Please include all the booklets inside the
envelope. You can keep the exam.

Good luck!

Basic Algorithms

Question 1

Let G be a directed graph, with N vertices and E edges.

Show how each of the following problems can be solved in time O(N+E).
(Hint: Depth-first search is a useful subroutine for each of these. You need
not give the code for DFS; just explain, in English or pseudo-code, how you
use it.)

Given a vertex A, list all the vertices u such that there is a path through
G from A to u.

Given a vertex A, list all the vertices u such that there is a path through
G from u to A.

Given two vertices A and B, list all the vertices u such that there is a
path through G from A to u, but no path through G from B to u.

Determine whether the graph G is in fact a downward-pointing tree.

Suppose you know the number of vertices NV a priori, but do not know
E. Can you solve problem 4 in time O(N), independent of E?

Solution

Do a DFS starting at A and enumerate all the vertices encountered in

the DFS.

Construct the reverse of Gj; that is, the graph H that contains an edge
v-ju for each edge u-;v in G. Do a DFS from A through H and return
the list of all the vertices encountered.

Do a DFS starting at B and mark each vertex encountered. Then do a
DFS starting at A, but omit any vertices marked in the first DFS.

Do repeated DFS from unvisited nodes, marking visited bodes (but
not the root of each DSF) and stopping at a node already visited.
(This is O(E). If more than one root has not been visited, return false.
Otherwise to a DFS from the unique root and verify that each node is
visited once.

If we know a priori that the graph has n nodes, then:

— Start counting the edges in G. If the count gets past n-1, then halt
and return false. If the final count is less than n-1, then return
false.

— For each edge u-;v in G, mark v. Collect the unmarked vertices
in G. These are the vertices with no in-arc. Unless there is exactly
one such vertex, return false; else, let R (the root) be the one
vertex with no in-arc.

— Do a DFS starting at R. If the DFS reaches every vertex in G then
return true, else return false.

Question 2

Consider a heap with the minimum element on top.

e Characterize the structure of a heap, and give the running times of the
3 heap operations using the usual array based implementation: FIND-

MIN, DELETEMIN, and INSERT.

e Instead of using an array, suppose we implement the heap as a tree
with both parent and child pointers. What happens to the performance
of the 3 operations? Describe how they might be implemented, and
whether or not they can be performed as efficiently.

Solution

e A heap is a complete binary tree with the ordering property that the
key of the parent of node X is smaller than or equal to the key of node X
itself. In the usual array based implementation, if a node is in position
i, its children are in position 2i and 2i+1. With this implementation,
a heap with N nodes supports the following operations in the specified
run time:

— FINDMIN - O(1). Root node is the minimum element, in position
1 of the array.

— DELETEMIN - O(log N). Delete the root node, put the last ele-
ment in the array in its place, and percolate it down until it is in
the right spot. Since the heap is balanced, an N element heap has
height O(log N).

— INSERT - Add the new element to the first empty spot, and per-

colate it up the tree to the right location. Again, this takes O(log
N).

e If the heap is represented by a tree, then:

— FINDMIN - still takes O(1), assuming of course we keep a pointer
to the root of the tree.

— DELETEMIN - The difficulty here is in finding the "last” element
in the tree. This can be done for example using a breadth first
traversal (taking O(N)), or by keeping a pointer to the last node,
in which case updating the pointer is difficult. (Note that sibling
or level pointers were not part of this implementation.) Once the
last node is located and moved to the root, heapifying it proceeds
as usual in O(log N). Algorithms that delete the root, move up the
smallest child node, and recursively continue, result in an unbal-
anced tree.

— INSERT - The difficulty here is finding the first "empty” spot , or
next leaf node. Again, once it is found, heapifying the new node

takes O(log N).

Question 3

Below is a (really bad) way to solve the Maximum Subsequence problem:
Given an array A[1..N], find the indices i and j so that the sum Y~ _. A[k] is
a maximum.

Procedure MaxSubSeq(i,j)
begin
if (i = j) then
MaxSubSeq = A[i]
else begin

ThisSum = i:iA[k]
MaxSubSeq = MAX(ThisSum, MaxSubSeq(i+1,j), MaxSubSeq(i,j-1))
end

end

It is initially called with

MaxSubSeq(1,N)

e Let T'(N) be the running time for this problem for an array of length N.
Write down the recurrence relation and initial condition that describe

T(N).

e Solve the recurrence relation or give an estimate of the behavior of T(N)
for large values of N.

e Give a sketch (only 2 sentences please) of a more efficient way to solve
the problem, and state its complexity.

Solution

(a) The initial condition is 7'(1) = ©(1), because when N = 1 (which cor-
responds to ¢ = j) the procedure terminates. The recurrence equation, for
N >1,is
T(N)=2T(N—-1)+©O(N). (1)

The term 27 (N — 1) comes from the two recursive calls; the term O(N) is
the time to compute the sum ThisSum.

(b) Define S(N) = T(N)/2V. Dividing Equation (1) by 2V gives (for
N >1)

S(N) = S(N - 1) + @(%).

By iterated substitution, we get
Nk
S(N) =Y 6(50).
k=1

Because the sum 72, 2% converges (to 2), we have S(N) = ©(1). Hence
T(N)=0(2").
(¢) For each index pair ¢,j with 1 < ¢ < j < N, compute the sum
7—; A[k]; return the sum with the largest value. There are ©(n?) index
pairs, and computing one sum takes O(n) time, so the total time is O(n?).

Though not required for this question, more efficient algorithms are known
that solve the problem in O(n) time.

