
CORE EXAMINATION
Department of Computer Science

New York University
January 16, 2004

This is the common examination for the M.S. program in CS. It covers core
computer science topics: Languages and Compilers, Operating Systems, and Al-
gorithms. The exam has two parts. The first part lasts three hours and covers the
first two topics. The second part, given this afternoon, lasts one and one-half hours,
and covers algorithms.

Attempt all of the questions. Use the proper booklet for each question. Each
booklet is marked with the Area and Question number, in the form PLC1, PLC2,
PLC3, OS1, OS2, ALGS1, ALGS2, ALGS3. Use the appropriate booklet for each
question. DO NOT put your name on the exam booklet. Instead, your exam number
must be on every booklet.

You will be graded according to your exam number, shown on the envelope
containing the booklets. Remember your exam number: when grades are given
out, they will be published according to this number, not by name.

Make sure your name and signature are on the envelope. This is the only place
where your name appears. Please include all the booklets inside the envelope. You
can keep the exam. Good luck!

Programming Languages and Compilers

Question 1

1. A function that one often writes in Scheme is flatten, which takes a list
L possibly containing nested lists and returns a list with no nesting which
contains all the atoms within L. For example,

(flatten ’(a b (c (d e) f) g))

will return (a b c d e f g). Write flatten in Scheme or LISP

(Note: the function (pair? x) returns true of x is a non-empty list. For
our purpose, the empty list can be considered an atom).

Write a procedure unflatten which takes a list L containing no nested
lists and returns a list that does contain nesting, such that the ith element of
L is nested inside i lists in the result. For example,

(unflatten ’(a b c d e))

would return (a (b (c (d (e))))). You can assume that L has
at least one element.

1



Answer 1

(define (flatten L)
(cond ((null? L) ’())

((pair? (car L)) (append (flatten (car L)) (flatten (cdr L))))
(else (cons (car L) (flatten (cdr L))))))

(define (unflatten L)
(cond ((null? (cdr L)) L)

(else (cons (car L) (list (unflatten (cdr L)))))))

Question 2

1. Consider the following Java declarations;

class Parent {
public int func (int x) {..};
public void proc (String s) {..};
... constructors, data, no other methods

}

class Child extends Parent {
private void modify (int x) {..};
public int func (int x) {..};
.. other data, no other methods

}
Parent P = new... (some constructor call)
P = ... (some other assignment)

Show the contents of the dispatch table (the vtable in C++ jargon) for these
two classes. Explain how the dispatching call in:

int val = P.func (123);

is implemented at run-time.

2. Consider now the interface:

interface Ordered {
Boolean lessThan (Ordered x);

}

Complete the following class declarations:

class NewP extends Parent implements Ordered {..};
class NewC extends Child implements Ordered {..};

2



Show the dispatch tables for these two new classes.

3. Consider the following method, declared elsewhere:

Boolean Smaller (Ordered first, Ordered second) {
return first.lessThan (second);

};

first can be an instance of any class that implements the interface Ordered, for
example NewP or NewC. Explain how the call to LessThan is implemented
at run-time.

Answer 2

1. The dispatch table is an array of pointers to methods. A class extension
inherits the layout of the dispatch table from is parent. If a method is over-
ridden, the corresponding pointer now points to the overriding method, but
the position of the pointer in the table is unaffected. In our case, the dispatch
table for Parent looks like:

pointer to code for func (declared in Parent)
pointer to proc

while the dispatch table for Child looks like:

pointer to code for func (overrides)
pointer to proc (inherited)
pointer to modify (new)

a dispatching call is an indirect call through a statically known entry in the
dispatch table. A call to func on a polymorphic reference becomes a call
through the first entry in the dispatch table: Tab[0](123) in C++. (Of course
Java has no syntax for pointers to functions).

2. In order to satisfy the interface, the new classes must include a method dec-
laration with the proper signature:

class NewP extends Parent implements Ordered {
Boolean lessThan (Ordered x) {
// typically there will be a cast (Newp)x
// to obtain the data members on which the
// ordering is computed.

Same for class NewC. As a result, the method lessThan occupies the third
slot in the dispatch table for NewP, and the fourth slot in NewC.

3. Because an interface method occupies different positions in the dispatch ta-
bles of unrelated classes, a call to such a method cannot be translated into
a simple indirect call, as for a class method. The original JVM carried the

3



names of methods explicitly, and performed a sequential search over a run-
time table to find the position of a given interface method. A better approach
is to add a separate dispatch table for every interface that a class implements.
The call is transformed into a double indirection: locate the interface table
for the given class, extract the position of the method, and use this value to
access the dispatch table.

A final note: the naive implementation of the JVM does things inefficiently, to
avoid the fragile base class problem, but this is alleviated by just-in-time compila-
tion, which does transform a dispatching call into an indexed call through an array
of pointers. The central point remains that a call to an interface methods will be
slightly more complicated that a call to a class method, because it has to deal with
the layout of unrelated classes.

4



Question 3

1. In many programming languages (Fortran, Pascal, Ada..) multidimensional
arrays are stored as one contiguous object, either in row-major or column-
major order. Consider the declaration:

A : array (1..100, 1..100) of float;

Indicate with a simple diagram how elements of A are placed in memory.
Assuming that A is stored in row-major order, write the assembly code (for
the machine of your choice) that will be generated for the loop:

for J in 1..100 loop
A (J, J) := 0;

end loop;

2. In other languages, such as Java, multidimensional arrays are implemented
with indirection, as arrays of arrays. Given the declaration:

int [][] A = new int [100][100];

provide a diagram to indicate how A is stored, and write the assembly code
that will be generated for the loop:

for (int j=0; j < 100; j++) A[j][j] = 0;

Answer 3 For a discussion of array layout, see the text by Scott, sec. 7.4.3.

5



Operating Systems

Question 1

Consider the two processes shown below, which are run concurrently. The variable
X is shared between the processes and is initially 0. The variables i and j are local
to the process in which they appear. The shared binary semaphore b is initially
open. The shared counting (also called general) semaphore C is initially 3. The
shared counting semaphore D is initially 0.

There are several possible outputs for this pair of concurrent programs. Give
all the possibilities and explain your reasoning.

Process 1 Process 2

for i = 1 to 3 for j = 1 to 3
P(C) P(D)
P(b); X = X + 1; V(b) P(b); print X; V(b)
V(D) V(C)

Answer to OS Question 1:

This is basically a producer (increment) and consumer (print) problem. The con-
sumer cannot run more often than the producer, and the producer cannot get more
than three iterations ahead of the consumer since C is initially 3. The picture below
shows the possible executions.

6



Question 2

1. Consider a UNIX-like inode-based file system. Recall that whereas a file
contains arbitrary contents, a directory, however, has a prescribed format. It
consists of a number of entries, each of which contains the name of a file or a
subdirectory and a pointer to the corresponding inode. Also recall that, when
a (hard) link L is created to an (existing) file f , a directory entry is allocated
for L and it points to the same inode as f does.

A particular user starts in her home directory (/home/user), which ini-
tially contains a single file, file1, and executes the following sequence of
UNIX commands:

mkdir dirA;
mkdir dirB;

S1 ----------------
cd dirA;
cp ../file1 fileA;

S2 ----------------
cd ../dirB;
ln ../dirA/fileA fileB; # hard link named fileB (to fileA)

S3 ----------------
cd ../dirA;
rm fileA;

S4 ----------------

For each of the points marked S1, S2, S3, and S4, in the above sequence,
draw a graph showing the user’s files and directories and drawing arrows
from each directory D to each subdirectory of D and to each file contained
in D. Start at /home/user.

2. Refining question (a), we note that the file system consists of 4 kinds of
objects: (1) data blocks (which store file contents), (2) directory blocks
(which store the contents of a directory), (3) indirect blocks (described be-
low), and (4) inodes (also described below).

Data blocks, directory blocks, and indirect blocks are each 1 disk block;
whereas, 10 inodes fit in one disk block. Assume each disk block is 4000
bytes and every pointer (including a null pointer) is 4 bytes.

The inode for a file contains 76 bytes of attribute information followed by
80 pointers to the first 80 data blocks of the file followed by a pointer to
the indirect block for the file. If the file has exactly 80 data blocks, the data
block pointers are all valid, the indirect block pointer is null, and no indirect
block is allocated. If the file has fewer than 80 data blocks the unused data
block pointers as well as the indirect block pointer are all null and no indirect
block is allocated. If the file has more than 80 data blocks, the indirect block
is allocated and contains pointers to the excess data blocks. We assume no
file is so big that it overflows the indirect block.

The inode for a directory is essentially the same, the only relevent difference
is that the pointers are now to directory blocks instead of data blocks.

7



Assume that the file /home/user/file1 contains 100 data blocks.

For each of the points marked S1, S2, S3, and S4, in the above sequence, how
many additional inodes and data, directory, and indirect blocks would have
been created?

Answer to OS Question 2:

1. The figures below show the state of the user’s files and directories at each of
the points S1 through S4. To obtain full credit, the answer somehow needs
to indicate that fileA and fileB both refer to the same file on disk, and
that this file continues to exist at point S4.

/home/user

file1 dirA dirB

At point S1:

/home/user

file1 dirA dirB

At point S3:

fileA fileB

Both fileA and fileB refer
to the same file on disk

/home/user

file1 dirA dirB

At point S2:

fileA

/home/user

file1 dirA dirB

At point S4:

fileB

fileB continues to refer to the
same file on disk as in S3

2. This question required one to reason about how files and directories are
stored on disk. Most of the information for this was provided in the text
of the question itself.

At point S1, two new directories dirA and dirB would have been cre-
ated. In terms of disk storage, this would require two the use of additional
directory entries in the directory block corresponding to the /home/user
directory. Each of these directory entries would point to a directory inode,
which in turn would point to a directory block storing the entries for the cor-
responding directory. Given the size of a directory block (4000 bytes), no
additional blocks need to be allocated at the /home/user level for the two
additional entries. Thus, the additional storage that would be created at point
S1 would be two inodes (one each for dirA and dirB), and two directory
blocks (to store the directory entries of dirA and dirB respectively). Note
that we are assuming that a directory block is allocated as soon as the direc-
tory is created; in some instances, this allocation may be deferred until the
directory has some non-default entries.

8



At point S2, we would have created a new file, fileA, under directory
dirA. In terms of disk storage, this would require the use of a directory
entry in dirA’s directory block (again, given the size of a directory block,
we would not need to allocate any additional storage for this). This directory
entry would contain a pointer to an inode for fileA. This inode would in
turn point to the data blocks storing the contents of the file. Since the file
is specified as requiring 100 blocks, we would have 80 direct pointers from
the inode, and would need to allocate an indirect block to point to the 20
remaining blocks. Thus, at point S2, we would need to create (in addition
to the storage at point S1), one inode, one indirect block, and 100 data
blocks.

At point S3, we would have created a hard-link, fileB, under directory
dirB, which points to fileA. As described in the question text, a hard-
link merely corresponds to a directory entry that points to the inode of the
original file. Since the only allocation required is that of the directory entry
for fileB, as compared to the storage at point S2, we do not need to create
any additional inodes, directory blocks, indirect blocks, or data blocks.

At point S4, we remove the original file, fileA. Following the semantics
of hard links in Unix-like systems, only the corresponding directory entry
in dirA is deleted. The storage for the file, including the inode allocated
at point S2 and the indirect block and data blocks continue to be valid (and
are pointed to by fileB’s directory entry). Thus, there is no additional
storage that needs to be created, and equally importantly, no disk storage is
freed up as compared to point S3.

9


