CORE EXAMINATION
Department of Computer Science

New York University
January 24, 2003

This is the common examination for the M.S. program in CS. It covers
core computer science topics: Languages and Compilers, Operating Systems,
and Algorithms. The exam has two parts. The first part lasts three hours
and covers the first two topics. The second part, given this afternoon, lasts
one and one-half hours, and covers algorithms.

Attempt all of the questions. Use the proper booklet for each question.
Each booklet is marked with the Area and Question number, in the form
PLC1, PLC2, PLC3, OS1, OS2, ALGS1, ALGS2, ALGS3. Use the appro-
priate booklet for each question. DO NOT put your name on the exam
booklet. Instead, your exam number must be on every booklet.

You will be graded according to your exam number, shown on the enve-
lope containing the booklets. Remember your exam number: when grades
are given out, they will be published according to this number, not by name.

Make sure your name and signature are on the envelope. This is the
only place where your name appears. Please include all the booklets inside
the envelope. You can keep the exam. Good luck!

Programming Languages and Compilers

Question 1

Consider the ML function:

fun repeat f n x =
if n > 0 then repeat £ (n - 1) (f x)
else x

Informally, repeat applies f n times to x.

1. What is the most general type of repeat?

2. In order to reproduce this functionality in C++ or Ada, we must use
a template or generic. In either of these two languages, show how to
write such an equivalent function.

3. If we restrict f to be a function on integers, the same effect can be
obtained in C, using a function pointer. Write this simpler C solution.

4. Java has no notion of pointers. How can you obtain the effect of a
method that is a parameter to another method?

Answer 1
a) val repeat = fn : (’a-> ’a) -> int -> ’a -> a’

The type of x is polymorphic: ’a. The argument f is a function from ’a to

‘a.

b) In either language, we need to parametrize a construct (function, class)
with a type parameter, and a with function that operates on the type. In
Ada this can be written as follows:

generic
type A is private;
with function f (X : A) return A;
function repeat (N : Integer; X : A) return A;

function repeat (N: Integer; X : A) return A is
begin
if N > O then
return repeat (N-1, F (X));
else return X;
end if;
end repeat;

In C++, it is simpler to write a parameterized class that contains the desired
function repeat. repeat is parametrized with a function pointer:

template <class A> class repetition {
public:
A repeat (A (*£)(A) , int N, A x) {
if (N >0) return repeat (f, N-1, f (x));
else
return x;

};

c) If the type is known to be integer, all we need is a function parameter,
which in C is best written as follows:

typedef int (*FPTR) (int);
int repeat (FPTR f, int N, int x) {

if (N > 0) return repeat (f, N-1, f (x));
else return x;

d) In Java, the equivalent of a reference to a method is obtained through
dynamic dispatching. Declare an interface I with one method Func, declare
a class that implements I and provides a method Func, and use an object of
the class in the call to repeat.

Question 2

Consider the following grammar for the language FLAIL (Fortran-Like Artificial-
Intelligence Language). The notation {x} means zero or more occurrences
of x. The notation [x] means optional x (0 or 1 occurences of x).

LETTER ::=a | bl c | |y | z
IDENT = LETTER {LETTER}
DIGIT ::=0 1] 1| 2 .. I 819
LIT ::= DIGIT {DIGIT} [. DIGIT {DIGIT}]
PROGRAM ::= {DECL}
STMSEQ
End
DECL = TYPE IDENT
TYPE = Real | Integer
STMT = ASSIGNSTM | IFSTM | LOOPSTM | BACKSTM
STMSEQ ::= STMT {STMT}
ASSIGNSTM ::= IDENT = EXPR
IFSTM ::= If EXPR Then
STMSEQ
Else
STMSEQ
Endif
LOOPSTM ::= While EXPR do
STMSEQ
Endwhile
BACKSTM ::= Backup
EXPR = PRIMARY | ADD | MUL | SUB | DIV
PRIMARY ::= IDENT | LIT | (EXPR)
ADD ::= PRIMARY {+ PRIMARY}
MUL ::= PRIMARY {* PRIMARY}
SUB ::= PRIMARY - PRIMARY
DIV ::= PRIMARY / PRIMARY

Answer the following questions (see next page) based on this grammar.
Questions on FLAIL programs:

1. Identify the *syntactic* errors in the following program

Real a

Integer b, c

Integer d

If b > ¢ Then
a=1.0
b=>b+ 11.

ENDIF

b=Db+c*d
d=d-2-b
End

2. The production

IDENT ::= LETTER {LETTER}

would typically be handled by which phase of the compiler?

3. The production
STMSEQ ::= STMT {STMT}

would typically be handled by which phase of the compiler?
4. Why is the answer to 2 different from the answer to 37

5. Given the expression a * b * ¢, it is unclear from the syntax whether
it means (a * b) *cora* (b * ¢)
(a) Given that multiplication is associative, why does it make a dif-
ference?
(b) Suppose that we intend it to mean (a * b) * c. Rewrite the

grammar so that this assocation is clear from the grammar.

6. The grammar as it stands is ambiguous. Point out the ambiguity and
explain how you would modify the grammar to fix it.

Answer 2

1. Syntax errors:

Real a
Integer b, c

-~

Error: only one identifier per declaration

Integer d
If b > ¢ Then

-~

Error: No such operator

a=1.0

-~

Error: Missing Else in If statement

ENDIF

~

Error: Badly spelled keyword, should be Endif

D=d-2-bD
Error: multiple subtractions require parens
End

2. The production IDENT ::= LETTER LETTER would typically be
handled by the lexical analyzer

3. The production STMSEQ ::= STMT STMT would typically be han-
dled by the parser

4. Because IDENT is a token with no internal semantic structure, and can
easily be recognized by the finite state processing the lexical analyzer

5. Given the expression a * b * ¢, it is unclear from the syntax whether
it means (a * b) * cora* (b * ¢)

(a) The association (left or right) makes a difference when computing
floating point expressions. There are two possible results: over-
flow, or precision effects. In either case, the result can depend on
the order of evaluation.

(b) To impose left association: (a * b) * ¢, we can rewrite the gram-
mar

Instead of MUL ::
Write MUL ::

PRIMARY {* PRIMARY}
PRIMARY | MUL * PRIMARY

6. The ambiguity is the following: ADD and MUL can match a PRI-
MARY by having zero repetitions. So if we see a PRIMARY, we can
parse it as an expression three ways.

(a) Directly as PRIMARY
(b) As PRIMARY + PRIMARY with zero repetitions
(c) As PRIMARY * PRIMARY with zero repetitions

Question 3

Consider the following definition of a C++ class that acts like an array with
bounds-checking (i.e. ensuring that a valid array index is used each time an
array element is referenced).

class my_array {

public:
my_array(int s): size(s) { a = new int[size]; }
int &operator[](int i);
int get_size() { return size; }

private:
int size;
int *a;

};

1. Give the code for my_array’s operator [] method, as one would define
it outside the class.

2. Why is it necessary for the return type of operator[] to be int & ?

3. Suppose there is a procedure sum(), not defined within the my_array
class, as follows:

int sum(my_array &a)
{
int n = 0;
int size = a.get_size();
for(int i=0; i<size; i++) {
n += alil;
}
return n;

}

Notice that a bounds check will occur every time a[i] is evaluated,
even though bounds checking isn’t really required in this case. Modify
the code of sum() and of class my_array so that a bounds check isn’t
performed during the execution of sum(). Don’t make sum() a member
function of my_array, though.

Answer 3

1. int &my_array::operator[] (int i)
{
if ((1 < 0) || (i>= size)) {
cout << "Error: Array reference out of bounds" << endl;
exit(1);
}
else return al[il;

¥

2. Since an array reference can appear on the left hand side of an assign-
ment, e.g.

al[i] = 6;

operator[] must return something that can be assigned to, i.e. an
“L-value”. T he use of & specifies that what is being returned by
operator [] is not a copy of the value of a[i], but rather a reference
to tt a[i], allowing a[il to be modified.

3. Rather than making the data member a of class my_array public,
which would allow every procedure to avoid bounds checking, we can
make sum() a friend of my_array, and to modify sum() to reference
the data member a directly.

class my_array {

friend int sum(my_array &);

public:
my_array(int s): size(s) { a = new int[size]; }
int &operator[](int i);
int get_size() { return size; }

private:
int size;
int *a;

};

int sum(my_array &a)
{
int n = 0;
int size = a.get_size();
for(int i=0; i<size; i++) {
n += a.alil;
}

return n;

