
Written Qualifying Exam
Analysis of Algorithms

Fall 2004

This examination is a three hour exam. All questions
carry the same weight.
Answer all of the following six questions. Please be aware
that to pass this exam you need to provide good answers
to several questions; it is not sufficient to obtain partial
credit on each question.

• Please print your name and SID on the front of the
envelope only (not on the exam booklets).
• Please answer each question in a separate booklet, and
number each booklet according to the question.

Read the questions carefully. Keep your answers legible,
and brief but precise. Assume standard results, except
where asked to prove them.

1

Problem. 1 New booklet please. [10 points]
Design and analyze a linear time algorithm for the following problem.

The input consists of a directed graph, encoded in the usual adjacency list
representation, along with two distinguished vertices s and t. The algorithm
should decide whether or not there is a path from s to t that contains a cycle.

Problem. 2 New booklet please. [10 points]
Let S be a set of n items. Each item has two attributes, a height and

a weight. The items are stored in a suitable data structure, outlined below,
which seeks to support the following operations in O(log2 n) time.

(i) Insert(e)

(ii) Report(h1, h2, w1, w2): returns an item e with attributes (h, w), where
h1 ≤ h ≤ h2 and w1 ≤ w ≤ w2, if there is any such e, and returns nil
otherwise.

The data structure consists of a 2-3 tree T with height as the key. At
each internal node v a subsidiary 2-3 tree Sv is stored. The subsidiary tree Sv

uses weight as the key and stores copies of the items located in the subtree
of T rooted at v.

Questions:

(a) The storage used by the above data structure is one of Θ(n), Θ(n log n),
and Θ(n2); which one is it? Justify your answer.

(b) Explain how to perform operation (ii) in O(log2 n) time, and operation
(i) in O(log2 n) time if there is no restructuring of T ; what is the
difficulty if a node in T needs to be split?

Go to the next page

2

Problem. 3 New booklet please. [10 points]
The graph counter problem.

Input: An undirected graph G = (V, E), where each node has a distinct
counter, all initially 0.

Suppose that the degree of each node is at most d.
Repeatedly, r times in all, a counter is selected and incremented by 1

(not necessarily the same counter each time). Whenever a counter reaches
the value 2d, the counter is reset to 0 and the counters at all its neighbors
are incremented by 1 (these increments are in addition to the r increments
mentioned above).

Let I be the total number of increments to the counters—which includes
the r external increments and the internal increments that are associated
with each reset. By a credit argument, or otherwise, show that

I ≤ 2r.

Please understand that I includes all of the contributions of 2d that have
been erased by the resets.

Problem. 4 New booklet please. [10 points]
Let L = {x|x ∈ {a, b, c, d}∗ such that x has equal numbers of a’s and

b’s, and equal numbers of c’s and d’s}.
a. Show that L is not context free.

b. Show that L̄ is context free.

Go to the next page

3

Problem. 5 New booklet please. [10 points]
The genomic designer monster merging problem is this.
Let S = s1, s2 . . . , sm and T = t1, t2, . . . , tn be strings of letters. Let

C[i, j] be a cost function defined on pairs of letters, one from S and one from
T .

The problem is to find the cheapest merge of S and T into a single string
U that contains each letter in S and each letter in T , while maintaining the
order of both the letters from S and of those from T . So for example, if
S = abax and T = gazb, then agabazxb is a merge, as is agazbbax, but
abaxazgb is not because the g follows the z and a that came from T .

The cost of the merge is the sum of the costs of adjacent letters that
come from different strings. So if U has sj and sj+1 as consecutive letters,
there is no charge, but if U has sjtk or tksj as consecutive letters there is a
cost C[sj , tk]. The cost of a merge is the sum of the costs due to all pairs of
consecutive letters in U , where one is from S and one is from T . (The cost
function is symmetric for your convenience.)

a. Give an algorithm to find the cost of the cheapest way to merge S and T ;
a high level recursive algorithmic formulation will suffice.

b. Give a precise operation count, up to constant factors, for an efficient
implementation of the algorithm and give a brief justification for your answer.

Hint. One way to solve the problem is as follows:
Let Merge1(i, j) be the cheapest way to merge the first i letters in S with

the first j letters in T with si as the last letter in the merged string.
Similarly, let Merge2(i, j) be the cheapest way to merge the first i letters

in S with the first j letters in T with tj as the last letter in the merged string.
Now present recursive definitions for Merge1(i, j) and Merge2(i, j). Also

explain how to use these functions to solve the problem. Remember to answer
part b.

[Please note that full credit will be awarded to other solutions that are cor-
rect.]

Go to the next page

4

Problem. 6 New booklet please. [10 points]
The fair and almost balanced path reachability problem (Fab-PR) is the

following.

Instance: A directed graph G = (V, E) with n vertices and m edges, where
each edge e ∈ E is assigned one of the L colors c1, c1, . . . , cL. The input also
identifies a start vertex s and a terminal vertex t, with s, t ∈ V . Finally, the
input specifies a positive integer bound B.

Question: Is there a simple path in G that connects s to t and uses no
more than B edges of any one color?

Show that Fab-PR is NP-Complete.

Big hints

1. Recommendation: in your reduction use Directed Hamiltonian Circuit
(DHC) as the problem known to be NP-Complete. So let G = (V, E) be a
directed graph that is an instance of a DHC problem.

2. Your (recommended) proof would build a corresponding graph H for a
Fab-PR problem that somehow represents the DHC problems for G.

3. An easy way to do that is to build about |V | copies of G that you might
think of as |V | layers.

4. Now build connecting edges that force the Fab-PR path solutions to visit
one vertex in each of the |V | layers.

5. You need to make sure that each vertex in G has just one of its |V | copies
in H visited by the solution path for Fab-PR. This is where you use the
bound B. You might well find a solution with B = 1.

5

Solution to problem 1.

One solution runs as follows.
First, run a strongly connected components algorithm on the graph

(which runs in linear time). This gives us a “component graph,” which is a
DAG, in which the vertices correspond to the strongly connected components
of the original graph.

Now label each vertex in the component graph as either “black” or
“white”: black if the corresponding component in the original graph is non-
trivial (i.e., contains more than one vertex), and white otherwise. Let s̃ (resp.,
t̃) be the vertex in the component graph whose corresponding component in
the original graph contains s (resp., t).

Claim: there is a path from s to t in the original graph that contains a
cycle iff there is a path from s̃ to t̃ in the component graph that goes through
a black vertex. This is easy to prove.

So we have reduced the original problem to that of determining if there
is a path from s̃ to t̃ that goes through a black vertex, where the graph is a
DAG with vertices labeled “black” and “white.” Perform a depth first search
in the DAG, starting at s̃, maintaining two Boolean variables at each vertex
v: one indicates whether t̃ is reachable from v, and the other indicates if t̃ is
reachable from v through a black vertex. It is straightforward to modify the
standard depth-first search algorithm (for a DAG) so that when backing out
of vertex v, these variables are set correctly.

This is certainly not the only approach to solving this problem.

Solution to problem 2.

a. Θ(n log n).
Each level of T stores each data item in one of its subsidiary trees. Thus

the subsidiary trees for one level of T use space Θ(n). But T has Θ(log n)
levels, and hence uses space Θ(n log n) overall.

b. Operation (ii) implementation:
The first step is to search for h1 and h2 in T (or, respectively, their

immediate predecessor and successor if they are not present). Let u and v
be the nodes storing h1 and h2 (or their predecessor and successor). The
search defines two paths Pl and Pr in T from u and w, respectively, to node
v, their least common ancestor. The items with height in the range [h1, h2]
lie between Pl and Pr in T . Then, as a second step, it suffices to search the

6

subsidiary trees for those children of nodes on Pl and Pr that lie between the
two paths. In each subsidiary tree the search is for an item with weight in
the range [w1, w2]. Clearly, any item found has height in the range [h1, h2]
and weight in the range [w1, w2]. (The items with keys h1 and h2, if present,
are also checked.)

A search of a subsidiary tree takes O(log n) time. As Pl and Pr have length
O(log n), there are O(log n) subsidiary trees to search, giving an O(log2 n)
overall search time.

To insert an item e, first locate it by height in T . Then add e to each
subsidiary tree for the nodes on the path to e in T . If there is no restructuring
of T this takes O(log n) time per subsidiary tree, and hence O(log2 n) time
overall.

Unfortunately, if T needs to be rebalanced, the corresponding subsidiary
trees need to be completely rebuilt, for the subsidiary trees are ordered by
weight, but the restructuring of T is based on height. This would appear to
require time linear in the size of the subsidiary trees.
Comment. There are techniques for hiding this cost but they are beyond the
scope of this question, and use a different genre of balanced tree.

Solution to problem 3.

The following credit assignment works. A node is given credits equal to the
value of its counter. A credit will cover the cost of one increment. When
a counter at a node v reaches value 2d, 2 credits are spent on each of v’s
neighbors, one credit for incrementing the neighbor’s counter, and one credit
to provide the additional credit needed by the neighbor. As v has at most d
neighbors, its 2d credits suffice.

An increment of a counter at a node v has a cost of 2 credits. Again,
one credit pays for the increment, and one credit for the increment in v’s
allocated credits.

Thus r external increments provide 2r credits to the system. The above
argument shows that the credits remaining at the nodes equal the sum of
the counters at these nodes, which is a non-negative value. Further all I
increments to the counters, as argued above, are paid for by credits in the
system.

Thus I + number of credits remaining ≤ 2r and hence I ≤ 2r.

Solution to problem 4.

7

Let L = {x|x ∈ {a, b, c, d}∗ such that x has equal numbers of a’s and
b’s, and equal numbers of c’s and d’s}.

First, we want to show that L is not context free. We assume that L is
context free, and derive a contradiction, using the pumping lemma. Let p be
the “pumping constant” for L, and let s = apcpbpdp ∈ L. Then the pumping
lemma says that we can write s = uvwxy such that |vx| > 0, |vwx| ≤ p, and
uviwxiy ∈ L for all i ≥ 0. Because |vwx| ≤ p, the string vwx must consist
of only a’s and c’s, only c’s and b’s, or only b’s and d’s. Take the first case:
only a’s and c’s. In this case, if we “pump up,” the number of a’s or c’s must
increase, while the number of b’s and d’s remains unchanged, so we obtain a
string outside the language, thus arriving at a contradiction. The other two
cases are handled similarly.

Second, we want to show that L̄ is context free. The easiest way to do this
is to design a PDA for L̄, using the power of nondeterminism. The PDA first
nondeterministically guesses whether the number of a’s and b’s are unequal,
or whether the number of c’s and d’s are unequal. For the first guess, the
PDA uses its stack to count the difference between the number of a’s and b’s
it sees as it scans the input (this part of the PDA’s computation is completely
deterministic). The only trick is to use the stack to keep a counter that may
be either positive or negative, using stack symbols “+1”, “−1, as well as 0
(for bottom of stack). The logic of this is fairly straightforward. The PDA
accepts on this branch of the nondeterministic computation iff the counter
is non-zero after all the input is consumed. The logic for the other branch of
the nondeterministic computation is exactly the same (except with c’s and
d’s, instead of a’s and b’s).

Solution to problem 5.

a. Merge1(i, j) = 0, if i = 0 or j = 0.
Merge1(i, j) = min{Merge1(i− 1, j), Merge2(i− 1, j) + C[tj , si]}, oth-

erwise.
Merge2(i, j) = 0, if i = 0 or j = 0,
Merge2(i, j) = min{Merge2(i, j − 1), Merge1(i, j − 1) + C[si, tj]}, oth-

erwise.
The cheapest cost is min{Merge1[m, n], Merge2[m, n]}.

b. To make the recursion efficient requires two m × n lookup tables. The
instructions to fill each table location comprise one comparison, two table

8

reads, and one reference to the C array, which is to say that the work per
location is constant. Total operation count = Θ(mn).
Solution to problem 6.

Claim: Fab-PR is NP-Complete.
Proof: First, we establish that Fab-PR is in NP. To see that this is so, we

simply guess a solution. There must be exactly n− 1 edges in the candidate
solution, and it is straightforward to verify that the edges are in the graph,
form a simple path from s to t, and have no more than B edges of any one
color. There are only polynomially many steps in this process.

Second, we reduce DHC to Fab-PR. Let H = (V, E) be an instance of a
DHC problem with start and finish vertices σ and τ . We can assume that H
has no edges exiting τ since they are useless.

Create a new graph (V +, E+) as follows. V + is comprised of the following
named n distinct copies of V : V (1), V (2), . . . , V (n). For each edge (i, j) in E,
let E+ contain n− 1 distinct copies of the edge: let edge copy h connect the
i in copy V (h) with the j in copy V (h+1).

Now use n − 1 colors named c1, c2, . . . , cn−1. Let the vertices in H be
1, 2, 3, . . . , n with n = τ . For i = 1, 2, . . . , n − 1, let every edge in E+ that
starts from a clone of vertex i have color ci.

Now set B = 1, and let s be the copy of σ in copy 1 of V . Let t be the τ
in copy n of V . So any path from s to t has n − 1 edges. If each edge on a
path P from s to t is required to have a different color, then no vertex in V
has two copies of itself on P , since all edges exiting these vertices must have
the same color. Vertex τ is the one exception to this, but it can only appear
as the last vertex of P . So each vertex appears exactly once on P . Hence any
solution to this Fab-PR problem is a solution to the original DHC problem.
Likewise, it is straightforward to see that if the original DHC problem has a
solution, then the transformed graph has a solution to the Fab-PR problem.

Since the transformation can be executed in polynomial time, the reduc-
tion is complete.

It follows that Fab-Pr is NP-Complete.

9

