
(VERSION WITH ANSWERS)
CORE EXAMINATION

Department of Computer Science
New York University

February 6, 2009

This is the common examination for the M.S. program in CS. It cov-
ers core computer science topics: Programming Languages (PL), Operating
Systems (OS), and Algorithms (ALG). The exam has two parts. The first
part (PL and OS) lasts two and a half hours. The second part (ALG), given
this afternoon, lasts one and one-half hours.

You will be assigned a seat in the examination room.

Use the proper booklet or answer sheet for each question. Each booklet
is marked with the Area and Question number, in the form PL1, PL2, OS1,
OS2, ALG1, ALG2, and ALG3. DO NOT put your name on the exam
booklet or answer sheet. Instead, your exam number must be on every
booklet.

You will be graded according to your exam number, shown on the enve-
lope containing the booklets. Remember your exam number: when grades
are given out, they will be published according to this number, not by name.

Make sure your name and signature are on the envelope. This is the
only place where your name appears. Please include all the booklets inside
the envelope. You can keep the exam.

Good luck!

1



ALGORITHMS PART

Question 1 – please use the Exam Booklet labeled ALG1

Graphs

Suppose G(V, E) is an undirected graph given in the adjacency list rep-
resentation. Let n be the number of nodes and m be the number of edges
in the graph. Recall that a tree is a connected graph that has no cycles.
(Note that such a tree is sometimes called a “free tree”.)

(a) (1 Point) How many edges does a tree with n nodes have?

Answer: n− 1.

(b) (3 Points) In a tree, a node with degree one is called a leaf. What is
the maximum and minimum number of leaves an n node tree can have?
In both cases, you must give an example.

Answer: Maximum is n− 1 for a star graph. Minimum is 2 for a
line graph.

(c) (6 Points) Give an efficient algorithm to detect if G(V, E) is a tree.
What is the running time of your algorithm?

Answer: Pick one node s of the graph and do breadth-first search
from s. BFS partitions the set of nodes reachable from s into layers
L0 = {s}, L1, . . . , Lk. The graph is connected iff all nodes of the
graph are included in these layers. There is no cycle in the graph iff
there is no edge whose both endpoints are in the same layer. Overall
running time is O(m + n).

2



Question 2 – please use the Exam Booklet labeled ALG2

Running Time Analysis

In this question, all the (undeclared) programming variables are integers,
and program blocks are indicated by indentation.

Give the order of the running time for each of the following procedures.
Briefly justify your answers.

(a) (3 Points) Let T1(n) be the running time of the following procedure:

Mystery(n)
s← 1
for i← 1 to n

s← s + 1
for j ← 1 to 1000

for k ← n to n− j
s← s + i + j + k

Answer: T1(n) = O(n) because the two inner loops (on variables
j and k) only has a constant number of iterations.

(b) (3 Points) Let T2(n) be the running time of the following procedure,
where A[1, . . . , n] is a global array of integers.

Puzzle(i, m)
⊲ Input Assertion: (1 ≤ i ≤ i + m ≤ n) and (0 ≤ m)
if (m = 0) return A[i]
if (A[i] > A[i + m])

return A[i+m]+ Puzzle(i, ⌊m/3⌋)
else

return A[i] + Puzzle(i + ⌊m/3⌋ , ⌊2m/3⌋)

Answer: The argument m indicates the size of the subarray
A[i, . . . , i + m] that is potentially used. In each recursive call, the
size of this subarray is reduced to at most 2/3 of the input size. Thus
T2(n) = O(1) + T (2n/3) = O(log n).

(c) (4 Points) Let T3(n) be the running time of the following procedure,

What(n)
x← 0
for i← 1 to ⌊√n⌋

for j ← 1 to ⌊√n⌋
for k ← 1 to ⌊√n⌋ − j + 1

x← x + 1

3



Answer: Each of the three loops have O(
√

n) iterations. Hence
T3(n) = O((

√
n)3) = O(n

√
n).

4



Question 3 – please use the Exam Booklet labeled ALG3

Finding Duplicates

Let A be an array of size n with entries in the set {1, 2, . . . , n − 1}.
Observe that this implies at least one duplicated entry.

(a) [1 point] Give a simple linear-time algorithm to find a duplicated
value. Your algorithm should use no more than O(n) additional storage.
Hint: One way to solve this problem is by adapting an algorithm that
computes a count of each of the numbers {1, . . . , n− 1} in the data set.

Answer: Count the number of entries with value i using an array
B of size n − 1 initialized to zero. If B[i] = 2, then i is duplicated.
Storing B requires O(n) additional space.

(b) (1 Point) Assume now that no more than additional constant space
can be afforded but that the array A can be modified. Give a simple
algorithm with average-case running time O(n log n) to find a duplicated
value.

Answer: Use quicksort. Then scan the sorted array, looking for two
consecutive entries that are duplicated.

(c) (2 Points) In this question alone, it is assumed that exactly one entry is
duplicated. Give a simple linear-time algorithm to determine the dupli-
cated value, without creating an additional array and without modifying
the original array, using the sum of the entries.

Answer: Sum all the entries and compare to S = n(n + 1)/2.

(d) (2 Points) For any array index i, let A2[i] denote A[A[i]] and more
generally Ak[i] = A[Ak−1[k]] for k ≥ 2.

Show that there exist positive integers i and k, 0 < i+ k ≤ n, such that
Ai[n] = Ai+k[n].

Answer: Ak[n] takes its values in {1, 2, . . . , n− 1}, thus, there is at
least one repetition in the sequence A1[n], A2[n], . . . , An[n].

(e) (2 Points) For i and k as in the previous question, we can see that

Ai[n] = Ai+k[n], Ai+1[n] = Ai+k+1[n], · · · , Ai+q[n] = Ai+k+q[n].

Let q be the smallest integer such that i + q is a multiple of k. Let
u = i + q, show that u ≤ n and A2u[n] = Au[n]. Hint: observe that
Au+pk[n] = Au[n] for any non-negative integer p.

5



Answer: The hint is straightforward by iteration from Au[n] =
Au+k[n]. One of i, i + 1, . . . , i + k − 1 is 0 modulo k. So, choose q
(0 ≤ q < k) such that i + q is 0 modulo k. Also i + k ≤ n by the
previous part, thus u = i + q ≤ n.

(f) (2 Points) Show that the following is the pseudocode of an algorithm
returning a duplicated value in linear time, without creating an addi-
tional array and without modifying the original array. HINT: You need
can assume the results from the previous sections, even if you did not
prove them.

1 x← A[n]; y ← A[A[n]]
2 while (x 6= y)
3 do x← A[x]; y ← A[A[y]]
4 x← n
5 while (x 6= y)
6 do x← A[x]; y ← A[y]
7 returnx

Answer: By part (d), the first loop takes no more than u ≤ n steps.
The second loop finds the first v such Au+v[n] = Av[n], and by part
(e), this takes no more than n steps.

6


