
(VERSION WITH ANSWERS)
CORE EXAMINATION

Department of Computer Science
New York University

February 2, 2007

This is the common examination for the M.S. program in CS. It covers
core computer science topics: Languages and Compilers, Operating Systems,
and Algorithms. The exam has two parts. The first part lasts three hours
and covers the first two topics. The second part, given this afternoon, lasts
one and one-half hours, and covers algorithms.

Use the proper booklet or answer sheet for each question. Each booklet
is marked with the Area and Question number, in the form PL&C1, PL&C2,
PLC&C3, OS1, OS2, ALGS1 (this question has an answer sheet and not a
booklet), ALGS2, ALGS3. Use the appropriate booklet for each question.
DO NOT put your name on the exam booklet. Instead, your exam number
must be on every booklet.

You will be graded according to your exam number, shown on the enve-
lope containing the booklets. Remember your exam number: when grades
are given out, they will be published according to this number, not by name.

Make sure your name and signature are on the envelope. This is the
only place where your name appears. Please include all the booklets inside
the envelope. You can keep the exam.

Good luck!

1

Programming Languages, Compilers and
Operating Systems Questions

Question 1 – please use the Exam Booklet labeled PL&C1

Polymorphism in Java: Java’s platform libraries support basic I/O through
the java.io package. More specifically, input is modeled as reading from a
stream, with character-based input streams all extending the abstract base
class Reader. Output is modeled as writing to a stream, with character-
based output streams all extending the abstract base class Writer. Concrete
example classes include

• FileReader and FileWriter to access a file,

• StringReader and StringWriter to access a string,

• BufferedReader and BufferedWriter to access another Reader or
Writer through a buffer.

Unless otherwise noted, keep your answers to 3 sentences or less. Longer
answers will be ignored.

A) (2 Points) What is the primary benefit of using inheritance this way?

Answer: The common base classes Reader and Writer specify con-
tracts that must be implemented by all concrete subclasses. As a result,
any subclass of Reader can be used where a Reader is the declared class
and any subclass of Writer can be used where a Writer is the declared
class. 2

B) (2 Points) Drawing on the classes listed above, give an example for this
use of inheritance.

Answer: The constructors for BufferedReader take a Reader as their
first argument and, consequently, can provide buffered access to any

subclass of Reader. Similarly for BufferedWriter. 2

C) (2 Points) Besides generics, Java provides another construct to express
functionality shared between several concrete classes. In one word, what
is that construct?

Answer: Interfaces. 2

D) (2 Points) What are the primary two differences between abstract base
classes and the second construct?

Answer: An abstract base class can implement methods, while an in-
terface cannot. A concrete class can inherit only one abstract base class
but many interfaces. 2

2

E) (2 Points) Since Reader and Writer are abstract base classes instead of
the second construct, what functionality cannot be expressed for input
and output streams?

Answer: It is impossible to implement a class that is both an input
and output stream, since a class can only inherit from one class. For
example, RandomAccessFile provides methods to read and write a file
but is neither an input nor an output stream. As a result, it cannot be
used with other readers and writers. 2

3

Question 2 – please use the Exam Booklet labeled PL&C2

Recall that a regular language is one that can be described by a regular
expression. We can also use regular grammars to define regular languages.
Recall that regular grammars have productions of the form N → t
or N → tN ′ where N, N ′ are non-terminals and t is a terminal. A
context-free grammar, which is more general than a regular grammar, can
still generate a regular language. For example, the grammar

S → a | b | SS

is not a regular grammar, yet it generates the regular language (a + b)+.
Consider the context-free grammars presented under items (A)—(E) below.
For each of these grammars, please provide:

1. A verbal description of the language defined by the grammar, such as
“all words of the form aibj , such that 0 < i ≤ j”.

2. An answer to the question “is the defined language regular?”

3. In case the language is regular, provide a regular expression, an au-
tomaton, or a regular grammar which defines the same language.

A) (2 Points)
S → b | aS | Sc

Answer: This grammar defines the regular language a∗bc∗. 2

B) (2 Points)
S → b | aScc

Answer: This grammar defines the non-regular language {anbc2n |
n ≥ 0}. 2

C) (2 Points)
E → OO
O → a | Ea | EaE

Answer: This grammar defines the regular language (aa)+. 2

D) (2 Points)
E → T | E + T
T → D | T ∗D
D → 0 | 1

Answer: This grammar defines the regular language (0 | 1)((+ | ∗)(0 | 1))∗.
2

E) (2 Points)
A → Aa | Ba
B → Bb | b

Answer: This grammar defines the regular language b+a+. 2

4

Question 3 – please use the Exam Booklet labeled PL&C3

A) (5 Points) Consider the following functions in Scheme:

(define sum

(lambda (x y)

(+ x y)))

(define prod

(lambda (x y)

(* x y)))

Write a function called itlist that takes two arguments, the first of which
is either sum or prod and the second of which is a list of integers. itlist

sum L should return the sum of the integers in L and itlist prod L should
return the product of the integers in L. If L is empty, then the result
should be 0. For example:

=> (itlist sum ’(1 2 3 4))

;Value: 10

=> (itlist prod ’(1 2 3 4))

;Value: 24

=> (itlist prod ’())

;Value: 0

Answer:

(define itlist

(lambda (f l)

(cond

((null? l) 0)

((null? (cdr l)) (car l))

(else (f (car l) (itlist f (cdr l))))

)

)

)

B) (5 Points) Suppose we want to achieve something similar using inher-
itance in Java. We want to create two classes called Sum and Prod,
each with a method called apply that takes an array of integers as its
argument and computes the sum or product respectively. For example:

int[] nums = { 1, 2, 3, 4 };

Sum s;

Prod p;

int val;

val = s.apply(nums); // Computes 10

val = p.apply(nums); // Computes 24

5

Design Sum and Prod in such a way that they both inherit from a single
class Base containing the method apply and an abstract method f that
takes two integers and returns an integer. Sum and Prod should not
contain any data members and should implement only the method f.
Write the complete Java code for all three classes.

Answer:

abstract class Base {

public abstract int f(int x, int y);

public int apply(int[] array) {

if (array.length == 0) return 0; // If array is empty return 0

int result = array[0]; // Store the first member in the result

// Perform the function f on the rest of the elemtents

for(int i = 1; i < array.length; i++)

result = f(result, array[i]);

return result; // Return the result

}

}

class Sum extends Base {

public int f(int x, int y) {

return x + y;

}

}

class Prod extends Base {

public int f(int x, int y) {

return x*y;

}

}

6

Question 4 – please use the Exam Booklet labeled OS1

Memory Management: Recall that

1B = 1 byte. 1s = 1 second.

1KB = 1 kilobyte = 1024 bytes. 1ms = 1 millisecond = 1/1000 seconds.

1MB = 1 megabyte = 1024 kilobytes. 1us = 1 microsecond = 1/1000 milliseconds.

1GB = 1 gigabyte = 1024 megabytes.

Your numerical answers do not need to be simplified. For example an
answer of 108/(215 + 27) is fine.

Consider an operating system with both segmentation and demand pag-
ing. The OS uses 40-bit virtual addresses and is running on a byte-addressable
computer with 16GB of real memory. The page size is 16KB and each page
table entry (PTE) is 4B. A process can have up to 512 segments and each
segment table entry (STE) is 8B.

Assume that all page tables and segment tables of all active processes
must be memory resident. Since demand paging is supported, it is not

necessary for the actual pages of the program to be memory resident.

Answer: PRELIMINARY REMARKS: Before answering any of the
specific questions, I should note that with demand paging the size of a
segment or process is limited by the available virtual memory and is not
directly limited by the available physical memory. The indirect physical
memory limitation is that the page and segment tables plus at least one
page must fit in memory.

Since the page size is 16KB or 214 bytes and the system is byte-addressable,
the offset of a byte within a page requires 14 virtual address bits; thus 14
(typically low order) bits of the 40-bit virtual address give this offset.

Also note that support for 256 = 29 segments requires that the segment
number occupies 9 (typically high order) bits.

This leaves 40-(14+9)=17 bits for the third component of the virtual
address, the page number within the segment, i.e., a segment can have up
to 217 pages.

My solution uses the simpler segmentation method, namely the one
found in Multics; you could also use the more complicated method found in
the Intel pentium. 2

A) (6 Points)

What is the size, in bytes, of the largest possible segment?
What is the size, in bytes, of the largest possible page table?
What is the size, in bytes, of the largest possible segment table?
What is the total size, in bytes, of all segment and page tables used by
a single largest-possible-process?
What is the maximum number of largest-possible-processes that can be
active at one time?

7

Answer: From the above, each segment can have up to 217 pages or
217214 = 231 bytes.

With segmentation and (demand) paging, each segment has a page table.
Since the largest segment has 217 pages, the largest page table has 217

PTEs or 2174 = 219 bytes.

Since a process can have up to 256 = 29 segments, the largest segment
table has 29 STEs or 298 = 212 bytes.

The largest-possible-process has 29 segments each with 217 pages. So we
have 1 largest possible segment table and 29 largest possible page tables
for a total size in bytes of

212 + 29219 = 212 + 228

The maximum number of these process that can fit is the floor of the
quotient of the size of physical memory by the minimum total physical
memory needed for one of these processes. The numerator is 16GB or
234 bytes. The denominator is the size of the tables plus one page. So
the answer is

⌊

234

212 + 228 + 214

⌋

2

B) (2 Points)

Assume that all I/O is performed by a disk that requires 10ms to start
an I/O (this is the seek plus the rotational latency) and then transfers
at a rate of 16MB/s. A large I/O of contiguous memory requires only
one 10ms start up. Each page and segment table is contiguous, but two
tables of the same process are not contiguous with one another. In order
to suspend and later reactivate a process, all its page tables and segment
tables must be written out and subsequently read back in.
How long would it take to suspend and reactivate a largest-possible-
process?

Answer:

We have 256 PTs and 1 ST to write out and read back. Thus we need
to start 2(256+1)=514 I/Os, which requires 514(10ms)=5.14s.

As computed above, the total table size, which we must write out and

read back is 212 +228 bytes. At a transfer rate of 16MB/s, this requires

2

(

212 + 228bytes

16MB/s

)

=
213 + 229

224
s =

(

32 + 2−11
)

s

This is about 32.0005s. So the total time is about 5.14s+32.0005s =
37.1405s. 2

C) (2 Points)

8

A new striped disk system is proposed that increases the start up time
from 10ms to 15ms, but also increases the transfer rate by a factor of n,
from 16MB/s to (16n)MB/s.
What is the smallest value of n for the new disk to be faster than the
old when suspending a largest-possible-process?

Answer: At 15ms the start up time rises to (1.5)5.14s=7.71s. At
(16n)MB/s the transfer time decreases to about 32.0005

n
s.

For this to be beneficial we need 7.71 + 32.005
n

< 37.1405, which occurs
when n is 2 (you could solve for the fractional value if you prefer). 2

9

Question 5 – please use the Exam Booklet labeled OS2

Page Replacement Algorithms: A reference string S is a sequence of
page numbers. Inputs to a page replacement algorithm are such reference
strings, viewed as an abstraction of a sequence of memory references during a
program execution. E.g., consider the reference string S0 = (701203042303),
which we also write as

S0 = (7012; 0304; 2303)

for ease of readng, using semicolons indicate substrings of length 4, with the
last substring of length ≤ 4. Thus S0 corresponds to a sequence of memory
references, first to page 7, next to page 0, then page 1, etc.

A) (5 Points)

Suppose we have a page cache that can hold three frames. Initially,
the frames hold no pages so the first reference is a page fault. How
many page faults does the reference string S0 incur, assuming each of
the replacement algorithms below? You must show your calculations by
displaying the contents of the frames after each page request.
(i) Assume the FIFO (first-in, first-out) algorithm.
(ii) Assume the LRU (least recently used) algorithm.
(iii) Assume the OPT (optimal page-replacement) algorithm.

Answer: (i) FIFO has 10 faults. We just list the pages in the 3 frames
AFTER each page referene:

7, 70, 701, 201,−, 231, 230, 430, 420, 423, 023,−

The ”−” indicates a HIT when the contents of the 3 frames are un-
changed.

NOTE: there is a subtlety here. If a page is in the cache, and it is
referenced (so we get a hit), do we regard the page as having a updated
time of entering the cache? FIFO does not update (e.g., after the first
hit in this example, the cache contains the pages 2, 0, 1, but page 0 is
still regarded as having been brought into cache before pages 2 and 1.
Hence it was evicted in the next reference. If we use a updated time of
entry, we would be doing LRU!

(ii) LRU has 9 faults.

7, 70, 701, 201,−, 203,−, 403, 402, 432, 032,−

(iii) OPT has 7 faults. Here are the pages stored in frame cache:

7, 70, 701, 201,−, 203,−, 243,−,−, 203,−

NOTE: there are four alternative answers for part(iii). For instance,
the fourth snapshot (201) could have been replaced by 702 since we

10

could evict either page 1 or page 7 at this point. Similarly, the last two
snapshots (203) could have been replaced by 043. the last frame cache
of 203 may be replaced by 043.
2

B) (2 Points) What is Belady’s Anomaly? Name an algorithm that exhibits
Belady’s Anomaly.

Answer: It is the phenomenon where increasing the number of size of
the page cache can lead to more page faults. The FIFO algorithm for
page replacement exhibits Belady’s Anomaly.

Additional Remarks: Consider the page request sequence S1 = (0, 1, 2, 3; 0, 1, 4, 0; 1, 2, 3, 4)
where the FIFO page replacement algorithm is used. If the FIFO queue
has size 3, we get 9 page faults. If the FIFO queue has size 4, we get 10
page faults. Stack Algorithms (e.g., LRU) will not have this anomaly.
2

C) (3 Points) The OPT algorithm is un-implementable, and LRU is too
expensive to implement in hardware. So in practice, we use some simple
approximation of LRU algorithm by using hardware to keep track of two
bits with each page: the M- and R-bits. First explain what these are.
Then describe any page replacement algorithm that uses these bits.

Answer: The M-bit is the “modified bit”. It is unset initially, but it set
when a page in memory is modified. The R-bit is the “referenced bit”,
and is set whenever the page is referenced for reading or writing. When
a page is first brought into memory, it’s R-bit will be set. However, the
R-bit can decay and is periodically unset by the hardware (typically at
each clock interrupts).

One algorithm is to view (R,M) (not (M,R)!) as a binary number between
0 and 3. Thus all pages are put in one of four categories, and we evict
a page randomly chosen from the smallest non-empty category. This
is called the NRU (Not Recently Used) algorithm (Tanenbaum p.216).
Another algorithm is the Second Chance Algorithm which is based on
FIFO, but when the page at the front of queue has its R-bit set, we do
not evict it. Instead, we give it a second chance by unsetting its R-bit,
and putting it at the back of the queue. We then go to the next page in
the queue to try to evict it, and so on. 2

11

