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Programming Languages and Compilers

PL&C: Question 1

Suppose you are building a C compiler and the calling convention is such that, when a procedure
is called, the new stack frame should look like (assuming the stack grows down):

paramN

...

param2

param1

return address

dynamic link <------- Frame Pointer

local1

local2

...

localN <------- Stack Pointer

(Note: This is typically what C compilers on the x86 architecture do)

Suppose your compiler is compiling two procedures, as follows:

void foo(int x, int y, int z)

{

int a, b;

a = x+y;

b = a+z;

}

void bar()

{

foo(3,4,5);

}

A. Write the assembly code (x86 if possible, if not, any assembly code you like - the syntax
doesn’t have to be perfect) that your compiler might generate for the entire foo() procedure.
Assume that your compiler doesn’t do any optimization.

Answer: Here is x86 assembly code in AT&T (Unix) style:

_foo:

pushl %ebp ;; save old frame pointer (dynamic link)

movl %esp, %ebp ;; set frame pointer to current stack pointer

subl $8, %esp ;; allocate room on stack for a and b

movl 12(%ebp), %eax ;; load y
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addl 8(%ebp), %eax ;; add x

movl %eax, -4(%ebp) ;; store in a

movl 16(%ebp), %eax ;; load z

addl -4(%ebp), %eax ;; add a

movl %eax, -8(%ebp) ;; store in b

addl $8, %esp ;; remove a and b from stack

popl %ebp ;; restore old frame pointer

ret ;; return from procedure

B. Write the assembly code for the procedure call to foo() in bar().

Answer:

pushl $5 ; push third argument

pushl $4 ; push second argument

pushl $3 ; push first argument

call _foo ; call foo

addl $12,esp ; remove the arguments

C. On x86 machines, the ebx, esi, edi and ebp registers are generally “callee save”, while eax,
ecx and edx are typically “caller save”. What does this mean?

Answer:

A ”callee save” register is a register that, when a procedure call occurs, the called procedure
is responsible for making sure that the contents of the register upon exit from the procedure
is the same as it was upon entry to the procedure. That is, if the called procedure wants to
overwrite the register, it must save the contents (e.g. on the stack) before it does so, and
then restore the contents prior to returning.

A ”caller save” register is a register that, if the calling procedure wants the contents of the
register to be preserved during the function call, the calling procedure has to save the register
before the call and restore the register after the call completes. The called function is free to
overwrite a ”caller save” register as it likes.

D. In order to demonstrate the meaning of “callee save” and “caller save”, add code to the C
example above (i.e. foo() and bar()) that would require your compiler to save registers. Then,
write out the assembly code corresponding to the C code you’ve added.

Answer:

int foo(int x, int y, int z)

{

int a, b;

a = x+y;

b = a+z;

return b; // adding a return value here

}
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int bar()

{

return foo(3,4,5) + foo(6,7,8) + 9; // a large expression here

}

Your compiler might try to keep the value of the large expression in bar() in a register as it is
being computed. Depending on which register it chooses to hold the value being computed,
that register may have to be saved prior to a call to foo(). For example, the code for computing
the large expression in bar() might be:

pushl $5 ; push third argument

pushl $4 ; push second argument

pushl $3 ; push first argument

call _foo ; call foo - result returned in eax

addl $12,esp ; remove the arguments

movl eax,ecx ; copy returned value to ecx

pushl ecx ; SAVE ecx (caller-saved register)

pushl $6 ; push third argument

pushl $7 ; push second argument

pushl $8 ; push first argument

call _foo ; call foo - result returned in eax

addl $12,esp ; remove the arguments

popl ecx ; RESTORE ecx

addl eax, ecx ; add the return value of the second call

addl $9, ecx ; add 9

mov ecx, eax ; move the sum to eax in order to return it
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PL&C: Question 2

A. Describe briefly the purpose of an iterator over a collection.

Answer: An iterator is an object that encapsulates the process of traversing a collection. The
state of an iterator indicates the current element of the collection that is being examined. Because
the iterator is an object, it can be stored and passed as parameter, which allows the traversal to
be resumed, or continued by another operation at a later time.

B. What are the basic operations that a useful iterator must provide?

Answer: An iterator is linked to a given collection, and therefore the constructor for an iterator
must designate the collection over which the iterator will operate. In addition, we need at least
a way of advancing the iterator to the next element in a collection, and a predicate to determine
whether there are any elements left. So the minimal set is the equivalent of:

Init ( );

Next ();

Previous ();

Done ();

If the collection is ordered, it might make sense to define an insertion operation (insert new
element after the one currently designated by the iterator), deletion, etc. Finally, we need to get
from the iterator to the element that it currently designates (in C++ this is often a dereference).

C. Suppose that we need to manipulate a set collection, that is to say an unordered collection
without duplicates. Operations on a set include membership, element insertion, element deletion,
and equality.

We need to provide different representations for these collections (bit vectors, hash-tables, linked
lists, trees, etc.). We want to provide a general-purpose equality routine that takes two sets of any
two representations, and returns True if the two sets contain the same elements. In the language
of your choice, explain how you would organize your types or classes so that you have to write this
equality routine only once, regardless of how many different representations are at hand.

Answer: Given that our set collection can have different representations, we want to define an
interface (or an abstract class) that defines the required operations. Any explicit representation
must implement this interface. In Java, this might be:

interface Seti {

boolean Member (Object X);

void Insert (Object X);

Seti Union (Seti S);

int Size ();

}

Similarly, iterators over these various collections must implement a common interface:

interface Iterator {
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void Init ( );

Object Next ( );

boolean Done ( );

Object Elem ( );

};

Given that the code for an iterator depends on the internal structure of the collection, for each
implementation of a collection we declare an inner class that implements the Iterator interface, and
an operation newIterator that constructs an instance of that class.

D. In the language of your choice, using iterators, write the body of the equality routine. (You
may assume that the iterators exist; you do not have to write them. Also, it is not important that
the equality routine be efficient, just that it be correct.)

Answer: The body of the equality routine can be written as follows:

Boolean Equals (Seti S) {

if (Size() != S.Size()) return False;

iterator I1 = S.newIterator();

I1.Init( );

while (! I1.Done()) {

Object obj = I1.Elem ();

if (!Member (obj)) return False;

I1.Next ();

}

return True;

}
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PL&C: Question 3

A. Write a function reverseEach in scheme that will take a list of lists and will reverse each one.
You may assume the existence of the reverse and map functions. For example if there is a
list x

((a b c d) (1 2 3 4))
then (reverseEach x) will return

((d c b a) (4 3 2 1)).

B. Write a function that creates a set of pairs of an atom with each element of a list. For example
if there is a list

(define y ’(4 5 6 7 8))
then (createPair ‘x y) will generate

((x 4) (x 5) (x 6) (x 7) (x 8))

C. Now create a function crossProduct that will generate every possible combination of ordered
pairs from two lists. For example, if we define z as follows:

(define z ’(my your))
then (crossProduct y z) will generate

((4 my) (4 your) (5 my) (5 your) (6 my) (6 your) (7 my) (7 your) (8 my) (8 your))

Answers:

(define reverseEach (lambda (x) (map reverse x)))

(define createPair (lambda (x y)

(cond ( (null? y) ‘())

(else (cons (list x (car y)) (createPair x (cdr y))))

)

)

)

(define crossProduct (lambda (x y)

(cond ((null? x) ‘())

(else (append (createPair (car x) y) (crossProduct (cdr x) y)))

)

)

)
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Operating Systems

OS 1: Process Scheduling

Part A

Consider the following set of processes, each of which performs no I/O (i.e., no process ever blocks).
All times are in milliseconds. The CPU time is the total time required for the process. The creation
time is the time when the process is created. So P1 is created when the problem begins, P2 is created
16 milliseconds later, and P3 is created 12 milliseconds after P2.

Process CPU Time Creation Time
P 40 0
Q 32 16
R 8 28

Assume RR (Round Robin) scheduling with a quantum of 12 milliseconds. Context switching
from one process to ANOTHER takes 0.1ms, but “switching” from a process to itself requires
ZERO time. Assume that starting the initial process at time zero takes ZERO time. At what
time does each process finish? Show your work.

Solution

Part A was easy, everyone should have done well. P finished at 72.5; Q finished at 80.6; and R
finished at 56.3.

interval run ready list time remaining
at end at end

0.0–12.0 P 28—32—8
12.0–24.0 P Q 16—32—8
24.1–36.1 Q P R 16—20—8
36.2–48.2 P R Q 4—20—8
48.3–56.3 R Q P 4—20—0
56.4–68.4 Q P 4— 8 —0
68.5–72.5 P Q 0— 8 —0
72.6–80.6 Q 0— 0 —0
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Part B

For part B you are observing a system that uses a variation of RR scheduling, which is sometimes
called Selfish Round Robin (SRR) and is defined below. For this part we make the simplifying
assumption that no process ever blocks or terminates so the only states encountered are ready and
running. We also assume (unlike part A) that context switching always takes ZERO time.

SRR is a preemptive scheduling algorithm characterized by two non-negative values a and b.
When a process is created it is given an initial priority of 0 (zero) and its priority increases at a
rate of a per millisecond. When a process has the highest priority in the system (others may have
equal priority) the process becomes “accepted” and its priority now increases at a rate of b per
millisecond. The accepted processes (note that they all have the same priority) are run using a RR
scheduler with a quantum of q. When a process becomes accepted it is inserted at the rear of the
RR queue.

The system we are observing has three processes P , Q, and R. If two or three processes are to
be inserted in the RR queue simultaneously, the tie-breaking rules are that P is inserted before Q
or R, and Q is inserted before R.

The system is turned on at time zero and we are able to monitor all process creation and
context switching events. During the first 30ms (ms abbreviates milliseconds) the following events
occurred.

Time Event

10ms Process R created
10ms Process R runs
14ms Process Q created
16ms Context switch: process Q runs
18ms Process P created
18ms Context switch: process R runs
20ms Context switch: process Q runs
22ms Context switch: process R runs
24ms Context switch: process P runs
26ms Context switch: process Q runs
28ms Context switch: process R runs
30ms Context switch: process P runs

Determine a possible set of values for a, b, and q (there is more than one correct answer). Be
sure to show you work carefully.

Solution

¿From the last few events we see that q=2ms. Calculating values for a and b is not as easy.

When R is created, it is the only process so is immediately accepted and starts running with an
initial priority of 0, which increases at the rate of b per millisecond. Q is created 4ms later at which
point R has priority 4b and Q has priority 0. Since Q is initially not accepted, its priority grows at
the rate of a per millisecond. Assume Q becomes accepted at time 14 + x. Since Q starts running

9



at the next quantum (16ms), 0 ≤ x ≤ 2. At time 14 + x the priority of Q is xa and R has priority
(x+4)b. Since P and Q have equal priority at time 14+x, xa = (x+4)b or a/b = (x+4)/x. Since
x ≤ 2, a/b ≥ (2 + 4)/2 = 3.

Since P runs at 24ms it must have been accepted (and hence entered the ready queue) no latter
than 22ms. Since P didn’t run at 22ms, it must not have been accepted at 20ms. So P became
accepted at a time 18 + y with 2 < y ≤ 4. At time 18 + y P has priority ya and R has priority
(y + 8)b. Since all the priorities are equal when P is accepted, ya = (y + 8)b or a/b = (y + 8)/y.
Since 2 < y ≤ 4, (4 + 8)/4 ≤ a/b < (2 + 8)/2 or 3 ≤ a/b < 5. Combined with a/b ≥ 3 from the
preceding paragraph we see that a/b = 3. So one solution is a = 1 and b = 3.
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OS 2: I/O Systems

Consider a computer, which consists of a CPU and an I/O device D connected to main memory
M via a shared bus. The only I/O operation accessible to user processes is read, invoked using a
system call, which can be implemented using one of two strategies:

The polling strategy involves the following sequence of operations: (1) D’s device driver writes
the command and any arguments to control registers in D; (2) the driver repeatedly reads a status
register on D, waiting for D to complete the requested operation and store the results in its data
registers; (3) the driver reads the contents of D’s data registers and writes them into M.

The interrupt strategy proceeds as follows: (1) D’s device driver writes the command and any
arguments to control registers in D; (2) D performs the requested operation, stores the results in
its data registers, and interrupts the CPU upon completion causing control to get passed to D’s
driver; (3) the driver reads the contents of D’s data registers and writes them into M.

There is only one user process running on this computer, so the OS does not switch to another
process while processing a system call. The latency of an I/O system call is primarily determined by
the cost of crossing from user mode to kernel mode and vice-versa, the time taken by D to perform
the requested operation, the cost of processing an interrupt, and the bus interactions involving the
CPU, device D, and memory M. All other operations (non-memory CPU actions) incur negligible
cost.

Answer the following questions, assuming the following costs:

user-kernel (and kernel-user) crossing: 50 units
writing a command to D: 20 units
reading a status register on D: 20 units
time taken by D to perform requested operation: 200 units
interrupt processing: 100 units
reading a word from D’s data registers: 1 unit
writing a word to main memory: 1 unit

1. If the maximum amount of data that can be read using a single I/O command (one interaction
with the device) is 100 words, what is the time that a user process call to read 400 words
takes to return using the polling strategy? What portion of this time is available for the OS
to perform other activities?

2. If the interrupt strategy was used instead, what is the time taken for the system call in part
(a), and what portion of this time is available for other activities?

Your solution in each case should provide the expression for computing the times of interest and
clearly identify the different contributors (it is okay to just write the expression without simplifying
it).

Solution

1. The overall sequence of events that happen when using the polling strategy is as follows: (1)
the user program issues a system call to read 400 words; (2) the system call code invokes the

11



driver code four times, each time reading 100 words from the device; (3) the system call ends,
returning control to the user program.

Therefore, since steps (1) and (2) each involve one user-kernel or kernel-user crossing,

Tcall = 50
︸︷︷︸

user−kernel

+ (4 × Tdriver) + 50
︸︷︷︸

kernel−user

where Tdriver is the time required by the driver code to perform one interaction with the device
(which results in 100 words read into memory). Following the steps in the polling strategy
sequence described above,

Tdriver = (20 + 200 + 20)
︸ ︷︷ ︸

command, operation, status

+ 100 × (1 + 1)
︸ ︷︷ ︸

read/write contents

Although the driver repeatedly checks the status, only the last one (indicating completion of
the I/O) adds to the time required since the others (indicating the I/O is still in progress)
are overlapped with the device operation.

Combining the two expressions above,

Tcall = 1860 units

Since the driver code busy-waits for the completion of the I/O operation, so no portion of
the overall system call time is available for the OS to perform other activities.

2. When the interrupt strategy is used instead, the only difference is in the computation of the
Tdriver time. In particular, following the sequence of steps for the interrupt strategy described
above,

Tdriver = (20 + 200 + 100)
︸ ︷︷ ︸

command, operation, interrupt

+ (100 × (1 + 1)
︸ ︷︷ ︸

read/write;contents

Thus,
Tcall = 2180 units

Of this time, the CPU can be used for performing other activities during the 800 time units

when the device is completing its operation.
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