
CORE EXAMINATION

Department of Computer Science

New York University
February 4, 2005

This is the common examination for the M.S. program in CS. It covers
core computer science topics: Languages and Compilers, Operating Systems,
and Algorithms. The exam has two parts. The first part lasts three hours
and covers the first two topics. The second part, given this afternoon, lasts
one and one-half hours, and covers algorithms.

Use the proper booklet or answer sheet for each question. Each booklet
is marked with the Area and Question number, in the form PL&C1, PL&C2,
PLC&C3, OS1, OS2, ALGS1 (this question has an answer sheet and not a
booklet), ALGS2, ALGS3. Use the appropriate booklet for each question.
DO NOT put your name on the exam booklet. Instead, your exam number
must be on every booklet.

You will be graded according to your exam number, shown on the enve-
lope containing the booklets. Remember your exam number: when grades
are given out, they will be published according to this number, not by name.

Make sure your name and signature are on the envelope. This is the
only place where your name appears. Please include all the booklets inside
the envelope. You can keep the exam.

Good luck!

1

Basic Algorithms

Question 1

Answer this question on the answer sheet for question 1, rather than in a
booklet.

Part 1.

For each of the following pairs of functions, write a letter a–d in the corre-
sponding box, as follows:

(a) if f = O(g) and g 6= O(f),

(b) if f = O(g) and g = O(f),

(c) if f 6= O(g) and g = O(f),

(d) if f 6= O(g) and g 6= O(f).

f(n) = n2, g(n) = n2 + 10n

f(n) = 2n, g(n) = 3n

f(n) = n2, g(n) = n3

f(n) = log2 n, g(n) = log3 n

f(n) = n3, g(n) = n2(log2 n)10

f(n) = 107n + 108, g(n) = n/109

f(n) = n1.5(log2 n), g(n) = n1.6

f(n) = nlog
2
3, g(n) = 3log

2
n

f(n) =

n∑

i=1

i, g(n) = n1.5

f(n) = 10
√

log
2

n, n0.001

Solution to Question 1, part 1. b, a, a, b, c, b, a, b, c, a.

2

Question 1, part 2.

In the following, you are presented with descriptions of recursive algorithms.
For each, indicate the rate of growth of the running time by writing one of
the letters a–g in the corresponding box to specify one of the following
functions:

(a) log n

(b) n

(c) n log n

(d) n2

(e) n2 log n

(f) n3

(g) 2n

On inputs of size n, the algorithm spends a constant amount of time,
plus the time needed to recursively solve one subproblem of size n/2.
Assume n is a power of two.

On inputs of size n, the algorithm spends time Θ(n), plus the time
needed to recursively solve one subproblem of size n − 1.

On inputs of size n, the algorithm spends time Θ(n), plus the time
needed to recursively solve two subproblems, each of size n/2. Assume
n is a power of two.

On inputs of size n, the algorithm spends a constant amount of time,
plus the time needed to recursively solve two subproblems, each of size
n − 1.

On inputs of size n, the algorithm spends time Θ(n2), plus the time
needed to recursively solve four subproblems, each of size n/2. Assume
n is a power of two.

Solution to Question 1, part 2. a, d, c, g, e.

3

Question 2

A vertex v in directed acyclic graph (DAG) G = (V,E) is said to be the root
if for every vertex w in the graph (other than v), there is at least one path
in G from v to w. Present an efficient algorithm to determine if a DAG G
has a root. What is the operation count of your algorithm (up to constant
factors) as a function of the number of elements in the graph? Justify your
answer.

Please note: this question has three parts.

a) An algorithm is requested.

b) The running time (up to constant factors) is required.

c) A brief justification of your answer for part b is required.

Solution to Question 2 Solution 1. Sequence through the edges to com-
pute the indegree of each vertex. This approach requires initializing each
count to zero and incrementing the count for vertex z for each edge from
y to z. Then the counts are post-processed to see if there is just one that
remains at zero; if so the vertex with count zero is the root of the DAG.

Solution 2. Do not work that hard. Just process the each edge (y, z)
by marking vertex z. Then check to see if exactly one vertex w remains
unmarked; again, w is the root in this case.

Solution 3. Use topolological sort to get a possible root z. Then run a
DFS from z to see if all of the vertices are reached. If so, z is the root.

b) In each case, the run time is Θ(|V | + |E|).

c) Justifications: Each of the algorithms processes each edge just once,
(or twice, for Solution 3), and has an initialization and/or post-processing
phase that is either linear in the number of vertices or (as already mentioned
for the post-processing for Solution 3) linear in |V | + |E|.

Question 3

Let G be a directed graph on the vertices {1, 2, 3, . . . , n}, and let Dis[i, j]
contain the length of the edge (i, j) if it exists, and have the value ∞ if no
such edge is in G. Suppose that every cycle in G has edges with lengths
that have a positive sum.

The standard All-Pairs-Shortest-Paths problem is to compute, for all
vertex pairs i, j the length of the shortest path from i to j. The usual
algorithm used to solve this problem is the Floyd-Warshall algorithm. For
this problem you are to compute, for all vertex pairs i, j, the lengths of the

4

shortest and second shortest paths from i to j. (Note: If there are two
different paths from i to j with the same shortest value, then the shortest
and second shortest path lengths are both this best value. We also note
that two paths are different if they are not the identically same sequence of
edges.)

For convenience, you can use the function min{∗}, which returns the
smallest value in its sequence of arguments so that, for example, min{2, 7, 1, 8} =
1.

Likewise, you can use secondmin{∗}, which return the second smallest
value in its sequence of arguments so that, for example, secondmin{2, 7, 1, 8} =
2, and secondmin{2, 7, 1, 8, 1} = 1.

Solution to Question 3 We want to compute two n × n matrices A,B
such that for all i, j, A(i, j) and B(i, j) are the lengths of the shortest path
and the second shortest path from i to j.

It follows that A(i, j) ≤ B(i, j) ≤ ∞. Also B(i, j) = ∞ iff there is at
most one path from i to j.

For k = 0, 1, . . . , n, define the matrix Ak where Ak(i, j) is the length of
the shortest path whose intermediate nodes are restricted to come from the
set {1, . . . , k}. Thus A(i, j) = An(i, j). The matrix Bk is defined similarly.

The algorithm can now be given. The main part of the algorithm is a
triply-nested loop. In the kth iteration of the outermost loop, the matrix A is
a hybrid between Ak−1 and Ak, and similarly for B. We also write min2{...}
for the operation that picks the second smallest value in a multiset. We may
assume Dis(i, i) = 0.

INITIALIZATION:
For i = 1 to n

For j = 1 to n
A(i, j) = Dis(i, j); B(i, j) = ∞

MAIN LOOP:
For k = 1 to n

For i = 1 to n
For j = 1 to n

A(i, j) = min{A(i, j), A(i, k) + A(k, j)}
B(i, j) = min2{A(i, j), B(i, j),

A(i, k) + A(k, j), B(i, k) + A(k, j), A(i, k) + B(k, j)}

CORRECTNESS. The correctness of A is standard from Floyd-Warshall.
The correctness of B is similarly justified: the second shortest path either
passes through k or it does not. If not, it must be A(i, j) or B(i, j). If it

5

does, it must be one of the 3 sums in the min2 expression. It is easy to give
examples showing that we need all five terms in the min2 expression.

6

