
ALGORITHMS EXAMINATION
Department of Computer Science

New York University
December 17, 2007

• This examination is a three hour exam.

• All questions carry the same weight.

• Answer all of the following six questions. Please be aware that to pass
this exam you need to provide good answers to several questions; it is
not sufficient to obtain partial credit on each question.

• Please print your name and SID on the front of the envelope only (not
on the exam booklets).

• Please answer each question in a separate booklet, and number each
booklet according to the question.

• Read the questions carefully. Keep your answers legible, and brief but
precise.

• Assume standard results, except where asked to prove them.

Good luck!

1

Question 1

Let G = (V,E) be an undirected graph with vertex set V and edge set
E. A partition of a graph is a partition of V into two disjoint sets, i.e.,
V = V ′ ∪ V ′′ and V ′ ∩ V ′′ = ∅. An edge is said to be cut by a partition, if
one of its endpoint lies in V ′ and the other in V ′′. Show that there always
exists a partition that cuts at least |E|/2 edges (i.e. half of the total number
of edges in the graph).

Solution. A probabilistic argument runs as follows. Choose a random cut,
i.e., for each vertex, assign it to V ′ with probability 1/2. Now calculate the
expected number of edges that cross the cut. For each edge, it is easy to
calculate that it crosses the cut with probability 1/2, and so by linearity of
expectation, the expected number of edges that cross the cut is |E|/2. It
follows that some partition must attain the bound |E|/2.

Go To the Next Page

2

Question 2

Let {x1, x2, . . . , xn} be boolean variables. A literal is either a variable or its
negation, i.e. xi or xi. A clause is logical OR of one or more distinct literals.
The size of a clause is the number of literals in it. A 2CNF formula φ is a
collection of m clauses (possibly with repetition),

φ = (C1, C2, . . . , Cm),

where each Ci is of size at most two.
Let MAX-2SAT be the following decision problem: Given a pair (φ, k),
where φ is a 2CNF formula with n variables and m clauses, and k is a
positive integer such that k ≤ m, decide whether there exists an assignment
to the n boolean variables that satisfies at least k clauses.
Show that MAX-2SAT is NP-complete, by giving a polynomial time reduc-
tion from VERTEX COVER. Recall that VERTEX COVER is a problem
where, given an undirected graph G = (V,E), with |V | = n, and given a
positive integer ` ≤ n, one needs to decide whether G has a vertex cover of
size at most `. A vertex cover is a subset V ′ ⊆ V such that for every edge
in E, at least one of its endpoints is included in V ′.
Hint: To every vertex in the graph, assign a boolean variable which is in-
tended to be TRUE if and only if the vertex is included in the vertex cover.
Add clauses of size two corresponding to the edges, and clauses of size one
corresponding to the vertices. The clauses corresponding to edges may need
to be repeated a number of times.

Solution. Let (G = (V,E), `) be an instance of the VERTEX COVER
problem, with V = {1, 2, . . . , n}, and m = |E|. Introduce a boolean variable
xi corresponding to vertex i. The intention is that xi is TRUE iff vertex i
is in the vertex cover. For an edge e = (i, j) ∈ E, let Ce denote the clause

Ce := xi ∨ xj .

Note that Ce is satisfied iff either xi or xj is TRUE, i.e. iff e is covered by
the intended vertex cover.

Let C1
e , C

2
e , . . . , C

2n
e be clauses that are copies of (the same) clause Ce.

Let φ be be the 2SAT formula defined as

φ :=
n⋃

i=1

{xi}
⋃
e∈E

{C1
e , C

2
e , . . . , C

2n
e }.

3

Note that φ has a total of n + 2mn clauses. Let k := n + 2mn − `. We
will show that there exists a vertex cover of size at most ` iff there is an
assignment to the n boolean variables that satisfies at least k clauses.

For the forward direction, let V ′ be a vertex cover of size at most `.
Consider the boolean assignment where xi is TRUE iff i ∈ V ′. As observed
before, since V ′ is a vertex cover, all the clauses Cj

e are satisfied for e ∈
E, 1 ≤ j ≤ 2n. A clause xi is satisfied unless i ∈ V ′ and there are at most `
such i’s. Therefore this assignment satisfies at least (n− `) + 2mn clauses.

For the reverse direction, assume that there is a boolean assignment that
satisfies at least n + 2mn − ` clauses. First we claim that all the clauses
Cj

e must be satisfied. This is because otherwise, since these clauses occur
as 2n copies of the same clause, at least 2n clauses will be unsatisfied and
2n > n ≥ `. Now assume that all the edge clauses are satisfied, which
implies that at most ` vertex clauses are not satisfied. Let V ′ be the set of
vertices i for which xi = TRUE. Clearly |V ′| ≤ `, and V ′ is a vertex cover
since all the edge clauses are satisfied.

Go To the Next Page

4

Question 3

Let T = (V,E) be an arbitrary (not necessarily binary) tree of n vertices
where each vertex v contains a number v.val .

Let the root of T have depth zero, and define

Goodness(T) =
∑
v∈V

2depth(v)v.val ,

so that Goodness(T) is the sum of weighted vertex values where the weight-
ing for v.val is 2 raised to the exponent that is the depth of v in T .

Now let A[1..n] be an array of n numbers that could be positive or
negative.

For any tree T of n vertices, let T (A) assign the values in A[1..n] to V so
that v.val is A[j], where v is the jth vertex reached in a preorder traversal
of T . That is, T (A) is formed by the code:

global A[1..n];
global preid ← 1;
procedure DFS (T) ;

T.val ← A[preid];
preid ← preid + 1;
for each child v of T do

DFS (v)
endfor;

Of course, there are many trees T of n vertices. Present a recursive dy-
namic programming formulation that computes the greatest Goodess value
for trees with data A. Code is unnecessary as is the use of lookup tables,
which would be used to make the solution efficient.
Hint: Observe that T can be viewed as a tree U with the same root as T
plus a rightmost subtree W that hangs off of that root. So U is the entirety
of T , apart from the rightmost subtree of the root. In this case, the elements
of W comprise a suffix of A, which is to say that if W has k vertices, then
its data elements are the sequence A[n− k + 1], A[n− k + 2], . . . , A[n].

Solution. Let Good(i, j) be the greatest goodness among all trees built
with the preorder values in A[i..j]. Then

Good(i, j) =

{
A[i] if i = j;
maxi<k≤j{Good(i, k − 1) + 2Good(k, j)} otherwise.

5

Go To the Next Page

6

Question 4

You are to design an algorithm that determines whether or not the language
of a given deterministic finite automaton (DFA) is infinite.

The alphabet for the DFA is {0, 1}. If the DFA has n states, it is encoded
using three arrays: D0[1..n], D1[1..n], and F [1..n]. Here, it is assumed that
the states are 1, . . . n, and that state 1 is the start (or initial) state. The
arrays D0 and D1 encode the transition function: if the machine reads a 0
in state i and moves to state j, then D0[i] = j, and if the machine reads
a 1 in state i and moves to state k, then D1[i] = k. The array F encodes
the set of final (or accepting) states: if i is a final state, then F [i] = 1, and
otherwise, F [i] = 0.

Design an efficient algorithm that determines if the language of bit strings
accepted by such a DFA is infinite. It should be as efficient as possible
(ignoring constant factors in the running time).

Solution. (Sketch) Covert the DFA to a graph, find SCC’s, and look for a
path from the SCC containing the start state top the SCC containing a finial
state which goes through some non-trivial SCC, which consists of either two
or more nodes, or a single node with a self loop (DFS/BFS + graph cloning
easily takes care of all this).

Comment: since this is already pretty easy, I don’t tell them to shoot
for a O(n) running time.

Go To the Next Page

7

Question 5

Let G = (V,E) be directed graphs with edge weights w : E → R. For
vertices u and v, the distance from u to v, denoted δ(u, v), is the weight
of the least-weight path from u to v, if such a path exists. There are two
exceptional cases:

• if there is no path from u to v, then δ(u, v) := +∞;

• if there is a path from u to v that contains a negative-weight cycle,
then δ(u, v) := −∞.

Design and analyze an algorithm that takes G and w as input, and computes
δ(u, v) for all pairs u, v ∈ V . Your algorithm should run in time O(|V |3).

HINT: the standard Floyd-Warshall algorithm assumes that the graph con-
tains no negative-weight cycles; show how to modify this algorithm appro-
priately.

Solution. Number the nodes 1..n. For k = 0..n, define δk(i, j) to be the
distance from i to j via paths with intermediate nodes in {1..k}. Assume
w(i, j) :=∞ if (i, j) is not an edge.

By inspection, we have:

δ0(i, i) = min(0, w(i, i))

and
δ0(i, j) = w(i, j) for i 6= j

Also, for k = 1..n, we have

δk(i, j) = min
{
δk−1(i, j), δk−1(i, k) + (δk−1(k, k))∗ + δk−1(k, j)

}
,

where x∗ := −∞ if x < 0, and x∗ := 0, otherwise; moreover, the following
convention applies to addition with ∞:

(+∞) + (−∞) = +∞.

From this, one can just read off an O(n3)-time algorithm.

Go To the Next Page

8

Question 6

An addition gate is a boolean gate with 3 input bits and 2 output bits,
representing the sum (modulo 2) of the input bits, and the carry bit. An
addition circuit is a boolean circuit built out of addition gates, with “fan
out” restricted to one. The circuit may have several input bits and several
output bits. You are to prove that when such a circuit is evaluated, the
number of carries generated by the addition gates is equal to the number of
1-bits in the input minus the number of 1-bits in the output, regardless of
the structure of the circuit.

To make the problem more precise, the truth table for an addition gate
is as follows, where c is the carry, and s the sum:

c s

0 0 0 0 0
0 1 0 0 1
0 0 1 0 1
0 1 1 1 0
1 0 0 0 1
1 1 0 1 0
1 0 1 1 0
1 1 1 1 1

An addition circuit can be viewed as a directed acyclic graph, where each
edge (i.e., “wire”) is labeled i (an “input wire”), c (a “carry wire”), or s (a
“sum wire”), and where vertices (i.e., “gates”) are one of three types:

Input: no incoming edges, and one outgoing edge labeled i;

Addition: three incoming edges, and two outgoing edges, labeled c and s;

Output: one incoming edge, and no outgoing edges.

The incoming edge of an output gate is called an “output wire” (but it is
also either an input, carry, or sum wire).

If we assign bit values to each input wire, then since the graph is acyclic,
we may evaluate the circuit, assigning to each wire a bit value, using the
above truth table to determine the values assigned to the outgoing carry
and sum wires on each addition gate, computed as a function of the values
assigned to the incoming wires. If I be the number of 1-bits assigned to
input wires, C is the number of 1-bits assigned to carry wires, and O is the
number of 1-bits assigned to output wires, then the statement you are asked
to prove is: C = I −O.

See the following page for an example.

9

Example. In the following circuit, we have I = 3, C = 2, and O = 1.

c s

c s

01 11

1

1

0

00

Solution. Place $1.00 on each input bit that is a one, and no money on
each zero. Then there are enough dollars so that the dollars can be moved to
the outputs with each one covered by a dollar, each zero covered by nothing,
and an extra dollar left over whenever a carry is generated. So the number
of leftover dollars, which is the difference between the number of ones in the
inputs and the number of ones in the answer is exactly the number of carries
generated by the adder circuits.

10

