
Written Qualifying Exam
Analysis of Algorithms

(Fall 2005)

• This is a three hour exam.

• All six questions carry the same weight; however, to pass the exam, you need to provide good answers
to several questions: it is not sufficient to obtain partial credit on each question.

• Print your name and SID on the front of the envelope only (not on the exam booklets).

• Answer each question in a separate booklet, and number each booklet with the corresponding question
number.

• Read each question carefully. Keep your answers legible, and brief but precise.

• Assume standard results: cite standard theorems as necessary, and use standard algorithms as subrou-
tines where appropriate.

• Good luck!

1

1. You are given an array A[1 . . . n] of items. An item x is called a majority element if it appears more
than n/2 times in A. Clearly, a majority element, if it exists, must be unique.

You are to design an algorithm that determines if A has a majority element, and if so, determines its
value. However, your algorithm should observe the following restrictions:

• The array A is stored in read-only memory.

• Your algorithm should use at most O(log n) words of additional (read/write) memory (each word
can hold numbers bounded by O(n), and the output of your algorithm should be an index into A
that indicates a position at which the majority element is located).

• Your algorithm should run in time O(n log n), assuming comparisons of items take time O(1).

• Your algorithm should be deterministic.

Solution. Divide and conquer: see if either A[1 . . . n/2] or A[n/2+1 . . . n] has a majority, and if so test
if either of these is a majority for A[1 . . . n].

2

2. Consider the following recursive, probabilistic algorithm A. It takes as input list L of n items x1, . . . , xn.

if n ≤ 1 then
return

else
for i← 1 to 3 do

initialize an empty list Li

for j ← 1 to n do
flip a fair coin: if it comes up “heads,” append xj to Li

flip a fair coin: if it comes up “heads,” recursively call A on input Li

What is the expected running time of this algorithm? Give a careful justification of your claim.

Solution: O(n). For j = 0, 1, . . . , let Xj be the number of items that are processed at level j. It is not
hard to show that E[Xj+1] = (3/4)E[Xj], and if X =

∑
j≥0 Xj , it follows that E[X] = O(n).

3

3. Given two strings x, y ∈ Σ∗, a shuffle of x and y is a string z such that

z = u1v1 · · ·ukvk,

for some strings ui, vi ∈ Σ∗ with u1 · · ·uk = x and v1 · · · vk = y. That is, a shuffle is formed by
concatenating symbols from x and y, while preserving the relative order of symbols in each of the
strings x and y. For example, a1bc23 is a shuffle of abc and 123 while a2bc13 is not.

Also recall that for strings z, w ∈ Σ∗, we say that z is a subsequence of w if z = z1 · · · zk, w = w1 · · ·w`,
and there exist indices i1 < · · · < ik such that z1 = wi1 , . . . , zk = wik

.

Design and analyze an algorithm that takes three strings as input, x, y, w ∈ Σ∗, and determines if some
shuffle z of x and y appears as a subsequence of w. Your algorithm should run in time O(|x||y||w|).

Solution: Dynamic programming. Suppose x = x1 · · ·x`, y = y1 · · · , zm, and w = w1 · · ·wn. The
subproblems are P (i, j, k), meaning that some shuffle of xi · · ·x` and yj · · · ym appears as a subsequence
of wk · · ·wn. The recursion is given by

P (i, j, k) ⇐⇒ (i = ` + 1 ∧ j = m + 1)
∨ (i ≤ ` ∧ k ≤ n ∧ xi = wk ∧ P (i + 1, j, k + 1))
∨ (j ≤ m ∧ k ≤ n ∧ yj = wk ∧ P (i, j + 1, k + 1))
∨ (k ≤ n ∧ P (i, j, k + 1)).

The corresponding subproblem graph has O(`mn) vertices, and each vertex has degree O(1).

4

4. Consider the two languages:

A = {ambncm+n : m,n ∈ Z≥0} and B = {ambncmn : m,n ∈ Z≥0}.

(a) Show that A is not regular.

(b) Give a context free grammar for A.

(c) Show that B is not context free.

Solution.

(a) Let p be the pumping length from pumping lemma. Set s = apbpc2p ∈ A. The pump handle must
be contained in the “a region” of s, so pumping up or down changes the number of a’s, but not
the number of b’s or c’s, so we get a string outside of A.

(b) Here is a CFG:
S → aSc, S → T, T → bTc, T → ε.

(c) Let p be the pumping length from pumping lemma. Set s = apbpcp2
. The pumping handles can

span only two consecutive regions, and each individual handle must lie in one region (otherwise,
we pump our way out of a∗b∗c∗). If we only pump in the a and b regions, then the number of
c’s will clearly be wrong. So we must pump in the b and c regions, and both handles must be
non-empty. Suppose one pump handle consists of k b’s and the other consists of ` c’s, where
0 < k < p and 0 < ` < p. Pump up once: we should have p(p + k) = p2 + `, which implies pk = `,
which implies ` is a multiple of p, which is impossible.

5

5. The maximum revenue problem is this. You are given a directed graph G = (V,E), where each node
in the graph has a certain amount of money sitting on it. More precisely, vertices v ∈ V are labeled
with values p(v) ∈ Z≥0, where p(v) represents the number of dollars sitting on vertex v. You are also
given vertices s, t ∈ V . The goal is to start at s and follow edges in G to reach t, picking up as much
money along the way as you can. You may visit the same node twice, but once you have picked up
the money at that node, it is gone. Define M(G, p, s, t) to be the maximum number of dollars you can
pick up on any path from s to t (paths need not be simple).

(a) Design and analyze an algorithm to compute M(G, p, s, t). Your algorithm should run in time
O(|V |+ |E|).

(b) Explain how to enhance you algorithm so that it computes and prints out a path (any path)
from s to t with M(G, p, s, t) dollars on it. Full credit goes for an O(|V |2)-time algorithm, and
partial credit for an O(|V ||E|)-time algorithm. Just a very high-level English description of your
algorithm will do — do not write detailed pseudo-code.

Solution: For part (a), first solve the problem on a DAG: this can be done directing using the known
algorithm DAG-SHORTEST-PATHS in CLRS, converting vertices to edges and negating the p-values;
alternatively, do a topological sort, and process nodes in reverse topological order (starting at t and
ending at s), and computing the max of the sums. For general graphs, compute SCCs.

For part (b), we need to compute a path that sweeps out each SCC. Chose any vertex v in the
component C and precompute paths from v to all w ∈ C and from all w ∈ C to v. This will take time
linear in |C| plus the edges of G connecting vertices in C. Now glue together paths, always returning
to v.

It turns out that in the worst case, the shortest path that sweeps out an SCC may contain Ω(|C|2)
vertices, so you really can’t do better (well, you can do it in linear time if you print out paths using a
compact representation).

6

6. Consider the following modification to the maximum revenue problem stated in Question 5, called the
maximum profit problem. The setup is the same as in Question 5, except now edges e ∈ E have
costs c(e) ∈ Z≥0. For any path from s to t, define its net value to be the sum of all money sitting on the
distinct vertices in the path (again, the money is gone once you take it), minus the cost off all the edges
in the path (you are charged c(e) dollars each and every time you cross edge e). Let N(G, p, c, s, t) be
the largest net value of any path from s to t.

Your task is to show that computing N(G, p, c, s, t) is NP-complete, or more precisely, that the language

L = {〈G, p, c, s, t, k〉 : N(G, p, c, s, t) ≥ k}

is NP-complete.

Hint: this can be solved using a very simple reduction.

Solution: restriction to HAMPATH . Given an instance 〈G, s, t〉 of the Hamiltonian path problem,
construct an instance 〈G, p, c, s, t〉 of the maximum profit problem as follows: set costs on edges to 1
dollar, put n dollars on every vertex, and set k = n2 − n + 1 (or alternatively, 2 dollars per vertex
suffices, with k = n + 1).

7

