
CORE EXAMINATION : SOLUTIONS

Department of Computer Science

New York University
January 16, 2004

Basic Algorithms

Question 1

Suppose you have a data structure and corresponding algorithms that im-
plement a “lookup table” of objects. Assume that objects are ordered by
some abstract comparison operator “<”, and that it is only through this op-
erator that objects are accessed by the algorithms. Suppose that the data
structure supports the following operations:

• Create an empty table T — assume that this operation performs no
comparisons.

• Create a table T containing a single object x — assume that this
operation performs no comparisons.

• Insert an object x into a table T .

• Search for an object x in a table T .

• Merge two tables T1, T2, creating a new table containing all the objects
in both tables T1 and T2 — assume that this operation performs O(n1+
n2) comparisons of objects, where ni is the number of objects in table
Ti, i = 1, 2.

• Output all the objects in a table T in sorted order — assume that this
operation performs no comparisons.

1. Design and analyze an algorithm for the following problem. Your
algorithm should take as input tables T1, . . . , Tm, and should output a
table T containing all the objects in tables T1, . . . , Tm. Your algorithm
should use O(n log m) comparisons of objects, where n = n1 + · · ·+nm

and ni is the number of objects stored in table Ti for i = 1, . . . ,m. Be
sure to argue that your algorithm is correct and that it runs in the
stated time bound.

2. Professor Smith has announced an algorithm to solve the problem
in part (1) using O(n log log m) comparisons. Can Professor Smith’s
claim possibly be true? Why or why not?

1



Solution to part (1). This is just a simple application of divide and conquer.
Split the tables into two subsets, T1, . . . , Tk and Tk+1, . . . , Tm, where k =
⌊m/2⌋, recursively merge T1, . . . , Tk into T ′ and Tk+1, . . . , Tm into T ′′, and
then merge T ′ and T ′′ into T using the built-in “merge” operation. The
depth of the recursion tree is O(log m). The number of comparisons done
at each level of the recursion tree is O(n).

Solution to part (2). This is impossible, as it would violate the Ω(n log n)
lower bound for comparison-based sorting. Indeed, using Prof. Smith’s algo-
rithm, we could sort x1, . . . , xn using O(n log log n) comparisons as follows:

(i) create n tables T1, . . . , Tn, where Ti contains xi, using the built-in
“create” operation;

(ii) apply the Smith merging algorithm to merge T1, . . . , Tn into a single
table T ;

(iii) output the contents of T in sorted order, using the built-in “output”
operation.

Steps (i) and (iii) use no comparisons, while step (ii) uses just O(n log log n)
comparisons.

Question 2

Design and analyze an efficient algorithm for the following problem. The
input consists of two strings, s[1 . . . m] and t[1 . . . m], of letters ‘a’, . . . , ‘z’.
Also included in the input are two “cost vectors,” C[1 . . . m] and D[1 . . . n], of
non-negative numbers. The goal of your algorithm is to make the two string
s and t equal by deleting some letters from both strings, while minimizing
the deletion cost, which is defined as follows: if your algorithm deletes letters
from s at positions i1, . . . , ip and letters from t at positions j1, . . . , jq, then
the deletion cost is defined to be

C[i1] + · · ·C[ip] + D[j1] + · · · + D[jq].

In words, the cost of deleting any single letter depends on its position with
the string s or t, as determined by the cost vectors C and D, and the total
deletion cost is defined to be the sum of the costs of deleting individual
letters.

To simplify matters, it is sufficient if your algorithm just returns the cost
of the minimal cost deletion sequence that makes s and t equal, and need
not return the deletion sequence itself. Make sure you argue the correctness
of your algorithm, and state and prove a bound on its running time in terms
of m and n.

2



Hint: use dynamic programming, defining the following variables. If
s has length m and t has length n, define E(i, j), for i = 0, . . . ,m and
j = 0, . . . , n, to be the minimal cost of making s[1 . . . i] equal to t[1 . . . j] by
deleting letters. Write down equations defining E(i, j) in terms of E(i−1, j),
E(i − 1, j − 1), E(i, j − 1), C[i], and D[j], considering the following cases:

• i = 0 and j = 0;

• i > 0 and j = 0;

• i = 0 and j > 0;

• i > 0, j > 0, and s[i] = t[j];

• i > 0, j > 0, and s[i] 6= t[j].

Solution. For i = 0, . . . ,m and j = 0, . . . , n, we have

E(i, j) =



































0 if i = 0 and j = 0;
E(i − 1, j) + C[i] if i > 0 and j = 0;
E(i, j − 1) + D[j] if i = 0 and j > 0;
min{E(i − 1, j − 1),

E(i − 1, j) + C[i], E(i, j − 1) + D[j]} if i > 0, j > 0, and s[i] = t[j];
min{E(i − 1, j) + C[i], E(i, j − 1) + D[j]} if i > 0, j > 0, and s[i] 6= t[j].

In the fourth case, we have a choice between keeping both s[i] and t[j], or
deleting one of them — in an optimal solution will never delete both s[i]
and t[j] when they are equal; however, since the deletion cost is position
dependent, it may make sense to delete one of them. As for the running
time, we have O(mn) variables, and each them takes time O(1) to evaluate,
and so the total running time is O(mn).

Question 3

Certain partial orderings can be represented using an interval representa-
tion. In an interval representation, each element A of the partial order is
associated with a pair of integers [Al, Ah]. The rule is that A < B in the
partial ordering if and only if Ah < Bl. For example, the partial ordering
illustrated below can be represented using the intervals A → [0,2]; B → [0,4];
C → [3,8]; D → [5,6]; E → [7,8]; F → [9,10]

F

ED

C

B

A

3



A. (3 points) Prove that there does not exist any interval representation
for the following partial ordering:

A -------> B

C -------> D

B. (2 points) Design a Θ(N log N) algorithm for computing a topological
sort from an interval representation of a partial ordering.

C. (5 points) Design a Θ(N2) algorithm for the following problem: The
input is a partial ordering on N objects, expressed as an N×N Boolean
matrix M , where M [u, v] = T if u is constrained to precede v. The
desired output is an interval representation for the partial ordering, if
one exists. (Hint: Use a graph whose nodes are the proposed bounds
of the intervals, Al and Ah.)

For example, the input corresponding to the figure above would be the
matrix

A B C D E F

A: F F T T T T
B: F F F T T T
C: F F F F F T
D: F F F F T T
E: F F F F F T
F: F F F F F F

Solution:

A. Since A precedes B, we must have Ah < Bl. Since C precedes D, we
must have Ch < Dl. But then, if Ah ≤ Ch, then Ah < Dl, so A would
be constrained to precede D, and if Ah > Ch, then Ch < Bl, so C
would be constrained to precede B.

B. For each element X, pick a value X.val between Xl and Xh. Sort the
elements in increasing order of X.val. If U is constrained to precede
V , then U .val must be less than V .val.

C. Construct a graph G whose nodes are the lower and upper bounds of
each elements, and whose arcs are defined as follows:

{ for each pair of elements U,V,

if (M[U,V]) then construct an arc from U.upper to V.lower;

else if M[V,U] then construct an arc from V.upper to U.lower;

else { /* U and V are unordered */

4



construct an arc from U.lower to V.upper;

construct an arc from V.lower to U.upper;

}

Then do a topological sort on G, and label each node with the index
in the topological sort.

5


