
To appear in an IEEE VGTC sponsored conference proceedings

Dynamic Map Labeling
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Abstract— We address the problem of filtering, selecting and placing labels on a dynamic map, which is characterized by continuous
zooming and panning capabilities. This consists of two interrelated issues. The first is to avoid label popping and other artifacts
that cause confusion and interrupt navigation, and the second is to label at interactive speed. In most formulations the static map
labeling problem is NP-hard, and a fast approximation might have O(n logn) complexity. Even this is too slow during interaction, when
the number of labels shown can be several orders of magnitude less than the number in the map. In this paper we introduce a set
of desiderata for “consistent” dynamic map labeling, which has qualities desirable for navigation. We develop a new framework for
dynamic labeling that achieves the desiderata and allows for fast interactive display by moving all of the selection and placement
decisions into the preprocessing phase. This framework is general enough to accommodate a variety of selection and placement
algorithms. It does not appear possible to achieve our desiderata using previous frameworks.
Prior to this paper, there were no formal models of dynamic maps or of dynamic labels; our paper introduces both. We formulate a
general optimization problem for dynamic map labeling and give a solution to a simple version of the problem. The simple version is
based on label priorities and a versatile and intuitive class of dynamic label placements we call “invariant point placements”. Despite
these restrictions, our approach gives a useful and practical solution. Our implementation is incorporated into the G-Vis system which
is a full-detail dynamic map of the continental USA. This demo is available through any browser.

Index Terms—Map labeling, dynamic maps, human-computer interface, label placement, label selection, label filtering, label consis-
tency, computational cartography, GIS, HCI, realtime, preprocessing
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1 INTRODUCTION

In computational map labeling [27, 30] the issue is to apply general
cartographic principles for map labels in an efficient and automatic
fashion. In most algorithmic treatment, label placement is posed as
a global optimization [16]—e.g., place the maximum number of la-
bels without overlap, given a set of alternative locations for each label.
Such problems are typically NP-hard (e.g., [17, 11]) and approxima-
tions or heuristics become essential. In such a context, an O(n logn)
solution would be considered very fast, although most solutions are
considerably worse [16].

In this paper we are interested in dynamic maps, which are charac-
terized by support for continuous zoom (change of scale) and contin-
uous pan (change of region of interest). Labels in dynamic maps must
be placed at interactive speed. Since the number of labels in the entire
map can be several orders of magnitude more than the number that
will be shown in the current view area, even “fast” O(n logn) static
solutions are inadequate. (In our map of the USA we have over 12
million labels.) Furthermore, static maps and dynamic maps play dif-
ferent roles for users. A primary goal with static maps is to maximize
information content. For a limited edition tricentennial anniversary
map of colonial America, we should try to find a globally optimal la-
bel placement. A basic purpose of dynamic maps, on the other hand, is
navigation, a term we use to capture a variety of tasks, such as search-
ing for a particular location or for the most scenic route between two
points. In such tasks labels are useful as navigation markers as well
as for information content. For markers in a dynamic environment it
is crucial to avoid behavior that is distracting or jarring, such as labels
popping or moving about in unexpected ways. In other contexts re-
searchers have sought “frame-coherency” [2] or “temporal continuity”
[7]. We use the term consistency to capture these ideas and more.

Let’s informally consider four desiderata for dynamic label con-
sistency. As far as we know, no previous work has achieved these
desiderata. In the following, placement refers to the location, size
and orientation chosen for a label, and selection refers to the decision
whether to show a label or not.

(D1) Except for sliding in or out of the view area, labels should
not vanish when zooming in or appear when zooming out. This cap-
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tures the usual expectation that strictly more features get labeled as we
zoom in, and strictly fewer features get labeled as we zoom out. It
ensures that labels do not appear, disappear and then re-appear under
monotonic zooming. This is similar to the “monotonicity property”
in [28, 26]. In some cases we prefer a less restricted version of this
desideratum, where we might want, for example, a country label to
disappear as we zoom in to street level detail.

(D2) As long as a label is visible, its position and size should change
continuously under the pan and zoom operations.

(D3) Except for sliding in or out of the view area, labels should not
vanish or appear during panning. If (D2) is satisfied, then (D3) can be
satisfied by making the decision to select a label a function of scale.

(D4) The placement and selection of any label is a function of the
current map state (scale and view area). In particular, it does not
depend on the history of how we arrived at that state. As will be de-
scribed later, under our algorithm placement and selection are func-
tions of scale alone. In that case, the dynamic map appears like a col-
lection of statically generated maps, one for each scale, even though
the labeling is in fact dynamically computed.

Let’s see how these rules can be violated with a naive dynamic la-
beling solution. As noted above, the number of labels (or the number
of features to be labeled) in the entire map is much larger than the
number in the current view area. So for interactive speed we need to
introduce a label filtering step, which quickly reduces the number of
labels that must be considered. For example, we could retrieve just
those labels that intersect the current view area, or we could drop all
local street names if we are zoomed out far enough. Our naive solu-
tion becomes this: do the label filtering, and then run a static labeling
algorithm on the reduced set of labels. Figure 1 shows how desiderata
(D1) and (D3) can be violated with this approach. Notice that impos-
ing a global priority order on the labels doesn’t help. The source of the
problem—the fundamental stumbling block for dynamic labeling—is
that from frame to frame the labeling is done on a different set of labels
and/or a different set of label conflicts.

Contributions of this paper. In this paper we present a dynamic
labeling solution that satisfies our consistency desiderata, operates at
interactive speeds, and generates a high quality labeling. An essential
component of our solution is a dynamic labeling framework that guar-
antees consistency and interactive speed, and that is general enough
to incorporate many different algorithms for the actual selection and
placement of labels.

What is this framework? The issue is to solve the three problems of
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Fig. 1. Violations of (D1) under zooming in (a), and (D3) under panning
in (b). In both cases, label priority is A > B > C. Initially C is visible. As
we zoom out/pan left, C disappears because it conflicts with B. Then C

reappears when B disappears because of its conflict with A.

filtering, selection and placement of labels at interactive speeds, sup-
ported by preprocessed data structures. Conventionally, it seems best
to first filter the labels to a reasonably small set (based on region of
interest and/or scale), then select a subset of these labels, and finally
place the selected labels. This was Petzold’s approach (see Section 2).
But our above examples suggest that it would be difficult to achieve
consistency this way, even with label priorities. Indeed, our solution
uses an “inverted sequence”: we first place all the labels, then se-
lect from the placed labels. These steps are done in the preprocessing
stage. Finally we use filtering during the interaction phase, to merely
retrieve the precomputed selection and placement.

This unconventional sequence leads to a useful and practical dy-
namic labeling solution. It does, however, limit the scope of our solu-
tion to labels that don’t “slide around” during panning. This is because
we determine, during the preprocessing phase, a placement for each la-
bel that is a function of scale. So, for example, a label for a long road
cannot slide along the road to stay within the view area as the user
pans. Under our approach we can give the illusion of a single static
map at each scale, and we (subjectively) see this as adequate, or even
preferable, in a typical dynamic map. We can handle long roads by
placing several labels along the road—precisely what would be done
in a high quality paper map.

Two screenshots of our implementation appear in Figure 2, show-
ing the same location at two different scales. This implementation is
incorporated into our open-source G-Vis System [31, 5], a full detail
dynamic map of the continental USA based on the publicly available
Tiger data [25]. Our labeling demo is available on the internet [13].

Prior to this paper, there were no formal models of dynamic maps,
nor of dynamic labels. In order to initiate a systematic study, we in-
troduce simple versions of these concepts. We formulate a dynamic
labeling optimization problem, and show that a natural version of it is
NP-complete. However, we give an efficient solution to a version of
the problem that relies on label priorities. We further introduce a sim-
ple but versatile class of dynamic label placements called invariant
point placements.

In the next section we will review the related work in this area.
Section 3 introduces our dynamic labeling framework, and Section 4
gives a formal model. Section 5 covers some practical considerations
for implementing our approach, and we conclude in Section 6. In
the appendix we prove the NP-completeness of the simple dynamic
labeling optimization problem.

2 RELATED WORK

Cartographic principles for labeling maps are laid out in [15, 32].
Starting in the 1980’s, static label placement algorithms began to ap-
pear [14, 1, 12, 8, 9, 29, 16]. In the 1990’s a number of techniques were
developed for interactive labeling; a survey of this work was given by
Fekete and Plaisant[10]. For example, with excentric labeling [10], all
features in a circular neighborhood of the mouse are labeled by list-
ing the labels vertically to the right and left of the neighborhood, and
drawing lines from each label to its associated feature. More recent

Fig. 2. New York street map, zoomed out and zoomed in

work in this vein includes boundary labeling [6].

Our interest is in producing a labeling that at any given point in time
looks like a static labeling, but that adapts to a changing viewpoint in
a smooth and consistent way, at interactive speeds. The immediate
predecessor for our work is Petzold et al. [18, 19, 21, 20], who solve
the dynamic map labeling problem in two phases. In the preprocess-
ing phase, they compute a data structure called the “reactive conflict
graph”; in the interaction phase, this reactive graph is queried to ob-
tain a static conflict graph G whose nodes are all the map features
within the current view, and whose edges indicate potential conflict
for labels of these nodes. From G, they finally select a subset of labels
that can be placed without conflict at the current scale. This is done
by the greedy method: assuming a priority ordering among labels, the
labels are placed (or rejected) in priority order. They do not address
what we call the label consistency problem.

Poon and Shin [22] consider zooming over a set of point labels—
i.e., labels for point features, such as towns and cities. They consider
only axis-parallel, rectangular labels, where the point feature must be
on the left boundary of the label. As we zoom out, the labels grow
to the right and vertically. This is a restricted version of our invariant
point placements. The one-dimensional version of this problem can
be solved for a given scale with greedy interval scheduling. To allow
for zooming they build an O(logn) height hierarchy. Each level con-
tains the greedy solution on the points in the next lower level, but at a
higher scale. To label a window, first find the most appropriate level
in the hierarchy, and then pull out the optimal solution at that level.
For the two-dimensional problem, they apply the one-dimensional so-
lution to the labels intersecting a set of horizontal stabbing lines. This
solution has relatively high time and space requirements for run-time
querying—for example, for label filtering they build a range tree at
each level of detail.

The labeling problem has some similarity to the settlement selection
problem [28, 26], which is to choose the towns and cities that will
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be shown. Several heuristics for settlement selection are described in
[28, 26], but no consideration is given to consistency during zooming.

Work on labeling of 3D illustrations [2] and labeling in virtual and
augmented reality systems [7, 3] also relates to our dynamic labeling
problem, in that they discuss some heuristics for improving the “frame
coherence” or “temporal continuity” of the labeling.

We may note that map labeling is closely connected to labeling of
graph drawings [16, 4].

Although the algorithmic literature on label selection as a stand-
alone problem seems to be non-existent, there are several papers dis-
cussing heuristics for selecting labels. E.g., Tatemura [24] discusses
“dynamic label sampling” in the context of fisheye-view maps. He
does not require non-overlap among labels and/or features. The se-
lection is based on considerations such as the avoidance of clutter,
distance from area of interest, etc.

3 FRAMEWORK FOR FAST AND CONSISTENT LABELING

In this section we give an overview of our dynamic labeling approach;
in Section 4 we formally define the problem and our solution.

We can think of static map labeling as being composed of two op-
erations, which may be intertwined: selection and placement. From
the set of all possible labels, we need to first select a subset, and then
place each label in the subset such that no two labels overlap. Placing
a label means determining a size, orientation and location on the map.
Now we need to think about what selection and placement mean in a
dynamic environment. While the static labeling problem is essentially
two-dimensional, the dynamic labeling problem requires a third di-
mension. It might seem that time would be a natural third dimension,
but such a labeling problem would be extremely hard to model in a
meaningful way. Instead, we take scale as our third dimension. Under
this model, the dynamic selection problem is to determine at which
scales a label will be selected, and the dynamic placement problem
is to determine a (static) placement for each scale at which a label is
selected. Since this approach fixes a single static placement per label
per scale, it restricts the scope of our model to labels that don’t “slide
around” under panning.

Desideratum (D2) says that a label’s position and size should vary
continuously with the pan and zoom operations, and we have said that
in our model the placement must be a function of scale—i.e., it’s posi-
tion is fixed under panning. Therefore, we can visualize each dynamic
placement in world coordinates as an extruded label shape, with the
vertical dimension being scale. See Figure 3(a). Since we have not yet
considered selection, we can imagine these extrusions as being defined
for all positive scales. In our implementation we use a simple form of
dynamic placements called invariant point placements, in which the
extrusion is a cone. In this case, the label size in world coordinates is
proportional to scale, which means the screen size of the label is in-
variant under zooming. We say that such placements satisfy the label
size invariance property. The dynamic placements in Figure 3 are
invariant point placements, with rectangular labels.

Desideratum (D1) says that a label should not appear, disappear,
and reappear under monotonic zooming. This greatly simplifies the
dynamic selection problem. It means that each label must be selected
precisely within a single scale interval; we call the selected interval for
each label its active range: AL :=[sL

min,s
L
max]. Under the strict interpre-

tation of (D1), a label may not disappear when zooming in. In that
case we must have sL

min = 0. If we start with the extrusion defined by
a label L and its dynamic placement, and restrict that extrusion to L’s
active range, we are left with a truncated extrusion. See Figure 3(b).
We can ensure that no two labels will overlap at any scale if we do
placement and selection in such a way that no two truncated extrusions
overlap. (More precisely, the interiors do not intersect; intersection at
boundary points is allowed.)

Figure 3(b) also shows the outline of the view window cone. A
horizontal slice of this graph, at a fixed scale, gives the 2D map that
is specified by this dynamic labeling. Two such slices are shown in
Figure 3(c). At scale s = 1 all three labels are active, but only the
gold and red ones are inside the view area. At s = 2 the view area
has expanded (because of zooming out) to encompass all three labels,

(a) (b)

(c)

s = 2
s = 1

scale

2

y

x

1

Fig. 3. (a) Dynamic placements for three labels, in world coordinates.
These are invariant point placements that satisfy the label size invari-
ance property—screen size is fixed, so size in world coordinates is pro-
portional to scale. (b) The same dynamic placements, but truncated to
active ranges so that no two labels intersect at any scale. An outline of
the view window cone is also shown. (c) Horizontal slices of the trun-
cated placements at s = 1 and s = 2. The view area is shown in outline.

but the gold label is not active because of the conflict with the red
one. As we zoom out from s = 1 to s = 2 (remember that we assume
continuous zooming), the gray label slides into the view area, and all
three labels slide toward each other. At some scale between s = 1 and
s = 2 the gold label disappears because of the conflict with the red
one. Since these labels have the label size invariance property, they
get bigger in world coordinates as we zoom out, but they remain the
same size relative to the view area.

For a dynamic map, the need for interactive speed means that we
must introduce the filtering operation, in addition to selection and
placement. The number of labels in the entire map is much larger
than can be shown in any given view area, so we can often quickly re-
move from consideration a large portion of the labels. We can filter on
the basis of geographic region, in which case we throw out any label
that does not intersect the current view area. We can also filter on the
basis of scale—for example, if we are zoomed out far enough, we can
throw out all labels for small neighborhood streets.

As noted in Section 1, a natural first attempt at interactive dy-
namic labeling would be to first filter the labels (on the basis of scale
and/or region), and then run a static placement algorithm on that much
smaller subset. We believe that such an approach would not be fast
enough for interaction. More importantly, it doesn’t seem possible to
satisfy our consistency desiderata with this approach. (See Figure 1.)
Therefore, we propose an inversion of the normal order of doing these
operations: place, then select, and finally filter. We achieve interac-
tive speed by moving placement and selection into the preprocessing
phase. No label conflict computations are performed in the interaction
phase, as it amounts to retrieving a precomputed selection and place-
ment of the labels.

Now we can describe our algorithmic framework:

Preprocessing phase

1. Determine a dynamic placement for each label. This is just a
static placement at each scale. In this step we consider each label
in isolation, ignoring conflicts with other labels. The dynamic
placement should be continuous with scale.

2. Choose an active range for each label, such that the resulting
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truncated extrusions are pairwise non-overlapping.

Interaction phase

1. Filter the labels on the basis of geographic region and/or scale.

2. For each label that has not been filtered out, display it if and only
if the current scale is within its active range.

This framework clearly satisfies our consistency desiderata and
guarantees that no two labels will ever overlap on screen, yet still al-
lows flexibility in choosing placement and selection algorithms. We
only require that placement be a continuous function of scale and se-
lection take the form of active ranges. In fact, there is no a priori reason
that placement needs to be done before selection. We have used that
order to get a solution that is simple and fast, but in theory selection
could be done first or the two could be intertwined.

In the context of this framework, we want selection and placement
algorithms that are in some sense optimal. Informally, optimality
amounts to showing “as many labels as possible.” In a static map it
is clear what is meant by “the number of labels selected.” For a dy-
namic map, we can integrate this number over all scales, and with
active ranges the integral reduces to a simple sum. Thus, we arrive at
the following dynamic labeling optimization problem:

Given a set of labels S0, determine a dynamic placement
and an active range (i.e., a truncated extrusion) for each
L ∈ S0, such that no two truncated extrusions overlap, and
the number of labels active over all scales is maximized.
Specifically, maximize ∑L∈S0

sL
max − sL

min.

Note that at this point we treat each label equally; there is no sense of
label priority. Also, for this to make sense we must assume that every
active range has a finite upper bound. Let smax be the highest scale
at which any label will ever be shown, so that for every label L, we
will enforce sL

max ≤ smax. For simplicity, let’s also take sL
min = 0. This

amounts to the more restricted version of (D1), in which labels do not
disappear when zooming in.

This problem appears to be quite difficult. In Appendix A we show
that the simpler problem of computing an optimal set of active ranges,
given a set of dynamic placements, is NP-complete for a suitably gen-
eralized class of label shapes. To come up with a practical solution, we
now introduce label priorities. Priorities are used by [21, 20] during
the interaction phase only; in contrast, we shall exploit priority in the
preprocessing phase. We assume that each label has a unique priority.
We also assume that whenever two labels “fight” over map space, the
higher priority label must “win”. To make this notion more precise,
say that label L is blocked by label L′ if expanding L’s active range by
an infinitesimal amount would cause the two truncated extrusions to
overlap. In Figure 3(b), the gold label is blocked by the red one, and
the red label is blocked by the gray one. Now, the priority rule is sim-
ply that if L is blocked, it must be blocked by a higher priority label.
(It might coincidentally also be blocked by a lower priority label.)

With label priorities, we can find a solution to the following re-
stricted form of the labeling optimization problem:

Given a set of labels S0 and a dynamic placement for each
L ∈ S0, choose an active range for each L ∈ S0 such that
sL

min = 0 for every L, no two truncated extrusions overlap,

the priority rule is satisfied, and ∑L∈S0
sL

max is maximized.

The solution is a simple greedy algorithm, G:

Consider the labels in order of priority, from highest to low-
est. For each label L, if there is a scale at which L would
be blocked by a higher priority label, then set sL

max to the

minimum such scale; otherwise set sL
max = smax. In other

words, we make each truncated extrusion as high as we can,
without overlapping any previously determined (and higher
priority) truncated extrusion.

The optimality of this algorithm is proved in Section 4. Our imple-
mentation shows that even with these seemingly severe restrictions,
we can still produce a dynamic labeling that is useful and fast. In Sec-
tion 5 we discuss less restricted forms, including the ability to choose
from a set of placements for each label.

4 DYNAMIC MAP LABELING MODEL

In this section we formally define the concepts introduced in Section 3.
We describe label placement with the language of planar affine

transformations. We are interested in three types of transformation
τ : R

2 →R
2: (i) τ = T (e, f ) is translation by the vector (e, f )∈R

2, (ii)
τ = R(θ) is rotation by angle θ ∈ [0,2π), and (iii) τ = D(s) is dilation
(uniform scaling) by factor s ∈R>0. Let us call allowable any compo-
sition of these 3 types of transformations. Each τ can be represented
by a 3×3 matrix Mτ , with composition of transformation correspond-
ing to matrix multiplication. Let det(τ) refer to the determinant of Mτ .

Clearly det(T (e, f )) = det(R(θ)) = 1 and det(D(s)) = s2.

Map domain D0

(world coordinates)

τ(x,y,s)

Screen domain W0

(0,0)

πL

LABEL

rep(L)

Fig. 4. Transformations among world, screen and label coordinates.

Figure 4 illustrates static placement. Let D0 denote the domain of
map M. D0 is a rectangular region of R

2, and is defined in world coor-
dinates. (In a more realistic model D0 would be a patch of the surface
of a sphere). We view the map M as a collection of map features, and
there are basically three of interest: point, line and area features. Each
feature is viewed as a subset of D0. Note that lines and areas are really
polygonal lines and simply connected polygonal regions.

Let W0 be the window, in screen coordinates. The axis-aligned
rectangular subset of D0 that is displayed in W0 at a given point in time
is called the view area. The view area is defined by the width w and
height h of W0 in screen coordinates, a center point (x,y) ∈ D0, and a
scale s. We define s in such a way that a w×h window corresponds to a
ws×hs view area. Thus, increasing the scale corresponds to zooming
out.1 For simplicity we assume that w and h are fixed, so that a view
area is given by W (x,y,s) ⊆ D0, and the current state of the view is
(x,y,s). At interaction time, the user issues a sequence of commands
of the form “Pan to (x,y)” or “Zoom to s”.

If we define the window as having center (0,0) in screen coordi-
nates, then the transformation τ(x,y,s) that takes W (x,y,s) to W0 is a
translation followed by a dilation:

τ(x,y,s) = D(1/s)◦T (−x,−y).

Note that det(τ(x,y,s)) = 1/s2.
We generally think of a label L as a character string, but it could be

an icon or a combination of characters and icons. For our purposes,
regard L as a compact, simply connected set rep(L) ⊆ R

2, represent-
ing the canonical rendering of L in its own label coordinate system.
Typically rep(L) is a rectangular box (Figure 4). L is also associated
with the map feature φ(L) ⊆ D0 that it labels.

1In cartography, a “large-scale map” refers to one that shows a smaller area

in greater detail. This is the inverse of our definition of scale, which may be

called zoom scale. A zoom scale of s corresponds to a map scale of 1 : s.
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A static placement for a label L is an allowable transformation π
(or πL) from L’s label coordinates into world coordinates—rep(L) is
mapped into some translated, rotated, dilated shape π(rep(L)). We
say that π is valid if it meets certain cartographic constraints, which
typically depend on the nature of the feature φ(L). Intuitively, we
expect π(rep(L)) to be near to the point or line feature that it labels,
and to overlap the area feature that it labels. Such considerations are
outside the scope of this paper.

A label L is visible under placement π in state (x,y,s) if π(rep(L))∩
W (x,y,s) is non-empty. In screen coordinates, this placement of L
shows up in the region (τ(x,y,s)◦π)(rep(L))∩W0. See Figure 4.

A dynamic placement ΠL for a label L is a function

ΠL : s ∈ (0,∞) 7→ πL
s

that assigns a static placement πL
s to each scale s ∈ (0,∞). ΠL is valid

if each πL
s is a valid static placement of L. To meet desideratum (D2),

ΠL should vary continuously with s.
ΠL satisfies the label size invariance property if there is a con-

stant c such that for every scale s, det(πL
s ) = cs2. By a scaling of L’s

label coordinates we can, without loss of generality, take c = 1. Then
(τ(x,y,s) ◦ πL

s )(rep(L)) is a translated, rotated copy of rep(L)—i.e.,
there is no dilation. Hence rep(L) is already “screen size”.

For a set S of labels, a static placement of S is a function

π∗ : L ∈ S 7→ πL

that assigns a static placement πL to each label L ∈ S. Similarly, a
dynamic placement of S is a function

Π∗ : L ∈ S 7→ ΠL

that assigns a dynamic placement ΠL to each L ∈ S. We say that π∗ is

compatible if for each L,L′ ∈ S, πL(rep(L)) and πL′
(rep(L′)) do not

overlap (i.e., their interiors do not intersect).
Let S0 be the set of all labels. Recall that in our model selection

amounts to determining an active range AL = [sL
min,s

L
max] for each

label L. An active range function for S0 is a function

A∗ : L ∈ S0 7→ AL

that assigns an active range AL to each L ∈ S0.
Say that L is active at scale s if s ∈ AL, and consider the set of labels

that are active at scale s: A∗(S0;s) :={L ∈ S0 : s ∈ AL}. We say A∗ is
compatible with Π∗ if, for any s, when we use Π∗ to place those labels
that are active at s under A∗, no two labels will overlap. Formally, let
the static placement of A∗(S0;s) be given by

π∗
s : L ∈ A∗(S0;s) 7→ πL

s .

Then A∗ is compatible with Π∗ if π∗
s is compatible for every s.

The dynamic labeling optimization problem from Section 3 can
now be formulated as follows:

Given a set of labels S0, find a dynamic placement Π∗ and
an active range function A∗ such that (i) for each L ∈ S0,
ΠL = Π∗(L) is valid and varies continuously with scale,

(ii) A∗ is compatible with Π∗, and (iii) ∑L∈S0
sL

max − sL
min is

maximized.

Recall that for every label L we will have sL
max ≤ smax, where sL

max is

the upper bound of the interval AL.
Let EL refer to the extrusion of rep(L) under a given dynamic place-

ment ΠL, and let EL/AL refer to the portion of EL with s ∈ AL. We call

this a truncated extrusion. In the following, we take AL = [0,sL
max],

as in the restricted form of (D1). A set of truncated extrusions is com-
patible if they are pairwise non-overlapping. This is equivalent to A∗

being compatible with Π∗. Say that L is blocked by L′ under a given
Π∗ and A∗ if increasing sL

max by an infinitesimal amount would cause

EL/AL and EL′/AL′
to overlap. The blocking scale of L and L′ un-

der Π∗ is the smallest scale s such that EL/AL and EL′/AL′
intersect if

sL
max > s and sL′

max > s. Thus, above scale s, only one of L and L′ can
be active. (This is called the “cutting scale” in [21, 20].)

Priorities are given by an assignment P : S0 → R. Priorities are
unique: L 6= L′ implies P(L) 6= P(L′). We now require that A∗ respect
the following priority rule: If L is blocked, then it is blocked by some
L′ with P(L′) > P(L).

The restricted form of the dynamic labeling optimization problem,
from Section 3, becomes

Given a set of labels S0 and a dynamic placement Π∗ for
S0, choose an active range function A∗ compatible with Π∗

such that sL
min = 0 for every L, the priority rule is satisfied,

and ∑L∈S0
sL

max is maximized.

Now we can prove the optimality of the greedy algorithm given in
Section 3.

LEMMA 1 Under the priority rule and the restricted (D1), the A∗

computed by algorithm G is optimal for any given Π∗.

Proof. First notice that under any optimal solution every label L must
either be blocked or have sL

max = smax—otherwise we could increase

sL
max to get a better solution. Now suppose there exists an optimal

solution O in which some label has a wider active interval than under
G. Let L be the highest priority such label. L must be blocked by

some higher priority label L′ under G, but not under O . So EL′/AL′

is shorter under O than under G. Since O is optimal and respects the
priority rule, L′ must be blocked under O by some higher priority label

L′′. But L′ is not blocked by L′′ under G, which means that EL′′/AL′′

is higher under O than under G. But P(L′′) > P(L′) > P(L), which
contradicts our choice of L. Therefore, every active interval under
G is at least as wide as under any optimal solution, so G is optimal.

Q.E.D.

The compatibility of A∗ with Π∗ implies that in the interaction
phase, at any scale s at which L is active we can safely display L us-
ing πL

s without worrying about conflicts with other labels. This leads
directly to our interaction phase algorithm: to label window W (x,y,s),
we first filter the (large) set S0 to get Sw ⊆ S0, then render each L ∈ Sw

if and only if s ∈ AL. In contrast to [21, 20], no label conflict compu-
tations are done during the interaction phase.

We have omitted one important detail from the selection algorithm,
which is how to compute the blocking scale of two labels. This com-
putation is facilitated by restricting ourselves to rectangular labels and
invariant point placements. Formally, an invariant point placement is
a dynamic placement of label L that is represented by (p,q,θ), where
p is a point in world coordinates, q is a point in L’s label coordinates,
and θ is an angle. For every scale s > 0 this defines the static place-
ment πL

s of the form

πL
s = T (p)R(θ)D(s)T (−q)

where T,R and D are the translation, rotation and dilation transforma-
tions. We see that πL

s (q) = p for all s (this is the “invariant”). For

instance, if q ∈ rep(L), then at any scale s, p ∈ πL
s (rep(L)). This is il-

lustrated in Figure 5. Notice also that invariant point placements have
the label size invariance property.

p = πs(q)

πs(rep(L))

s = 12s = 9s = 6s = 3
φ(L) φ(L) p′ = πs(q′)

Fig. 5. Two invariant point placements for a point label L, represented
by (p,q,0) and (p′,q′,0) at scales s = 3,6,9,12. These are in world coor-
dinates. The feature φ(L) labeled by L is also shown.
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Figure 3 shows invariant point placements on rectangular labels.
The regular shape of the extrusions allows us to derive closed form
expressions for the location of each label corner as a function of scale,
and these can be used to derive the blocking scale for two labels. We
omit the details. By computing the blocking scale of all pairs of labels,
an O(n2) implementation of the algorithm to compute A∗ from a given
Π∗ is straightforward. But when we are zoomed in we expect the label
conflict graph to be quite sparse, and when we are zoomed out we
expect the number of labels active to be quite small, so it seems that
we shouldn’t need to check every label pair. In Section 5 we describe
some heuristics to speed up this computation.

5 REFINEMENTS AND PRACTICAL CONSIDERATIONS

To avoid complicating the presentation, we have delayed discussion of
several issues. (i) With a little intertwining of placement and selection,
we can intelligently consider multiple possible placements for each
label; (ii) we want a way of allowing a liberal version of (D1), in which
some labels might disappear when zooming in, but without sacrificing
the optimality of the greedy selection algorithm; (iii) we have yet to
give a label filtering algorithm; and (iv) we want to improve on the
O(n2) time complexity for computing A∗.

Suppose we have multiple possible dynamic placements for a la-
bel, and we don’t want to commit to one of them without considering
conflicts with nearby labels. For example, we might have four invari-
ant point placements for a point label, corresponding to above left,
above right, below left, and below right. A modified greedy algorithm
considers all four placements, and chooses the one that allows for the
widest active range. Lower priority labels considered later will only
be compared with the chosen placement.

Our key to handling the remaining issues is to introduce levels of
detail (LOD). Partition the scale interval [0,smax] into h sub-intervals,
each representing a level of detail. (In our implementation, h = 8.)
Call the LODs λi, i = 0, . . . ,h− 1. We have h + 1 scales, 0 = s0 <
s1 < · · · < sh = smax, and each λi covers the interval [si,si+1]. (For
simplicity we’ll let the LODs overlap at the boundary scales.)

We associate with each label L a live range RL = [si,s j], with
0 ≤ i < j ≤ h. This indicates that L “wants” to be displayed in levels
λi, . . . ,λ j−1, absent conflict considerations. For example, a country
name might only want to appear in λ4, . . . ,λh−1, while a local street
name might only appear in λ0. We require that L may be active only if
it is alive: AL ⊆ RL. Now the liberal version of (D1) is that a label can
vanish when zooming in, but only upon reaching the lower end point
of its live range.

In our implementation each LOD is labeled separately—each starts
with its own set of labels S0, consisting of those labels that are alive in
this level, and placement and selection are computed on this set. This
way, when we compute Π∗ and A∗ for λi, we can simply take the lower
bound of each active range to be 0, and use the greedy algorithm G as
described in Section 3. If a label’s live range does not include λi−1, its
disappearing when zooming in beyond si is accomplished by simply
not including the label in S0 when placement and selection are done
on λi−1.

The LODs are also treated separately during the interaction phase,
so that labeling view area W (x,y,s) only requires searching the LOD
that contains s. Thus, filtering on the basis of scale is essentially taken
care of in the preprocessing phase. We need to be careful, though, to
coordinate between the LODs, so that there is no popping across LOD
boundaries. This can be done by computing the labeling in reverse
order, from λh−1 down to λ0. Any label that is active at si+1 in λi+1

should be given a high enough priority in λi so that it will also be active
at si+1 in λi. (We have not yet implemented inter-LOD coordination.)

Filtering on the basis of geographic region must still be done in
the interaction phase. For each λi we split the map domain D0 into a
grid of buckets, and assign each label to the bucket that contains its
invariant point. The labels in each bucket are stored in a list, sorted by
sL

max, and the lists are stored in a hash table, indexed by grid location.
The filtering step now becomes quite simple: given the boundary of
the current view area W (x,y,s), we can easily compute which buckets
cover it, and pull those lists out of the hash table. The grid size of a

bucket for λi is l × l, where l is assumed to be greater than the maxi-
mum length of any label at scale si+1. Then, since a label might span
a bucket boundary, we also consider a one bucket wide buffer around
W (x,y,s), to be sure that all labels intersecting W (x,y,s) are found.

There is an added benefit to this bucketing approach: since the
bucket lists are stored in sorted order, we don’t need to traverse an
entire list. We only need to step through each list in order of descend-
ing sL

max, and stop when we get to a label for which the current scale

s > sL
max. Thus, we traverse only the active labels in each list.

Buckets also help to reduce the O(n2) time for computing A∗. In
practice, there really isn’t a problem at high LODs (high scales) be-
cause so many labels are filtered out by scale. At lower LODs the con-
flict graph is sparse, so we shouldn’t need to check each label against
all others. This is where buckets help: a label only needs to be checked
for conflicts with other labels in its bucket or in neighboring buckets.
In our implementation we have about 12 million labels and half a mil-
lion buckets in λ0. So an average of about 24 labels per bucket, but
with great variability—from 0 in many sparsely populated areas to
several hundred or more in dense urban areas.

6 CONCLUSIONS AND FUTURE WORK

This paper makes theoretical, algorithmic and practical contributions
to the area of dynamic labeling. We have formalized the dynamic la-
beling problem, and given a set of desiderata (D1-D4) for label consis-
tency. Our solution is the first to achieve these desiderata. Prior to our
work, there have been no formal models of dynamic maps or dynamic
labels. We believe this is an essential step for proving correctness and
for elaborating on and comparing various solutions in this domain.

We have formulated a new (and somewhat unintuitive) algorithmic
framework for fast and consistent labeling. In this framework, we per-
form placement and selection of labels in the preprocessing phase, and
only filtering during interaction.

We introduced invariant point placements, and a solution for place-
ment and selection based on them. Our solution is highly efficient in
the interaction phase, and yet achieves label consistency (D1-D4). Fi-
nally, we have validated the usefulness of our approach by a full-scale
web demo for a very large data set.

Future work. Many extensions are possible. Within our frame-
work, other possibilities for label placement and selection can be ex-
plored. Our invariant point placements are just one reasonably good
labeling, but other placements might give more flexibility. We leave
open interesting theoretical questions about the complexity of dynamic
labeling within our model. We plan to pose dynamic map labeling as
an online problem, and to introduce competitive analysis for label-
ing. Finally, we would like to introduce various categories of labels
which can be selected or deselected (dynamically) from any view. Be-
sides the standard geographic labels, we can have label categories such
as: restaurant, landmark, gas station, public transportation, store, etc.
Such extensions are needed to support highly personalized navigation
goals in applications.

A APPENDIX: COMPLEXITY OF OPTIMAL ACTIVE RANGE SE-

LECTION

In this section we show that our restricted dynamic labeling optimiza-
tion problem is NP-complete, under the assumption of star-shaped la-
bels. (The weaker result for arbitrary polygonal labels follows im-
mediately.) We do this by reducing the independent set problem for
planar graphs to it. The independent set problem is this: given a graph
G and an integer k, determine if G has an independent set of size k.
The reduction associates the vertices of G with invariant point place-
ments of star-shaped labels, and the edges of G with conflicts between
placements. Recall that, as in Figure 3, the extrusions for invariant
point placements are cones.

We consider cones in R
3. The last coordinate of points q ∈ R

3 is

called the height of q. Given p ∈ R
2 and s ∈ R, let p(s) ∈ R

3 be the
point whose height coordinate is s and whose first two coordinates are

given by p. If S ⊆R
2, let S(s) = {p(s) : p ∈ S}. A cone C(p,B,h)⊆R

3

is parametrized by a point p ∈ R
2; a compact, simply-connected set
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B ⊆ R
2; and a height h ∈ R. The cone comprises all points q ∈ R

3

of height at most h such that the line p(0),q intersects B(1). Call p(0)

the apex and h the height of the cone. Let H(C) denote the height
of cone C. We further assume that B is a star-shaped polygon—that
is, a polygon whose interior contains a point that can see all the other
points of the interior.

If I is an interval, and C is a cone, let C/I denote the truncated
cone obtained by restricting the points of C to have height lying in I.
If I ⊆ [0,H(C)], we say that I is compatible with C. Let C = {Ci : i =
1, . . . ,n} be a set of cones in R

3, and let A be a function that assigns
an interval Ii = A(Ci) to each Ci ∈ C . We say that A is compatible if
each Ii is compatible with Ci, and the set

{Ci/Ii : i = 1, . . . ,n}

of truncated cones are pairwise non-overlapping. Here, two point sets
are said to be overlapping if their interiors intersect. The active range
optimization problem (ARO) is that of computing a compatible A
such that v(A) :=∑n

i=1 |Ii| is maximized. The active range decision
problem (ARD) asks, for a given rational number k, whether there is
a compatible A such that v(A) ≥ k. We may simplify the problem by
restricting the intervals A(Ci) to the form Ii = [0,hi], for some hi ≥
0. We then view A as a function that assigns a height A(Ci) = hi to
each cone Ci. Such solutions correspond to the property that labels
never disappear while zooming in. For reference, call this the simple
active range decision problem. For complexity purposes, we will
consider the version where the input cones C = (p,B,h) have rational
coordinates and where B is a star-shaped polygon; this is the case of
star-shaped map labels.

THEOREM 2 The simple ARD problem is NP-complete for star-
shaped map labels.

Proof. It is easy to see that the problem is in NP. To show NP-
hardness, we exploit two facts: the independent set problem for planar
graphs is NP-hard, and every planar graph G = (V,E) has a straight
line embedding (see [23]). To reduce the independent set problem
in planar graphs to simple ARD, we will construct a set C of cones
where each cone corresponds to a vertex of the input graph G. Each
cone has height 1 + ε (for some ε > 0), and C has the property that
two cones overlap iff there is an edge between the corresponding ver-
tices of G. Moreover, if two cones overlap, then they first touch each
other at height exactly 1. Consider a compatible assignment A for
these cones: from the said properties, we may assume WLOG that A
assigns heights of either 1 or 1 + ε to each cone. Clearly, the set of
cones that is assigned height 1 + ε corresponds to an independent set
of G. Conversely, for every independent set S, we have a compatible
assignment AS that assigns height 1 + ε to exactly those cones in S.
Thus, there is an assignment A such that v(A) = |V |+ tε iff G has an
independent set of size t. Thus, the construction (G, t) 7→ (C , |V |+ tε)
is a reduction of the independent set problem in planar graphs to sim-
ple ARD. If this reduction can be computed in polynomial time, our
NP-hardness claim follows. This is given in the next lemma. Q.E.D.

The proof of the following lemma makes use of triangular graphs.
A triangular graph is a maximal planar graph with at least three ver-
tices. Every face of a straight line, planar embedding of a triangular
graph is triangular, including the exterior face. Say that a vertex of a
triangular graph is exterior if its embedding borders the exterior face.

LEMMA 3 For any planar graph G = (V,E) and integer t > 0, we can
compute in polynomial time a set C of cones for star-shaped polygonal
labels, and an ε > 0, such that G has an independent set of size t iff
there is a compatible assignment A with v(A) = |V |+ tε .

Proof. First, we transform the planar graph G to a triangular graph
G′ = (V,E ′) by adding edges. By Schnyder’s theorem [23], there is
a linear time algorithm to compute a straight line embedding of G′

in the (n− 2)× (n− 2) integer grid, where n = |V |. Let p(u) be the

embedding for vertex u. Next, for each edge (u,v) ∈ E ′, define the
point

m(u,v) =

{

p(u)+p(v)
2 if (u,v) ∈ E

2p(u)+p(v)
3 if (u,v) 6∈ E.

For each vertex u, form a star-shaped polygon B(u) whose vertices
are m(u,v) for each (u,v) ∈ E ′. If u is an exterior vertex, we add an
additional artificial point in the exterior face of the embedding. Each
B(u) so defined is a star-shaped region with p(u) as a center of the star.
It is clear that B(u) and B(v) touch iff (u,v) ∈ E.

We now construct a set C of cones as follows: each v ∈ V gives
rise to a cone C(p(v),B(v),1 + ε). The ε > 0 is chosen small enough
so that cones C(p(v),B(v),1 + ε) and C(p(u),B(u),1 + ε) overlap iff
(u,v) ∈ E. Now it is easy to see that the original graph G = (V,E)
has an independent set of size t iff C has a compatible solution A with
v(A) = n+ tε . Q.E.D.

We conjecture that the simple ARD problem is also NP-complete
for convex polygonal labels, and possibly for rectangular labels as
well. We can reduce the independent set problem to simple ARD for
circular labels by using Koebe’s theorem (1936), which says that ev-
ery planar graph can be realized as the contact graph of a set of non-
overlapping discs. However, it is not known whether these discs can
be constructed in polynomial-time. If they can, then the result for con-
vex polygons follows readily, by taking each disc contact point as a
vertex of the polygon.

It is not even clear that the 1-dimensional version of the simple
ARD problem is polynomial-time.
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