
Planning for Network-Aware Paths

Xiaodong Fu and Vijay Karamcheti

New York University, New York, NY 10012, USA,
{xiaodong,vijayk }@cs.nyu.edu

Abstract. Communication in distributed applications across a wide area network
needs to cope with heterogenous and constantly changing network conditions.
A promising approach to address this is to augment thewholecommunication
path withnetwork awarenessby using “bridging” components that are capable
of caching, protocol conversion, transcoding, etc. While several such path-based
approaches have been proposed, current approaches lack mechanisms for auto-
matically creating effective network paths whose performance is optimized for
encountered network conditions.
This paper describes a solution for this problem. Our approach, which is built into
an application-level programmable network infrastructure called CANS (Com-
posable Adaptive Network Services), constructs network-aware communication
paths that enhance application performance by taking into account both applica-
tion performance preferences and dynamic resource availability.
Our experiments with typical applications verify that communication paths au-
tomatically created with our path creation algorithms do bring applications with
considerable performance advantages, and fine tuned, desirable adaptation be-
haviors, with only minimal input from applications.

1 Introduction

Heterogeneous and dynamically changing network environments are an important cause
for unsatisfactory behaviors of distributed applications whose performance is directly
related to the quality of the underlying data communication. A promising approach
([2, 4, 8, 9, 11–13, 15]) for addressing this is to make the communication pathnetwork
awareby using application-specific components that handle stream degradation, recon-
nection, transcoding, caching, and protocol conversion operations, thereby serving to
“impedance match” application performance requirements with the underlying network
conditions. The more general among these infrastructures [4, 9, 12, 13, 15] propose to
realize such network awareness throughoutthe whole communication path. While there
have been a large number of proposals, suchpath-basedsystems have focused primarily
on providing system support to allow dynamic insertion and deletion of components,
leaving unanswered a key question: how to automatically construct such network aware
paths, without user involvement, so that applications can perform better in a dynamic
network environment where resource availability changes continually.

In this paper, we propose an automatic strategy for building such network aware
paths with optimized performance in accordance with application performance require-
ments and underlying resource availability. In addition to calculating a whole path, our
solution can also be used with disjoint segments of an existing path independently while
maintaining some overall performance guarantee. Furthermore, the calculation of com-
munication paths can be conducted in a distributed fashion (i.e. from one network do-
main to another). These properties make our approach applicable in a wide area setting,

where multiple network domains are usually involved in setting up and maintaining a
communication path.

This strategy is a general solution that can be applied to any path based system.
To evaluate it, we have implemented it within a programmable network infrastruc-
ture called CANS (Composable Adaptive Network Services) [4], and have conducted
a series of experiments, using two representative applications: web access and image
streaming in environments with different network and end-device characteristics. The
results validate our approach, verifying that (1) automatic path creation is achievable
and does in fact yield substantial performance benefits; and that (2) our approach is ef-
fective for providing applications that have different performance preferences with fine
tuned, desirable adaptation behaviors.

The rest of this paper is organized as follows. Section 2 provides a brief overview
of the CANS infrastructure. Section 3 defines the path creation problem and our model.
Section 4 describes our automatic path creation algorithm and extensions. Section 5
evaluates these mechanisms using the two applications. Section 6 reviews related work
and summarizes the novel aspects of our approach. We conclude in Section 7.

2 Background: Overview of the CANS Architecture

TheComposableAdaptiveNetworkServices (CANS) infrastructure [4] views network
environments as consisting of clientapplicationsandservices, connected bycommuni-
cation paths. CANS extends the notion of a communication path, traditionally limited
to data transmission, to include dynamically injected application-specific components.
Serving as the basic building block for CANS paths, components are standalonemobile
code modules that can be composed via a standarddata portinterface.

The CANS network is realized by partitioning service and components belonging to
data paths onto physical hosts, connected using existing communication mechanisms.
Data processing code in a driver is executed in CANS Execution Environments (EE)
that run on hosts along the network route. CANS further provides support for dynamic
path reconfiguration. A more detailed description of the CANS infrastructure can be
found in [4].

3 Modeling the Path Creation Problem

In general, creation of a network aware data path consists of two steps:route selection
where a graph of nodes and links is selected for deploying the path, andcomponent
selection and mappingwhere appropriate components are selected and mapped to the
selected route. Route selection is typically driven by external factors (such as connectiv-
ity considerations, ISP-level agreements, etc.) and so here we focus only on the problem
of component selection and mapping. We call the procedure of constructing such paths
asplanning.

3.1 Components and Network Resources
We first need ways of characterizing the impact of a particular component on the re-
source utilization along a path as well as a means for associating performance metrics
with the overall path.
Types The functionality of a component in a path is modeled as transforming data from
one type to another. For example, a compression component using the zip algorithm

can transform a MIME/TXT type to a “zipped” MIME/TXT type. Components can
be connected together only if their type information is compatible. Type compatibility
is defined in atype graph Gt: a vertex in the graph represents a type, and an edge
represents a component that can transform data from the source type to the sink type.
The primary benefit of such type-based modeling is that it permits description of valid
candidate paths without explicit enumeration, simply looking for all type-compatible
sequences of components that transform the source type to the required destination
type.

The performance of an individual path is determined by resource availability and
performance characteristics of components in the path.

Network resources Each network resource is modeled in terms of its performance
characteristics, i.e. computation capacity for a node, and bandwidth and latency for a
network link. For an individual path that passes through a shared network resource, the
value used is the corresponding value of the allocated portion.

Furthermore, network resources may also affect the data passing through them in
a way that is independent of resource capacities. For example, the effect is different
for transmitting sensitive data across a network link with the same bandwidth/latency
parameters, depending on whether the link is trusted (no eavesdropper) or not. To model
such effects, CANS incorporates a notion ofaugmented types[4], which extend data
types with environment properties. Network resources are modeled as entities that can
transform the environment properties of augmented types in a type-specific fashion.

Modeling both application data types and resource constraints using a unified frame-
work has the advantage that valid paths (even in the presence of resource constraints)
continue to be concisely represented using the notion of type compatibility on the aug-
mented types. Our automatic path creation strategy exploits this fact.

Component resource utilization model To characterize the resource utilization and
performance of a component, each componentc is modeled in terms of itscomputa-
tion load factor(load(c)), the average per-input byte cost of running the component,
and itsbandwidth impact factor(bwf(c)), the average ratio between input and output
data volume. This simple model can be extended to allow components to have multiple
configurations.

A path (D = {c1, . . . , cn}) consists of a sequence of components. Aroute R =
{n1, n2, . . . , np} for a path is a sequence of network resources (nodes and links between
them). Amapping, M : D → R, associates components on data pathD with nodes
in routeR. We are only interested in mappings that satisfy the following restriction:
M(ci) = nu,M(ci+1) = nq ⇒ u ≤ q: sending data back and forth between nodes in
a route usually results in poor performance and resource waste.

3.2 Problem Definition

The path creation problem can be stated as the following: given a routeR (with re-
sources allocated to the path), a type graphGt, a source data typets, a destination data
typetd, select a data pathD that 1) transformsts to td and can be mapped toR, and 2)
provides optimal performance (e.g. maximum throughput or minimal latency).

4 Algorithm

Our path creation strategy, in addition to satisfying type requirements, respects con-
straints imposed by node and link capacities and properties and optimizes some overall
path metric (e.g., latency or throughput). The heart of our strategy is a dynamic pro-
gramming algorithm, which simultaneously selects and maps a type-compatible com-
ponent sequence to optimize some performance metric.

We first describe a base version of the algorithm in which a single performance met-
ric needs to be optimized. We then present an extension for applications that require the
value of some performance metric to be in anacceptable range. For such applications,
only after that range has been met does the application worry about other preferences.
For example, most media streaming applications usually demand a suitable data trans-
mission rate (in some range); once the transmission rate is kept in that range, other
factors such as data quality become the concern for the application. We use the terms
range metricsandperformance metricsto refer to the two types of preferences. Lastly,
we describe a distributed implementation of this strategy.

4.1 Base Algorithm

Unfortunately, finding the optimal solution for the path creation problem defined in Sec-
tion 3.2 is an NP-hard problem. The complexity mainly comes from the large numbers
for both components and the possible ways to compose them, as well as different ways
to map them to network resources.

However, this problem can be made tractable with a reasonable simplification: we
partition the computation capacities of nodes into a fixed number ofdiscreteload inter-
vals; i.e., capacity is allocated to components only at interval granularity. This practical
assumption allows us to define, for a routeR, the notion of anavailable computation
resource vector, A(R) = (r1, r2, . . . , rp), whereri reflects the available capacity in-
tervals on nodeni (normalized to the interval [0,1]).

In the description that follows, we use maximum throughput as the goal of perfor-
mance optimization (other performance metrics can also be used); we usep to denote
the number of hosts in routeR (i.e. p = |R|); m for the total number of types (i.e.
m = |V (Gt)|); andn for the total number of components.
Dynamic Programming Strategy
The intuition behind the algorithm is to incrementally construct, for different amounts
of route resources, optimal mappings with increasing numbers of components, sayi+1,
using as input optimal partial solutions involvingi or fewer components.

To construct a solution withi + 1 (or fewer components) for a given destination
type t and resource vectorA, we consider all possible intermediate typest′ that can
be transformed tot; i.e., all those types for which an edge(t′, t) is present in the type
graph. For each sucht′, we consider all possible mappings of the associated component
c on nodes along the route that use no more thanA resources. For each such mapping
that transforms the available resource vector toA′ (after accounting forload(c)), we
combine this component with the previously calculated solution fort′ with i (or fewer)
components with resource vectorA. The combined mapping that yields the maximum
throughput is deemed the solution at stepi + 1 for typet.

c

length<=(k0-1)
n1 n4 n5n3n2A=(1,1,1,3/4,0)

load(c)=2/4

tsrc t0
t'

A'=(1,1,2/4,0,0)

n1 n5n2 n4n3M(c)=n3

Fig. 1: Mapc to n3 and lookup solution withA′.

Algorithm Plan
Input: ts,td, Gt, R
Output: The data path that yields maximal throughput from typets to td on routeR
1. (∗ Step 1: Initialization for partial plans with zero components∗)
2. for all t, A ∈ RA
3. do calculates[ts, t, A, 0]
4. (∗ Step 2: Incrementally building partial solutions∗)
5. for i←1 to p× n
6. do for all t ∈ V (Gt), A ∈ RA
7. do s[ts, t, A, i]←s[ts, t, A, i− 1]
8. for all c = (t′, t) ∈ E(Gt)
9. do for all nj thatA[nj] > 0
10. do M(c)←nj

11. A′←(A[0], . . . , A[nj − 1], A[nj]− load(c), 0, . . .)
12. TH←throughput(append(s[ts, t

′, A′, i− 1], c, A))
13. if TH > s[ts, t, A, i]
14. then s[ts, t, A, i]←TH
15. return s[ts, td, A = [1, 1, ..., 1], p× n]

Fig. 2: Base Path Creation Algorithm

Because this procedure runs backwards from the destination (i.e.cj+1 is mapped
beforecj), consequently, only resource vectors of the form(1, ..., 1, rj ∈ [0, 1], 0, ..., 0)
will be used in the calculation. These set of resource vectors is designatedRA. The size
of RA is O(p).

Formally, the algorithm fills up a table of partial optimal solutions (s[ts, t, A, i]) in
the orderi = 0, 1, 2, The solutions[ts, t,A, i] is the data path that yields maximum
throughput for transforming the source typets to typet, usingi or fewer components
and requiring no more resources thanA(A ∈ RA). Figure 1 shows the moment in the
calculation ofs[ts, t0, (1, 1, 1, 3/4, 0), i + 1] when the the componentc is mapped to
noden3, and appended with partial solutions[ts, t′, (1, 1, 2/4, 0, 0), i]. Note that in this
example, computation capacity of nodes is partitioned into 4 intervals.

The algorithm terminates at Stepp×n, with the solution ins[ts, td, (1, ..., 1), p×n].
This follows from the observation that there is no performance benefit from mapping
multiple copies of the same component to a node. The complexity of this algorithm is
O(n2 × m × p3) = O(n3 × p3)1 as opposed toO(pn) for an exhaustive enumera-
tion strategy.n, the total number of components, usually is a big number. Even for a
simple operation, such as compression, there may exists many different candidates, not
to mention that each component may have multiple configurations. Therefore,O(pn)

1 It is safe to assume thatm < n.

is infeasible in practice. In most scenarios,p is expected to be a small constant, there-
fore overall complexity of our path creation algorithm is determined by the number of
components. The pseudo code of this algorithm is shown in Figure 2.

4.2 Extension: Planning for Value Ranges

Given that our planning algorithm constructs communication paths by incrementally
filling in a solution table ofs[ts, t,A, i], it is natural to extend this to check that retained
solutions satisfy two conditions: (1) values of range metrics achieved on the current
solution will lie within the desired range, and (2) the value of any performance metrics
is in fact optimized.

Although this is the basic idea of the extension, for some range metrics, such as path
latency, additional work is needed. For such range metrics, even if the current value of
the range metrics is not in the range for a partial solution, this does not exclude the
possibility that this partial path may actually become a part of the final solution (e.g.
appending compression components to a partial path can bring down overall latency).
To estimatewhether the desired range can in fact be achieved by appending additional
components, we employ a procedure calledcomplementary planning, which just runs
the planning algorithm in reverse, providing information about whether or not the range
metrics can meet the requirement using residual resources along a path that transforms
type t to td. Using this information, when calculatings[ts, t,A, i], those partial solu-
tions that can not meet the requirement will be discarded in the first place. Heuristic
functions are used for choosing among candidate paths that can all meet the required
range. Note that complementary planning needs to be run just once.

Planning for value ranges can further be extended to calculate plans for a portion of
the whole path. Such a local mechanism allows disjointed segments of a data path to
change their behaviors independently and concurrently while maintaining some overall
performance guarantee. Due to space limitations, we omit the details about the local
planning mechanism, which can be found in a technical report [3].

4.3 Distributed (Incremental) Planning.

Though our path creation strategy has so far been described in a centralized manner, it
can easily be extended to run in a distributed fashion. To do that, each node (ni) on the
route just needs to calculates[ts, t,A = (1, ..., 1︸ ︷︷ ︸

i

, 0, ..., 0),
∑i

j=0(CNj)] (whereCNj

is the total number of components in nodenj), and send these partial solutions to the
next node. This procedure starts from the server node and continues until it reaches the
client node.

The primary benefit of this distributed version is that there is no need for a cen-
tralized planner that has a complete knowledge of components and types for all nodes
in the route. By incrementally calculating a path in such a distributed fashion, only
knowledge for common types that are used across different network domains is neces-
sary. This distributed version, combined with the local mechanisms described earlier,
enables a path-based system to be used in a wide area network, where a communication
path usually spans multiple administration domains.

Edge Server Proxy ServerInternet Service Mobile Client

wired link

L1 L2

N0 N1 N2IBM Compatible

Fig. 3: A typical network path between a mobile client and an internet services.

The traffic incurred for the distributed planning is just messages of partial solutions
between adjacent nodes. It should be noted here that these messages carry only values
of the performance metric, transmission of components is unnecessary.

5 Performance Evaluation

To evaluate the effectiveness of our approach, we have built the automatic path creation
support into the CANS infrastructure, and conducted a series of experiments in the
context of a web access application and an image streaming application.

5.1 Experimental Platform

We consider a typical network path between a mobile client and an Internet server as
shown in Figure 3. This platform models a mobile user using a portable device (N2)
to access network services in a shared wireless environment. The communication path
from the device to the service typically spans three hops: a wireless link (L2) connecting
the user’s device to an access point, a wired link (L1) between the wireless access point
and a gateway to the general Internet, and finally a WAN link between the gateway and
the host running the service. We assume that CANS components can be deployed on
three sites:N0, N1, andN2.

Theweb access applicationis a browser client, which downloads web pages (both
HTML page and images) from a standard web server. For this application, short re-
sponse time is preferred. Theimage streaming applicationis a simple JMF applica-
tion that continuously fetches JPEG frames from an image server and displays them. To
perform appropriately, this application requires a certain frame rate, and prefers high
data quality.

Components used in the automatically generated paths included:ImageFilter
and ImageResizer which are used to degrade image quality or resize JPEG im-
ages (to a factor of 0.2) respectively;Zip andUnzip , which work together to com-
press/decompress text. The load and bandwidth factor values, which are omitted here
for brevity, were profiled using representative data inputs: a web page containing 14 KB
text and six 25 KB JPEG images.

5.2 Effectiveness of the Base Path Creation Algorithm

To evaluate the effective of the base path creation strategy, we experimented with the
web access application, running under a wide range of network conditions.

In particular, we defined twelve different configurations listed in Table 1. These
configurations represent the network bandwidth and node capacity available to a single
client, and reflect different loading of shared resources and different mobile connectivity

Platform Edge Server(N0) L1 Proxy Server(N1) L2 Client (N2) Plan

1 Medium Ethernet High 19.2 Kbps Cell Phone A
2 Medium Ethernet High 19.2 Kbps Pocket PC A

3? High Fast Ethernet Medium 57.6 Kbps Laptop B
4? High Fast Ethernet Medium 115.2 Kbps Laptop B
5 Medium Ethernet High 384 Kbps Pocket PC A
6? High Fast Ethernet Medium 576 Kbps Laptop B

7? Medium Fast Ethernet High 1 Mbps Laptop C
8 Medium Ethernet High 3.84 Mbps Pocket PC D
9 Medium Ethernet High 3.84 Mbps Laptop D
10 Medium DSL High 3.84 Mbps Laptop B
11 Medium DSL Low 3.84 Mbps Laptop B
12? Medium Fast Ethernet High 5.5 Mbps Laptop E

Relative computation power of different node types(normalized to a 1 GHz Pentium III node):
High = 1.0, Medium =0.5, Laptop =0.5, Low = 0.25, Pocket PC =0.1, Cell Phone =0.05
Link bandwidths: Fast Ethernet =100 Mbps, Ethernet =10 Mbps, DSL = 384 Kbps
Table 1:Twelve configurations representing different loads and mobile network con-

nectivity scenarios, identifying the CANS plan automatically generated in each
case.

Plan N0 (Img/Txt) N1 (Img/Txt) N2 (Img/Txt)
A -/Zip (Filter, Resizer)/- -/Unzip
B (Filter, Resizer)/Zip -/- -/Unzip
C -/- Filter/Zip -/Unzip
D -/Zip -/- -/Unzip
E -/- -/Zip -/Unzip

Table 2: Component placement for the five automatically generated plans.

options.2 These configurations are grouped into three categories, based on whether the
mobile link L2 exhibits cellular, infrared, or wireless LAN-like characteristics. Five of
the configurations correspond to real hardware setups (tagged with a *), the remainder
were emulated by restricting (via system call interception) CPU and network resources
available to the application [1]. The computation power of different nodes is normalized
to a 1 GHz Pentium III node.

Table 1 also identifies, for each platform configuration, the automatically generated
plan for the web access application. The plans themselves are shown in Table 2, iden-
tifying the components that were automatically placed along the image and text paths.
For example, planA, which is used in platform 1 and 2, places aImageFilter and
a ImageResizer on nodeN1 along the image path, and aZip andUnzip driver
combination on nodesN0 andN2 along the text path.

Figure 4 shows the performance advantages of the automatically generated plans
when compared to the response times incurred for direct interaction between the browser
client and the server (denotedDirect in the figure). The bars in Figure 4 are normalized
with respect to the best response time achieved on each platform. In all twelve configu-

2 The bandwidth between the internet server and edge server available to a single client is as-
sumed to be 10 Mbps.

4.
09

3.
09

1.
98

1.
36

1

1.
23

1

1.
53

1.
03

1.
02

1.
53

6.
75

6.
78

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12

Platform

N
or

m
al

iz
ed

 R
es

po
ns

e
Ti

m
e

Direct Plan A Plan B

Plan C Plan D Plan E

Fig. 4: Response times achieved by different plans for each of the twelve platform
configurations compared to that achieved by direct interaction. All times are
normalized to the best performing plan for each configuration.

rations, the generated plans provide the best performance, improving the response time
metric by up to a factor of seven. Note that part of the lower response times come at
the cost of degraded image quality, but this is to be expected. The point here is that our
approachautomatesthe decisions of when such degradation is necessary.

Figure 4 also shows that different platforms require a different “optimal” plan,
stressing the importance of automating the component selection and mapping proce-
dure. In each case, the plan generated by our path creation strategy is the one that yields
the best performance, also improving performance by up to a factor of seven over the
worst-performing path. Note that while similar behavior can in principle be obtained
by other strategies, such as using hard coded rules to deploy components, unlike our
application-neutral approach, such strategies require significant domain knowledge, and
usually cannot find the best path for network conditions that change continually.

5.3 Planning for Value Ranges

Unlike the web accessing application, the image streaming application requires through-
put of the data path to be in a particular range so that the received data can be appropri-
ately rendered on the client devices. To validate our range planning strategy and further
investigate the adaptation behavior achieved using our approach in dynamic environ-
ments, we experimented with this application.

The experiment modeled the following scenario: initially a user receives a band-
width allocation of 150 KBps on the wireless link (L2), which then goes down to 10
KBps in increments of 10 KBps every 40 seconds (modeling new user arrivals or move-
ment away from the access point) before rising back to 150 KBps at the same rate
(modeling user departures or movement towards the access point). The data path is al-
located a (fixed) computation capacity of 1.0 (normalized to a 1 GHz Pentium III node)
on nodesN1 andN2 respectively and a bandwidth of 500 KBps onL1. N1, N2, andL1

are wired resources and consequently more capable of maintaining a certain minimum

0

2

4

6

8

10

12

14

16

0 200 400 600 800 1000 1200
Time(sec)

F
ra

m
es

/s
ec

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Q
ua

lit
y

Throughput Quality

A

B

C

D E F G

Plan N0 N1

A Filter(4) -
B Filter(3) -
C Filter(1) -
D - Resizer(1)
E Resizer(1) Filter(5)
F Resizer(1) Filter(3)
G Resizer(1) Filter(1)

Fig. 5: Performance of the Image Streaming Application

allocation (e.g., by employing additional geographically distributed resources) than the
wireless linkL2. The experiments were run on a wired network with the wireless link
behavior emulated by controlling available bandwidth of the application via system call
interception [1], as in some configurations in the web access experiment. In this ex-
periment, an external module was used to inform the path about resource availability
changes.3

The components used in the image streaming example include theImageFilter
and ImageResizer introduced previously. In addition, we also allowed both com-
ponents in our image streaming application to support multiple configurations: nine
configurations forImageFilter with quality values ranging from 0.1 to 0.9, four
configurations forImageResizer with scale factors ranging from 0.2 to 0.8. To dis-
play incoming images appropriately, incoming throughput (frame rate) is required to be
between 8 to 15 frames/sec. Within that range, better image quality is preferred.

Figure 5 shows the throughput and image quality achieved by the data path over
the 20 minute run of the experiment; the plans are shown in the table to the right. The
plot needs some explanation. The light-gray staircase pattern near the bottom of the
graph shows the bandwidth of linkL2 normalized to the throughput of a 25 KB image
transmitted over the link; so, a link bandwidth of 150 KBps corresponds to a throughput
of 6 frames/sec. The dashed black line corresponds to the quality achieved by the path.
The jagged curve shows the number of frames received every second; because of border
effects (a frame may arrive just after the measurement), this number fluctuates around
the mean. The plateaus in the quality curve are labelled with the plan that is deployed
during the corresponding time interval.

The results in Figure 5 show that the plans automatically created with our range
mechanism do provide desirable adaptation behavior. First, the throughput is kept in
the required range for the whole duration of the experiment (except for transition points
caused by reconfigurations). Second, as a result of our range planning strategy, the im-
age quality is decreased gradually, resulting in smooth variations in path quality. Using
optimization solely for throughput will select paths with more compression capability,

3 In practice, due to the unstable nature of shared wireless networks, this module must include
filtering mechanisms to determine whether a reconfiguration is in fact required when a change
is detected. We defer the construction of appropriate filters to our future work, noting only that
other researchers have looked at similar issues [7].

resulting in unnecessarily high throughput at the expense of worse image quality. The
large number of automatically selected plans, which are required for satisfying the ap-
plication preferences are yet another indication of the benefits of an automatic approach:
accomplishing similar behaviors using a hard-coded approach would necessitate de-
tailed domain knowledge and comprehensive involvement of application developers.

6 Related Work

Our work is related to previous work on constructing network aware communication
paths.

The Ninja project’s Automatic Path Creation (APC) service [5] deploys components
at proxy sites (active proxies) to distill/transform data to suitable formats for different
types of end devices. The primary focus of Ninja APC is to address the diversity in
capacity of end devices and last hop links. Our approach takes a more general view
that network resource conditions at each part of the network path can be different, and
more importantly, these conditions can change continually. As a result, paths created
with Ninja APC are basically function-oriented without further optimization for perfor-
mance, essentially offering differentiated service access according to a small number of
classes. Paths built using our approach are performance-oriented in the sense that they
can provide applications with performance optimized for the conditions.

Template-based or reusable plan sets are used in the Scout [9] and Panda projects [10].
Unlike our approach, these approaches require a database of predefined path templates
(or reusable plan sets), simply instantiating an appropriate template based on other
programmer-provided rules that decide whether or not a component can be created on
a resource. As our experimental results show, such template-based approaches would
need to rely on a significant amount of domain knowledge that may or may not be
appropriate for network resources that can change continually.

Recent work on multimedia content delivery [14] has also proposed an approach
to find a safest path (by mapping a sequence of processing operators) on a media ser-
vice proxy network to minimize the possibility of failing to deliver the content. Though
resource availability is considered in this work, such paths do not provide optimized
performance. Furthermore, since the approach is designed for multimedia content de-
livery, the selection of components benefits from more domain knowledge than general
application-neutral path-based approaches.

The same path construction problem exists in service composition across a wide
area network with QoS requirements. Recent work [6] has proposed the use of heuristic
strategies to map a given sequence of service instances for required QoS parameters.
Differing from this work that focuses only on the mapping of service instances, our ap-
proach solves component selection and mapping as a combined problem. Dividing the
component selection and mapping into two separate stages may exclude valid solutions
and impair the optimality of the produced path.

7 Conclusions

This paper has presented a model and corresponding algorithms for building network-
aware communication paths whose performance is optimized for the underlying net-
work conditions. Though built in the CANS infrastructure, our approach is applicable

for all general path-based systems that aim to provide applications with support for
adapting to dynamic changes in the network. The experiment results validate our ap-
proach, showing that the paths created automatically with our approach not only bring
applications considerable performance benefits, but also provides desirable adaptation
behaviors, requiring only minimal input from the applications. Furthermore, our algo-
rithm can be applied to disjoint segments of a path independently and can be calculated
in a distributed fashion, thus making it suitable for being used in a wide area network.

Acknowledgements We’d like to thank Weisong Shi for his help with experiments
using the web access application. This research was sponsored by DARPA agreements
N66001-00-1-8920 and N66001-01-1-8929; by NSF grant CAREER: CCR-9876128
and CCR-9988176; and Microsoft.

References

1. F. Chang, A. Itzkovitz, and V. Karamcheti. User-level Resource-Constrained Sandboxing. In
Proc. of the 4th USENIX Windows Systems Symposium, August 2000.

2. A. Fox, S. Gribble, Y. Chawathe, and E. A. Brewer. Adapting to Network and Client Vari-
ation Using Active Proxies: Lessons and Perspectives.IEEE Personal Communication,
September 1998.

3. X. Fu and V. Karamcheti. Automatic creation and reconfiguration of network-aware service
access paths. Technical Report TR2002-824, New York University, March 2002.

4. X. Fu, W. Shi, A. Akkerman, and V. Karamcheti. CANS:Composable, Adaptive Network
Services Infrastructure. InProc. of the 3rd USENIX Symposium on Internet Technologies
and Systems (USITS), March 2001.

5. S. D. Gribble and et al. The Ninja Architecture for Robust Internet-Scale Systems and Ser-
vices.Special Issue of IEEE Computer Networks on Pervasive Computing, 2000.

6. X. Gu, K. Nahrstedt, R. N. Chang, and C. Ward. Qos-assured service composition in man-
aged service overlay networks. InProceedings of The 23rd International Conference on
Distributed Computing Systems, May 2003.

7. M. Kim and B. Noble. Mobile network estimation. InProceedings of the Seventh ACM
Conference on Mobile Computing and Networking, July 2001.

8. A. Mallet, J. Chung, and J. Smith. Operating System Support for Protocol Boosters. InProc.
of HIPPARCH Workshop, June 1997.

9. A. Nakao, L. Peterson, and A. Bavier. Constructing End-to-End Paths for Playing Media
Objects. InProc. of the OpenArch’2001, March 2001.

10. P. Reiher, R. Guy, M. Yavis, and A. Rudenko. Automated Planning for Open Architectures.
In Proc. of OpenArch’2000, March 2000.

11. P. Sudame and B. Badrinath. Transformer Tunnels: A Framework for Providing Route-
Specific Adaptations. InProc. of the USENIX Technical Conf., June 1998.

12. D. Tennenhouse and D. Wetherall. Towards an Active Network Architecture.Computer
Communications Review, April 1996.

13. D. J. Wethrall, J. V. Guttag, and D. L. Tennenhouse. ANTS: A toolkit for building and
dynamically deploying network protocols. InProc. of 2nd IEEE OPENARCH, 1998.

14. D. Xu and K. Nahrstedt. Finding service paths in a media service proxy network. InProc.
of SPIE/ACM Conf. on Multimedia Computing and Networking (MMCN 2002), Jan 2002.

15. M. Yavis, A. Wang, A. Rudenko, P. Reiher, and G. J. Popek. Conductor: Distributed Adap-
tation for complex Networks. InProc. of the Seventh Workshop on Hot Topics in Operating
Systems, March 1999.

