ADFOCS 2006 Saarbrücken

ERDŐS MAGIC

Joel Spencer

Courant Institute

Der Zauberer von Budapest

Erdős 1947: If $\binom{n}{k} 2^{1-\binom{k}{2}} < 1$ there **exists** a two coloring of the edges of K_n with no monochromatic K_k .

Proof: Color Randomly!

Calculation: $n = \frac{k}{e\sqrt{2}}\sqrt{2}^k(1+o(1))$

Working with Paul Erdős was like taking a walk in the hills. Every time when I thought that we had achieved our goal and deserved a rest, Paul pointed to the top of another hill and off we would go.

– Fan Chung

Removing the Blemishes

G with n vertices, $\frac{nd}{2}$ edges, $d \ge 1$ Thm: There exists independent S^*

$$|S^*| \ge \frac{n}{2d}$$

Put $v \in S$ with probability p (parameter!)

If edge $\{v, w\}$ with $v, w \in S$ delete v

Left with independent S^*

Expectation:

S has pn vertices, $\frac{nd}{2}p^2$ edges

 S^* has $\geq f(p) := pn - \frac{nd}{2}p^2$ vertices Calculus: Set $p = \frac{1}{d}$

Erdős Magic: Exists S^* with

$$|S^*| \ge E[|S^*|] \ge f(p) = \frac{n}{2d}$$

Theorem (Turán). Any graph G has an independent set S with

$$|S| \ge \sum_{v \in G} \frac{1}{d_v + 1}$$

Randomized Algorithm

- Order Vertices Randomly.
- Place v in S greedily.

If v comes before its neighbors *then* it goes into S.

$$\Pr[v \in S] \ge \frac{1}{d_v + 1}$$

Linearity of Expectation:

$$E[|S|] = \sum_{v \in G} \Pr[v \in S] \ge \sum_{v \in G} \frac{1}{d_v + 1}$$

Erdős Magic: Such S **MUST** exist.

Erdős Magic (CS version!)

• Suppose a randomized algorithm creates a structure with desired properties with positive probability. Then such a structure *must* exist

• Suppose a randomized algorithm creates a structure S whose expected size is α . Then there *must* exist structures S of size $\geq \alpha$. (And also $\leq \alpha$.)

Derandomization?? Sometimes!!

 $n \times n \ A = [a_{ij}], \text{ all } |a_{ij}| \le 1$ Theorem: There exist $\epsilon_1, \dots, \epsilon_n \in \{-1, +1\}$ $\left|\sum_{i=1}^n a_{ij}\epsilon_j\right| \le \sqrt{2n \ln n}, 1 \le i \le n$

Probability Fact: $b_1, \ldots, b_n \in [-1, +1], \epsilon_1, \ldots, \epsilon_n \in \{-1, +1\}$ uniform i.i.d., $E := \sum_{j=1}^n \epsilon_j b_j$: Pr $[|E| > \alpha \sqrt{n}] < 2e^{-\alpha^2/2}$

Intuition: E Gaussian, $\sigma \leq \sqrt{n}$

Proof of Theorem: Take ϵ_i randomly!

 $\Pr[\mathsf{FAIL}] < n \cdot n^{-1} = 1$

Derandomization: Yes!

Thm (JS): Can get all $|\cdot| \leq 6\sqrt{n}$

But no algorithm known!

$$\begin{split} |A_i| &= n, \ 1 \leq i \leq m = 2^{n-1}k \\ \text{Seek Red/Blue } \chi \text{ with no } A_i \text{ monochromatic} \\ \text{Erdős [1963]: } k < 1 \Rightarrow \exists \chi \\ \text{Beck [1978]: } k < cn^{1/3} \Rightarrow \exists \chi \\ \text{Radhakrishnan-Srinivasan[2000]} \end{split}$$

$$k < c[n/\ln n]^{1/2} \Rightarrow \exists \chi$$

Erdős [1964]: There exists family with $k = cn^2$ with no χ

Coloring Algorithm(s)

- 1. Color Randomly
- 2. Order Vertices Randomly.
- 3. Consider sequentially. If v "still dangerous" switch $\chi(v)$ with probability p

Still Dangerous: $v \in A_i$ which has *always* been

monochromatic

FAIL: Some A_i monochromatic at end

Erdős Magic: If $\Pr[FAIL] < 1 \chi MUST$ exist

Two Failure Modes

FAILI: A_i was "Red" and stayed Red FAILII: A_i wasn't Red and became Red $Pr[FAILI(A_i)] = 2^{1-n}(1-p)^n$

 $\Pr[\mathsf{FAILI}] \le (2^{n-1}k)(2^{1-n}(1-p)^n) = k(1-p)^n$

- A_i blames A_j if
- $A_i \cap A_j = \{v\}$
- A_j Blue at start
- A_i Red at end
- v LAST point of A_i to change
- When v reached A_j all Blue

Theorem: If FAILII then some A_i blames some

 A_j

Corollary:

$$\Pr[\text{FAILII}] \leq \sum_{i \neq j} \Pr[A_i \text{ blames } A_j]$$

Bounding $Pr[A_i \text{ blames } A_j]$

Fix ordering.

- Factor 2 for Red/Blue symmetry
- v Blue and Flips: p/2
- $w \in A_j$ after v: 1/2
- $u \in A_i$ after v: 1/2
- $w \in A_j$ before v: 1/2 p/2
- $u \in A_i$ before v: 1/2 + p/2
- *I*: Set of $w \in A_i$ before v
- J: Set of $u \in A_j$ before v

 $\Pr[A_i \text{ blames } A_j | I, J] = 2^{2-2n} p (1+p)^{|I|} (1-p)^{|J|}$

A Bad Gamble

n-1 Red Cards, n-1 Blue Cards, Joker

Shuffle. Start with 1000\$

Red: Multiply funds by 1 + p

Blue: Multiply funds by 1 - p

Joker: Cash In.

Theorem: Expectation less than initial Corollary

$$\Pr[A_i \text{ blames } A_j] \le 2^{2-2n}p$$

Corollary

$$\Pr[\text{FAILII}] \le (2^{n-1}k)^2 2^{2-2n} p = k^2 p$$

Asymptotic Calculus

Pr[FAIL] $< k(1-p)^n + k^2p$ Erdős Magic: If for some $p \in [0, 1]$

$$k(1-p)^n + k^2 p < 1$$
 (*)

then χ **MUST** exist.

What is max k = k(n) so that (*) holds for some $p \in [0, 1]$?

Answer: $k \sim c \sqrt{n/\ln n}$

Heilbronn Problem

THM: $\exists P_1, \ldots, P_n \in [0, 1]^2$, all $\mu(P_i P_j P_k) \le 10^{-3} n^{-2}$

Pf: Random m = 2n points. $\Pr[\mu(P_iP_jP_k) \le \epsilon] \le 10\epsilon$ (exercise!) $E[\text{small}\Delta] \le {m \choose 3}10^{-2}n^{-2}$ Delete one vertex from each small triangle. $\ge f(m) := m - {m \choose 3}10^{-2}n^{-2} \ge n$ remain Erdős Magic: Points *must* exist!

Liar Game

Paul seeks $x \in \{1, ..., 100\}$.

Ten Queries. Carole may lie once.

Theorem: Carole Wins!

Carole plays randomly

At end of game:

 $\Pr[x \text{ possible }] = \frac{11}{1024}$

Expected number of possible $100\frac{11}{1024} > 1$

When > 1 possible Carole wins

Carole sometimes wins

Erdős Magic: Carole always wins!

Sum Free Sets

 $A \subseteq Z - \{0\}$ sumfree if no $a_1 + a_2 = a_3$ THM: $B = \{b_1, \dots, b_s\} \subset Z - \{0\}$. There exists sumfree $A \subset B$, $|A| \ge \frac{1}{3}|B|$ Pf: p = 3k + 2 prime, $p > 2 \max |b_i|$ $C = \{k + 1, \dots, 2k + 1\}$ sumfree in Z_p Random Hash: $x \in Z_p - \{0\}$ uniform $\Psi_x : B \to Z_p - \{0\}$ $b \to xb \mod p$ $\Psi_x^{-1}(C)$ sumfree (in Z) $\Pr[\Psi_x(b) \in C] = \frac{k+1}{3k+1} > \frac{1}{3}$ $E[|\Psi_x^{-1}(C)|] > \frac{|B|}{3}$ Erdős Magic: There exists x

$$|\Psi_x^{-1}(C)| > \frac{|B|}{3}$$

Take $A = \Psi_x^{-1}(C)$.

It is not knowledge, but the act of learning, not possession but the act of getting there, which grants the greatest enjoyment. When I have clarified and exhausted a subject, then I turn away from it, in order to go into darkness again; the never-satisfied man is so strange - if he has completed a structure then it is not in order to dwell in it peacefully, but in order to begin another. I imagine the world conqueror must feel thus, who, after one kingdom is scarely conquered, stretches out his arms for another.

– Karl Friedrich Gauss (1808)

The universe is not only queerer than we suppose but queerer than we *can* suppose.

– J.B.S. Haldane