Midwest Probability Colloquium

October 2009

Sieving a Needle

from

Lovász's Exponential Haystack

Joel Spencer

Lovász Local Lemma The Framework

Universe Ω .

 $i\in \Omega$ make independent choice

 BAD_{α} depends on choices $i \in X_{\alpha}$

 $\alpha \sim \beta \text{ if } X_{\alpha} \cap X_{\beta} \neq \emptyset$

Example: Boolean $x_1, \ldots, x_n \leftarrow \{T, F\}$

Clause C_{α} , e.g.: $x_{11} \wedge \overline{x}_{19} \wedge x_{204}$

 BAD_{α} : C_{α} false.

Desired Sieve Outcome:

$$\wedge_{\alpha} \overline{BAD}_{\alpha} \neq \emptyset$$

Example: $\wedge C_{\alpha}$ satisfiable.

Lovász Local Lemma The Statement (Symmetric Case)

Assume:

All $\Pr[BAD_{\alpha}] \leq p$ All α : $|\{\beta : \beta \sim \alpha\}| \leq d$ $p\frac{d^d}{(d+1)^{d+1}} \leq 1$ (roughly: epd < 1) Conclusion:

$$\wedge_{\alpha} \overline{BAD}_{\alpha} \neq \emptyset$$

Example: Each C_{α} of Length 4. $p = \frac{1}{16}$. Each C_{α} overlaps ≤ 5 clauses. No restriction on number of Clauses! Satisfiable.

Lovász Local Lemma Lovász (~ 1970) Proof

Induction on |ARB|:

$$\Pr[BAD_{\alpha}| \wedge_{ARB} \overline{BAD}_{\gamma}] \le xp$$

Renumber $\alpha = 0$, $ARB = \{1, \ldots, n\}$, $0 \sim 1, \ldots d$:

$$\Pr[B_0|\overline{B}_1 \wedge \cdots \wedge \overline{B}_n] =$$

 $=\frac{\Pr[B_0 \wedge \overline{B}_1 \wedge \dots \wedge \overline{B}_d | \overline{B}_{d+1} \wedge \dots \wedge \overline{B}_n]}{\Pr[\overline{B}_1 \wedge \dots \wedge \overline{B}_d | \overline{B}_{d+1} \wedge \dots \wedge \overline{B}_n]} = \frac{NUM}{DEM}$

 $NUM \leq \Pr[B_0 | \overline{B}_{d+1} \wedge \dots \wedge \overline{B}_n] = \Pr[B_0] \leq p$ $DEN = \prod_{i=1}^d \Pr[\overline{B}_i | \overline{B}_{i+1} \wedge \dots \wedge \overline{B}_n]$ Induction: $DEN \geq (1 - xp)^d$ Done if $p(1 - xp)^{-d} \leq xp$, $1 \leq x(1 - xp)^d$ Calculus: Optimal $x = \frac{1}{p(d+1)}$. OK if $p \leq d^d(d+1)^{-(d+1)}$.

Lovász Local Lemma Moser-Tardos 2009 Algorithm

Each $i \in \Omega$ makes independent choice WHILE some C_{α} false SELECT * false C_{α} Each $i \in X_{\alpha}$ reselects

*Use BFS for Efficiency

 $LOG = (e_1, \dots, e_t, \dots)$, which *C*'s called E.g.: $(\alpha, \gamma, \kappa, \alpha, \beta, \delta, \alpha, \kappa)$ "Time" T = length of LOG $T_{\alpha} =$ number of times α called Key Lemma: $E[T_{\alpha}] \leq xp$ As $E[T] = \sum E[T_{\alpha}]$, Linear Time Algorithm!

Tree of Relevant History

TREE[t] has root e_t

FOR i = t - 1 DOWN TO 1

If e_i overlaps e_j already in *TREE*

(** If not, Ignore **)

Make e_i child of e_j

(***) If choices, pick node furthest from root

Key Properties

- The TREE[t] are all different
- $e \in TREE[t]$ on same level do not overlap
- If $e_r, e_s \in TREE[t]$, r < s, e_r, e_s overlap,

Then e_r lower than e_s

• Let $i \in \Omega$. $i \in f_1, \ldots, f_s \in TREE[t]$.

Order of f_j in LOG is by depth in TREE[t].

$$E[T_{\alpha}] = \sum_{TR} \Pr[\exists_t TREE[t] = TR]$$

TR rooted at α

 γ child of $\beta \Rightarrow \gamma, \beta$ overlap.

$$\Pr[\exists_t TREE[t] = TR] \le \prod_{\gamma \in TR}^{(rep)} \Pr[BAD_{\gamma}]$$

Proof: Preprocess Randomness

Each *i* chooses y_1, y_2, \ldots

 TR only $\alpha : \mathit{BAD}_\alpha$ with first choice

 $TR \alpha$ with child β .

 BAD_{β} with first choice all $i \in X_{\beta}$

 BAD_{α} with first choice $i \notin X_{\beta}$, else second.

General: Choice Number determined by TR.

$$E[T_{\alpha}] \leq \sum_{TR} \prod_{\gamma \in TR}^{(rep)} \Pr[BAD_{\gamma}]$$

$$E[T_{\alpha}] \le y := \sum_{TR} p^{|TR|}$$

TR subtree of infinite rooted tree.

Each node has d children (here α child of α) Galton-Watson BIN[d, p] Birth Process.

y/p = expected number of subtrees. $p \leq \frac{(d-1)^{d-1}}{d^d} \Rightarrow y = p(1+y)^d \leq \frac{1}{d-1}$ AlmostProof

Specifying *i* children of root, py^i .

$$y = p \sum_{i=0}^{d} {d \choose i} y^{i} = p(1+y)^{d}$$

Here α is child of α so **same** as Lovász!

You don't have to believe in God but you should believe in The Book. – Paul Erdős