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Working with Paul Erdős was like taking a walk

in the hills. Every time when I thought that we

had achieved our goal and deserved a rest, Paul

pointed to the top of another hill and off we

would go.

– Fan Chung
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Six Standard Deviations

Suffice

S1, . . . , Sn ⊆ {1, . . . , n}

χ : {1, . . . , n} → {−1 + 1}

χ(S) :=
∑

j∈S χ(j), disc(S) = |χ(S)|

Theorem (JS/1985): There exists χ

disc(Si) ≤ 6
√

n

for all 1 ≤ i ≤ n.

Conjecture (JS/1986-2009) You can’t find

χ in polynomial time.

Theorem (Bansal/2010): Yes I can!
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Erdős Magic

Theorem (Erdős): There exists χ

disc(Si) ≤
√

2n ln 2n

for all 1 ≤ i ≤ n.

Proof: Pick χ randomly!
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Linear Formulation

|aij| ≤ 1, 1 ≤ i, j ≤ n.

Li(x1, . . . , xn) :=
n

∑

j=1

aijxj

Theorem (JS/1985): There exists x1, . . . , xn ∈

{−1,+1}

|Li(x1, . . . , xn)| ≤ 6
√

n

for all 1 ≤ i ≤ n.
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Simultaneous Roundoff

Old xoldj , New xnewj

∆i := Lnew

i − Lold

i

Theorem (JS/1985): Given xoldj ∈ [−1,+1]

there exists a simultaneous roundoff xnewj ∈

{−1,+1} with

|∆i| ≤ 6
√

n

for all 1 ≤ i ≤ n.
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Entropy

With Pr[Z = α] = pα, α ∈ I:

H[Z] :=
∑

α∈I

pα(− lg pα)

For p ∈ (0,1):

H(p) := −p lg p− (1− p) lg(1− p)

• Subadditivity:

H((Z1, . . . , Zn)) ≤
n

∑

j=1

H(Zi)

• Pigeonhole:

H(Z) ≤ s⇒ some Pr[Z = α] ≥ 2−s
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The Cost Function

Definition: COST[β] is the entropy of the round-

off of the standard normal N to the nearest

multiple of β.

Asymptotics:

β large:

COST[β] = Θ(βe−β2/8)

β small:

COST[β] = Θ(lgβ−1)
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The Cost Equation

|aij| ≤ 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m

Li(x1, . . . , xm) :=
m
∑

j=1

aijxj

Theorem: If

n
∑

i=1

COST[βi] ≤ m(1− H(c))

then there exists x1, . . . , xm ∈ {−1,0,+1}:

• Substantial: |{j : xj 6= 0}| ≥ 2cm.

• Good: For 1 ≤ i ≤ n
∣

∣

∣

∣

∣

∣

m
∑

j=1

aijxj

∣

∣

∣

∣

∣

∣

≤ βi

2

√
m
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Proof of The Cost Equation

xj ∈ {−1,+1}, uniform, independent.

Λ : (x1, . . . , xm)→ (Z1, . . . , Zn)

with Zi roundoff of Li(x1, . . . , xm) to nearest

multiple of βi
√

m.

H(Zi) ≤ COST[βi]

H(Λ) ≤ ∑

COST[βi] ≤ m(1− H(c))

Some Λ(~x) hit ≥ 2mH(c) times.

Kleitman: Λ(~x′) = Λ( ~x′′), ρ(~x′, ~x′′) ≥ 2cm.

Beck Idea: Set

xj =
x′j − x′′j

2
for 1 ≤ j ≤ m
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Coloring by Phases

Phase Zero

c = 1
4. COST[β] = 1− H(c).

Color Half. |∆i| ≤ β
√

n.

Phase t: When ∼ 2−tn uncolored.

c = 1
4. COST[β] = 2

−t(1− H(c)).

Color Half.

|∆i| ≤ β

√

n2−t =
√

nO(2−t/2
√

t)

At end

|∆| ≤
∞
∑

t=0

|∆(T)
i | =

√
n ·O(1)
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What is

Semidefinite Programming

Linear Programming on aij, 1 ≤ i, j ≤ m

A = (aij) Semidefinite

• Unknowns ~v1, . . . , ~vm ∈ Rm

Linear Programming on aij = ~vi · ~vj.

Feasibility: If system feasible, Semidefinite

Programming will find ~v1, . . . , ~vm ∈ Rm.

Maybe not the ones you were thinking of!
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The Semidefinite Program

Assume βi, c, m, n satisfy Cost Equation.

|~vj|2 ≤ 1, 1 ≤ j ≤ m

∑m
j=1 |~vj|2 ≥ cm

∣

∣

∣

∑m
j=1 aij ~vj

∣

∣

∣

2 ≤ [βi
2

√
m]2

Solution ~vj = xj ∈ {−1,0,+1} ∈ R1.

Find solution in Rm!
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Random Projection

~G = (g1, . . . , gm), gi ∼ N(0,1), i.i.d.

xj ← xj + ǫ~vj · ~G

Li ← Li + ǫ[
m
∑

j=1

aij ~vj] · ~G

ǫ~z · ~G ∼ N(0, ǫ2|~z|2)

xj, Li martingales. Not independent.

Brownian motion as ǫ→ 0+.

Roughly xj ← xj ± ǫ, Lj ← Lj ± ǫβi
√

m/2

Problem: A few Li get big.
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Moving by Phases

Time T := 1
n

∑

x2
i

Phase 0: Start Arbitrary. End 1− T ≤ 1
2.

Phase t: Start 1− T < 2−t. End 1− T ≤ 2−t−1

xj frozen if “near” ±1.

m ≥ n
2 floating in Phase 0.

Claim: Phase 0 (others similar) with all

|∆i| ≤ K
√

n

T ← T + ǫ2
∑ |~vi · ~G|2 ≥ T + ǫ2(cm/n)

Number of steps Θ(ǫ−2)
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Danger Levels

i safe if |∆i|n−1/2 ≤ K1

Danger Level u: |∆i|n−1/2 ∈ (Ku, Ku+1]

Ku → K

Speeds γ0 > γ1 > γ2 > . . .

When i at level u
∣

∣

∣

∣

∣

∣

m
∑

j=1

aij ~vj

∣

∣

∣

∣

∣

∣

2

≤ [
γu

2

√
m]2

More Dangerous ⇒ Slow Down!
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Does it Work?

Phase 0: m = n
2, c = 1

4

n
∑

i=1

COST[βi] ≤ (1− H(c))m = c1n

Danger Levels: K
2 , 2K

3 , 3K
4 , . . .

• COST[γ0] ≤ c1
10

While safe Li ← Li ± ǫγ0
√

m/2

• In Θ(ǫ−1) steps 1% of |∆i| reach K
2

√
n

Pick γ0 large and small enough.

γ1 = γ0
10. Expensive but only 1%.

Tenth of speed, Third of distance.

10−6n reach 2K
3

√
n.

γu = γ010
−u. Expensive but very few. OK!
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Forcing Perpendicularity

At (x1, . . . , xm) add condition

∣

∣

∣

∣

∣

∣

m
∑

j=1

xj ~vj

∣

∣

∣

∣

∣

∣

2

≤ n−10

Expensive but only one.

xj ← xj + δj with

(x1, . . . , xm) · (δ1, . . . , δm) ∼ 0

Each step T new ≥ T old + ǫ2(cm/n) definitely.

Number of steps Θ(ǫ−2) definitely.
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Two Exponential Needles

• Bansal!

• Moser/Tardos on Local Lovász Lemma

Moser/Tardos: Indpendent Proof

Bansal: Uses existence to find algorithm
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It is six in the morning.

The house is asleep.

Nice music is playing.

I prove and conjecture.

– Paul Erdős, in letter to Vera Sós
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