Microsoft Research New England

May 12, 2010

Colloquium

Finding Needles

in Exponential Haystacks

Joel Spencer

Working with Paul Erdős was like taking a walk in the hills. Every time when I thought that we had achieved our goal and deserved a rest, Paul pointed to the top of another hill and off we would go.

– Fan Chung

Six Standard Deviations Suffice

$$\begin{split} S_1, \dots, S_n &\subseteq \{1, \dots, n\} \\ \chi : \{1, \dots, n\} \to \{-1 + 1\} \\ \chi(S) &:= \sum_{j \in S} \chi(j), \text{ disc}(S) = |\chi(S)| \\ \end{split}$$
Theorem (JS/1985): There exists χ

 $\operatorname{disc}(\mathtt{S}_{\mathtt{i}}) \leq 6\sqrt{n}$

for all $1 \leq i \leq n$.

Conjecture (JS/1986-2009) You can't find χ in polynomial time.

Theorem (Bansal/2010): Yes I can!

Erdős Magic

Theorem (Erdős): There exists χ

 $\operatorname{disc}(S_i) \leq \sqrt{2n \ln 2n}$

for all $1 \leq i \leq n$.

Proof: Pick χ randomly!

Linear Formulation

 $|a_{ij}| \leq 1$, $1 \leq i, j \leq n$.

$$L_i(x_1,\ldots,x_n) := \sum_{j=1}^n a_{ij}x_j$$

Theorem (JS/1985): There exists $x_1, \ldots, x_n \in \{-1, +1\}$

$$|L_i(x_1,\ldots,x_n)| \le 6\sqrt{n}$$

for all $1 \leq i \leq n$.

Simultaneous Roundoff

Old x_j^{old} , New x_j^{new}

$$\Delta_i := L_i^{\texttt{new}} - L_i^{\texttt{old}}$$

Theorem (JS/1985): Given $x_j^{\text{old}} \in [-1, +1]$ there exists a simultaneous roundoff $x_j^{\text{new}} \in \{-1, +1\}$ with

$$|\Delta_i| \le 6\sqrt{n}$$

for all $1 \leq i \leq n$.

Entropy

With $\Pr[Z = \alpha] = p_{\alpha}, \ \alpha \in I$:

$$H[Z] := \sum_{\alpha \in I} p_{\alpha}(-\lg p_{\alpha})$$

For $p \in (0, 1)$:

$$H(p) := -p \lg p - (1-p) \lg (1-p)$$

• Subadditivity:

$$H((Z_1,\ldots,Z_n)) \leq \sum_{j=1}^n H(Z_i)$$

• Pigeonhole:

$$H(Z) \leq s \Rightarrow$$
 some $\Pr[Z = \alpha] \geq 2^{-s}$

The Cost Function

Definition: $COST[\beta]$ is the entropy of the roundoff of the standard normal N to the nearest multiple of β .

Asymptotics:

 β large:

$$COST[\beta] = \Theta(\beta e^{-\beta^2/8})$$

 β small:

$$COST[\beta] = \Theta(\lg \beta^{-1})$$

The Cost Equation

 $|a_{ij}| \le 1, \ 1 \le i \le n, \ 1 \le j \le m$ $L_i(x_1, \dots, x_m) := \sum_{j=1}^m a_{ij} x_j$

Theorem: If

$$\sum_{i=1}^{n} \text{COST}[\beta_{i}] \leq m(1 - H(c))$$

then there exists $x_1, ..., x_m \in \{-1, 0, +1\}$:

- Substantial: $|\{j : x_j \neq 0\}| \ge 2cm$.
- Good: For $1 \leq i \leq n$

$$\left|\sum_{j=1}^{m} a_{ij} x_j\right| \le \frac{\beta_i}{2} \sqrt{m}$$

9

Proof of The Cost Equation

 $x_j \in \{-1, +1\}$, uniform, independent.

$$\Lambda:(x_1,\ldots,x_m)\to(Z_1,\ldots,Z_n)$$

with Z_i roundoff of $L_i(x_1, ..., x_m)$ to nearest multiple of $\beta_i \sqrt{m}$. $H(Z_i) \leq \text{COST}[\beta_i]$ $H(\Lambda) \leq \sum \text{COST}[\beta_i] \leq m(1 - H(c))$ Some $\Lambda(\vec{x})$ hit $\geq 2^{mH(c)}$ times. Kleitman: $\Lambda(\vec{x'}) = \Lambda(\vec{x''}), \ \rho(\vec{x'}, \vec{x''}) \geq 2cm$. Beck Idea: Set

$$x_j = rac{x_j' - x_j''}{2}$$
 for $1 \le j \le m$

Coloring by Phases

Phase Zero

$$c = \frac{1}{4}$$
. $COST[\beta] = 1 - H(c)$.
Color Half. $|\Delta_i| \le \beta \sqrt{n}$.
Phase t: When $\sim 2^{-t}n$ uncolored.
 $c = \frac{1}{4}$. $COST[\beta] = 2^{-t}(1 - H(c))$.
Color Half.

$$|\Delta_i| \leq \beta \sqrt{n2^{-t}} = \sqrt{n}O(2^{-t/2}\sqrt{t})$$

At end

$$|\Delta| \leq \sum_{t=0}^{\infty} |\Delta_i^{(T)}| = \sqrt{n} \cdot O(1)$$

What is Semidefinite Programming

Linear Programming on a_{ij} , $1 \leq i, j \leq m$

 $A = (a_{ij})$ Semidefinite

• Unknowns $ec{v_1},\ldots,ec{v_m}\in R^m$

Linear Programming on $a_{ij} = \vec{v_i} \cdot \vec{v_j}$.

Feasibility: If system feasible, Semidefinite Programming will find $\vec{v_1}, \ldots, \vec{v_m} \in \mathbb{R}^m$.

Maybe not the ones you were thinking of!

The Semidefinite Program

Assume β_i, c, m, n satisfy Cost Equation. $|\vec{v_j}|^2 \leq 1, \ 1 \leq j \leq m$ $\sum_{j=1}^m |\vec{v_j}|^2 \geq cm$ $\left|\sum_{j=1}^m a_{ij}\vec{v_j}\right|^2 \leq \left[\frac{\beta_i}{2}\sqrt{m}\right]^2$ Solution $\vec{v_j} = x_j \in \{-1, 0, +1\} \in R^1$. Find solution in R^m !

Random Projection

$$\vec{G} = (g_1, \dots, g_m), \ g_i \sim N(0, 1), \text{ i.i.d.}$$
$$x_j \leftarrow x_j + \epsilon \vec{v_j} \cdot \vec{G}$$
$$L_i \leftarrow L_i + \epsilon [\sum_{j=1}^m a_{ij} \vec{v_j}] \cdot \vec{G}$$
$$\epsilon \vec{z} \cdot \vec{G} \sim N(0, \epsilon^2 |\vec{z}|^2)$$

 x_j, L_i martingales. Not independent. Brownian motion as $\epsilon \to 0^+$. Roughly $x_j \leftarrow x_j \pm \epsilon$, $L_j \leftarrow L_j \pm \epsilon \beta_i \sqrt{m/2}$ Problem: A few L_i get big.

Moving by Phases

Time $T := \frac{1}{n} \sum x_i^2$ Phase 0: Start Arbitrary. End $1 - T \le \frac{1}{2}$. Phase t: Start $1 - T < 2^{-t}$. End $1 - T \le 2^{-t-1}$ x_j frozen if "near" ± 1 . $m \ge \frac{n}{2}$ floating in Phase 0. Claim: Phase 0 (others similar) with all

$$|\Delta_i| \le K\sqrt{n}$$

 $T \leftarrow T + \epsilon^2 \sum |\vec{v_i} \cdot \vec{G}|^2 \ge T + \epsilon^2 (cm/n)$ Number of steps $\Theta(\epsilon^{-2})$

Danger Levels

i safe if $|\Delta_i| n^{-1/2} \leq K_1$ Danger Level *u*: $|\Delta_i| n^{-1/2} \in (K_u, K_{u+1}]$ $K_u \to K$ Speeds $\gamma_0 > \gamma_1 > \gamma_2 > \dots$ When *i* at level *u*

$$\left|\sum_{j=1}^{m} a_{ij} \vec{v_j}\right|^2 \leq \left[\frac{\gamma_u}{2} \sqrt{m}\right]^2$$

More Dangerous \Rightarrow Slow Down!

Does it Work?

Phase 0: $m = \frac{n}{2}, c = \frac{1}{4}$ $\sum_{i=1}^{n} \text{COST}[\beta_i] \leq (1 - H(c))m = c_1n$ Danger Levels: $\frac{K}{2}, \frac{2K}{3}, \frac{3K}{4}, \dots$ • $\operatorname{COST}[\gamma_0] \leq \frac{c_1}{10}$ While safe $L_i \leftarrow L_i \pm \epsilon \gamma_0 \sqrt{m}/2$ • In $\Theta(\epsilon^{-1})$ steps 1% of $|\Delta_i|$ reach $\frac{K}{2}\sqrt{n}$ Pick γ_0 large and small enough. $\gamma_1 = \frac{\gamma_0}{10}$. Expensive but only 1%. Tenth of speed, Third of distance. $10^{-6}n$ reach $\frac{2K}{3}\sqrt{n}$. $\gamma_u = \gamma_0 10^{-u}$. Expensive but very few. OK!

Forcing Perpendicularity

At (x_1, \ldots, x_m) add condition

$$\left|\sum_{j=1}^{m} x_j \vec{v_j}\right|^2 \le n^{-10}$$

Expensive but only one.

 $x_j \leftarrow x_j + \delta_j$ with $(x_1, \dots, x_m) \cdot (\delta_1, \dots, \delta_m) \sim 0$ Each step $T^{\text{new}} \ge T^{\text{old}} + \epsilon^2 (cm/n)$ definitely. Number of steps $\Theta(\epsilon^{-2})$ definitely.

Two Exponential Needles

- Bansal!
- Moser/Tardos on Local Lovász Lemma

Moser/Tardos: Indpendent Proof

Bansal: Uses existence to find algorithm

It is six in the morning.

The house is asleep.

Nice music is playing.

I prove and conjecture.

- Paul Erdős, in letter to Vera Sós