Tianjin

June 2007

GAMES

MATHEMATICIANS PLAY

Joel Spencer

Courant Institute

A mathematician's work is mostly a tangle of guesswork, analogy, wishful thinking and frustration, and proof, far from being the core of discovery, is more often than not a way of making sure that our minds are not playing tricks.

- Gian - Carlo Rota

THE TENURE GAME

YAN			
ALON	CHEN		
KARP	KNUTH		LOVASZ
PostD	AP1	AP2	Assoc

Each year, Chair Paul gives promotion list L to

Dean Carole. Carole Either

- Promotes L, Fires \overline{L} or
- Promotes \overline{L} , Fires L

Carole wins if nobody gets tenure.

 a_k people k rungs from Tenure

Theorem. If $\sum a_k 2^{-k} < 1$ then Carole wins.

Proof1. Carole plays randomly.

T = number getting Tenure.

 $\Pr[\text{Paul wins}] \le E[T] = \sum a_k 2^{-k} < 1$

Therefore Carole can always win.

Proof2. (Derandomization)

Carole plays to minimize E[T].

Theorem. If $\sum a_k 2^{-k} \ge 1$ then Paul wins. Lemma. If $E[T] \ge 1$ there is a move for Paul so that $E[T^{yes}] \ge 1$ and $E[T^{no}] \ge 1$.

Proof of Theorem:

Paul makes that splitting move.

BALANCING VECTOR GAME

- n rounds. Initial $P \leftarrow \mathbf{0} \in \mathbb{R}^n$
- Paul picks $v_i \in \{-1, +1\}^n$
- Carole picks $\epsilon_i \in \{-1, +1\}$

$$P \leftarrow P + \epsilon_i v_i$$

Payoff to Paul: $|P^{final}|_{\infty}$

VAL(n): value of Game.

Similar to:

- On Line Coloring of $A_1, \ldots, A_n \subseteq \{1, \ldots, n\}$
- On Line Roundoff of $x_1, \ldots, x_n \in [0, 1]$ to minimize max error in linear L_1, \ldots, L_n Carole ~ Worst Case Analysis

Theorem. If

$$\Pr[|S_n| > \alpha] < n^{-1}$$

then Carole can keep $|P^{final}|_{\infty} < \alpha$ Proof1 . Carole plays randomly T = number of coordinates L_i with $|L_i| > \alpha$

$$E[T] = n \Pr[|S_n| > \alpha] < 1$$

$$\mathsf{Pr}[\mathsf{Paul} \text{ wins}] \leq E[T] < 1$$

Therefore Carole can *always* win Proof2 (Derandomization) $P = (L_1, ..., L_n)$ with t rounds remaining. $E[T] = w_t(P) = \sum \Pr[|L_i + S_t| > \alpha]$

Carole plays to minimize E[T]

Theorem. If

$$\Pr[|S_n| > \alpha] > cn^{-1/2}$$

then Paul can force $|P^{final}|_{\infty} > \alpha$ Proof. With t+1 rounds remaining Paul picks $v = (\delta_1, \dots, \delta_n)$ with

$$|w_t(P+v) - w_t(P-v)| \le$$

 $\leq \max |\Pr[|L_i + 1 + S_t| > \alpha] - \Pr[|L_i - 1 + S_t| > \alpha]|$

$$= O(t^{-1/2})$$

Then $w(P^{new}) > w(P^{old}) - O(t^{-1/2})$ $w(P^{final}) > w(P^{init}) - \sum O(t^{-1/2}) >$ $> w(P^{init}) - O(n^{1/2}) > 0$ Corollary. $VAL(n) = \Theta(\sqrt{n \ln n})$

PAUL AND CAROLE GAMES

• RANDOMIZATION

Carole plays randomly. If she wins with positive probability she can always win.

- DERANDOMIZATION
- Conditional Expectation gives weight function

for Carole to minimize deterministicly.

• ANTIRANDOMIZATION

Paul uses this weight function

for effective counterplay.

Paul = Paul Erdős

Carole is anagram for ??

Paul versus Carole

- ${\it N}$ Possibilities
- Q Yes/No Paul Queries
- K (or fewer) Carole Lies

Try it with N = 100, Q = 10, K = 1

Carole plays Adversary Strategy

- \Rightarrow Perfect Information
- \Rightarrow Winning Strategy for Paul or Carole

 $B_K(Q) =$ maximal N so that Paul Wins

Theorem:

$$B_K(Q) \sim \frac{2^Q}{\binom{Q}{K}}$$

Carole Strategy

Notation

$$\binom{Q}{\leq K} = \sum_{I=0}^{K} \binom{Q}{I}$$

Theorem:
$$N\binom{Q}{\leq K} > 2^Q \Rightarrow$$
 Carole Wins

Proof 1: Preserve Ministrategies

Proof 2: Random Play

Proof 1 \Rightarrow Proof 2: Derandomization

Vector Format

Position (3,14) $((x_0, \ldots, x_K))$ Paul Move (1,9) $((a_0, \ldots, a_K))$ Yes: (1,11); No: (2,6)

Perfect Split: Yes=No Position (8,20), Move (4,10), Yes/No (4,14)

 $L: (x, y) \to \left(\frac{x}{2}, \frac{x}{2} + \frac{y}{2}\right) \ (L: R^{K+1} \to R^{K+1})$ Position after perfect split.

Problem: Integrality

Weight Function $W_Q(\vec{x}) = L^Q(\vec{x}) \cdot \vec{1}$

$$W_Q(x,y) = 2^{-Q}((Q+1)x+y)$$

(2^{-Q}($\binom{Q}{\leq K}x_0 + \dots + (Q+1)x_{K-1} + x_K)$)

Paul Strategy

Theorem (JS): (K fixed, Q large)

$$W \leq 1$$
 and $> cQ^K$ "pennies"

 \Rightarrow Paul Win

Keep Weight Equal (Perfect Split if Possible)

Q = 10. Position (17,837). W = 1Paul (8,418 + x) \Rightarrow (8,427 + x); (9,427 - x) $W_9(1,-2x) = 0 \Rightarrow x = 5$

Problem: Nonnegativity

Proof Outline

First K Moves: Initial Penny Supply

Middle: Pennies Replenished from Nonpennies

End: Endgame Analysis

Halflie: No False Negatives

- N Possibilities
- Q Queries
- K Halflies
- $A_K(Q) =$ maximal N, Paul Wins

Theorem (Cicalese/Mundici): $A_1(Q) \sim 2^{Q+1}/Q$ Dumitriu/JS:

$$A_K(Q) \sim 2^K B_K(Q) \sim 2^K \frac{2^Q}{\binom{Q}{K}}$$

Position $\vec{x} = (x, y) ((x_0, \dots, x_K))$

Paul Query: (a, b) $((a_0, \ldots, a_K))$

Yes (a, b + x - a); No (x - a, y - b)

Perfect Split $(\frac{x}{2}, \frac{y}{2} - \frac{x}{4})$

Yes/No $L\vec{x} := (\frac{x}{2}, \frac{y}{2} + \frac{x}{4})$

Problems: Integrality, Nonnegativity

Weight $W_Q(\vec{x}) = L^Q(\vec{x}) \cdot \vec{1}$

 $W_Q(x,y) = 2^{-Q}(x(1+\frac{Q}{2})+y)$

$$2^{-Q}(x_0 p_K(Q) + \ldots + x_{K-1}(1 + \frac{Q}{2}) + x_K)$$

Paul Strategy

Start (N,0), $N < (1-\epsilon)2^{Q+1}/Q$

- Roundup so $N = 2^T A$, A small.
- Give Ground to (N, N)
- T perfect splits to $L^T(N\vec{1})$
- Endgame, A fixed, R large:

Win in R from $(A, 2^R - 2A + 1)$

A Combinatorial Approach

- 1-Set: Subset of $\{Y, N\}^Q$ with
 - stem YNNYNY
 - child $Y\underline{Y}YNNY$
 - child $YN\underline{Y}YYN$
 - child $YNNY\underline{Y}N$
- 0-Set: Any Singleton

K-Set: Depth K tree with marked "lies."

parent	$Y\underline{Y}YNNYN$
child	$Y\underline{Y}YN\underline{Y}NN$
grandchild	$Y\underline{Y}YN\underline{Y}YY$

Theorem: Paul Wins from (x_0, \ldots, x_K) in Q \Leftrightarrow Can Pack $x_i \ K - i$ -Sets in $\{Y, N\}^Q$ Bound Packing of K-Sets

• When all have $\geq L N$, Size $> \begin{pmatrix} L \\ \leq K \end{pmatrix}$

$$L \sim \frac{Q}{2}$$
 Volume Bound $2^Q / {Q/2 \choose K}$
 $o(2^Q Q^{-K})$ have any $L < (1 - o(1)) \frac{Q}{2}$
 $A_K(Q) < (1 + o(1)) 2^Q / {Q/2 \choose K}$

Careful Cutoff
Set
$$L = \frac{Q}{2} + c\sqrt{Q}\sqrt{\ln Q} Y$$

 $A_K(Q) \le \frac{2^Q}{\binom{Q/2}{K}}(1 + cQ^{-1/2}\sqrt{\ln Q})$

Yan/JS: Remove $\sqrt{\ln Q}$

Two Batch Strategy

 $\{Y, N\}^{r*}$: Number Y within $r^{0.6}$ of $\frac{r}{2}$ $|\{Y, N\}^{r*}| \sim 2^{r}$ "Assume" $N = |\{Y, N\}^{r*}| \sim 2^{Q}/(2Q)$ Associate $\sigma \in \{Y, N\}^{r*}$ with possibility Batch 1: $1 \le i \le r$: Is $\sigma_i = Y$? Carole *must* say No about half the time! Endgame from $(1, \sim \frac{r}{2})$ in One Batch

Arbitrary Channel

T-ary queries

E lie patterns

Example with T = 3, E = 4

Ternary Answers A/B/C.

Carole may lie B for A, A for B, A or B for C.

Theorem (Dumitriu, JS):

$$A_K^*(Q) \sim \frac{T^K}{E^K} \frac{T^Q}{\binom{Q}{K}}$$

Working with Paul Erdős was like taking a walk in the hills. Every time when I thought that we had achieved our goal and deserved a rest, Paul pointed to the top of another hill and off we would go.

– Fan Chung