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Notes on Asymptotics

Lets start with the Taylor Series

ln(1− ε) = −ε− ε2
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valid for |ε| < 1 though we will only be interested in ε small positive. This
is too much information so we cut it down in a variety of ways:

ln(1− ε) ∼ −ε when ε = o(1) (2)

and with error term
ln(1− ε) = −ε + O(ε2) (3)

Sometimes we need a more precise result

ln(1− ε) = −ε− ε2
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While one could continue this sequence, these will suffice for this course.
Now lets examine the asymptotics of
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when n, k →∞. We write:
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where we set

A :=
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So if we get A we get the binomial coefficient. It is more convenient to work
with

B := ln A =
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For k = o(n) we have

B ∼
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and thus we can write
A = e−

k2

2n
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This does not give the full asymptotics of A as the 1+o(1) is in the exponent.
We go further as follows:
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So if k = o(n2/3), B = − k2

2n + o(1) and we have the asymptotic formula
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In particular:
If k = o(n1/2) then A ∼ 1 (12)

If k ∼ cn1/2 then A ∼ e−
c2

2 (13)

If k = o(n3/4) we go to the next approximation:
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and the error term is o(1) so that we have the asymptotic formula
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In particular (this case will come up a number times)

If k ∼ cn2/3 then A ∼ e−
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BTW, the inequality

ln(1− ε) < −ε or, equivalently 1− ε < e−ε (17)

is valid for all ε ∈ (0, 1) and can be pretty handy.


