Random Graphs G22.3033-007
Notes on Asymptotics

Lets start with the Taylor Series
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valid for |e| < 1 though we will only be interested in € small positive. This
is too much information so we cut it down in a variety of ways:

In(1 — €) ~ —e when € = o(1) (2)
and with error term
In(l —€) = —e+ O(€?) (3)
Sometimes we need a more precise result
2
€ 3
ln(l—e):—e—E—FO(e) (4)

While one could continue this sequence, these will suffice for this course.
Now lets examine the asymptotics of (}}) when n,k — oco. We write:
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where we set
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So if we get A we get the binomial coefficient. It is more convenient to work
with
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For k = o(n) we have
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and thus we can write



This does not give the full asymptotics of A as the 1+0(1) is in the exponent.

We go further as follows:
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So if k = o(n?3), B = —% + o(1) and we have the asymptotic formula

In particular:
If k = o(n'/?) then A ~ 1

[

c

If k~cn'/? then A ~e T

If k = o(n®/*) we go to the next approximation:
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and the error term is o(1) so that we have the asymptotic formula
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In particular (this case will come up a number times)
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If k ~ cn?/3 then A ~ efg_ne*?

BTW, the inequality
€

In(1 —€) < —e or, equivalently 1 —e < e™

is valid for all € € (0,1) and can be pretty handy.
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