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Pr [lin-cr�(G) 6= f(G)] + Pr
h
jf(G)� E[f(G)]j > 2�e3=2

i
�

exp(�e=4) + 2 exp(��2=4):

If � � pe, the last sum is at most 3 exp(��2=4), as required. This concludes the proof of Theorem
7

Now we can prove Theorem 5. Fix p = p(n) with p(n) � lnn
n and G � G(n; p). Set e = p

�n
2

�
.

Let Cn = �lin-cr(n; 1). Since � 2 X, E [lin-cr�(G)] = p2lin-cr�(Kn) � Cne
2, Let " > 0 be

arbitrarily small, but �xed. Then

Pr
h
lin-cr(G) < (Cn � ")e2

i
�
X
�2X

Pr
h
lin-cr�(G) < E[lin-cr�(G)]� "e2

i

We apply Theorem 7 with 3�e3=2 = "e2 so that �2=4 = 1
36"

2e. The growth rate of p(n) insures that
this is o(n6n) for any �xed positive ". The Goodman-Pollack result critically bounds jXj � n6n.
Hence the sum goes to zero, as desired.

Comments and Open Questions: We have not been able to determine if the condition p� lnn
n

in Theorem 5 is necessary. We have already conjectured that for any p = p(n) with np ! 1 we
already have limn!1 �lin-cr(n; p) = 
lin-cr. While the Goodman-Pollack theorem itself cannot be
improved asymptotically [2], it might be the case that there are few (in some sense) near optimal
drawings so that the n��(n) error probability used in the proof of Theorem 5 may not be fully
necessary. This, however, remains highly speculative.
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First, however, we examine a �xed order type � 2 X. For any graph G with vertices v1; : : : ; vn
let G be a graph with vertices v1; v2; : : : ; vn. lin-cr�(G) denote the number of crossings in the
straight line drawing of G where vi is placed at xi in the plane and x1; : : : ; xn have order type �.

Theorem 7 Let G(n; p) be a random graph with vertices v1; v2; : : : vn, with edge probability 0 <
p = p(n) < 1, and let e = p

�n
2

�
. Then

Pr
h
jlin-cr�(G)� E[lin-cr�(G)]j > 3�e3=2

i
< 3 exp(��2=4)

holds for every � satisfying (e=4)3 exp(�e=4) � � � pe.

Proof: We follow the approach of Pach and T�oth [27]. (We note that general polynomial concentra-
tion results of Kim and Vu [19] could also be used.) Let e1; e2; : : : ; e(n2)

be the edges of the complete

graph on V (G). De�ne another random graph G� on the same vertex set, as follows. If G has at
most 2e edges, let G� = G. Otherwise, there is an i <

�n
2

�
so that jfe1; e2; : : : ; eig \ E(G)j = 2e,

and set E(G�) = fe1; e2; : : : ; eig \E(G). Finally, let f(G) = lin-cr�(G
�).

The addition of any edge to G can modify the value of f by at most 2e. Following the terminology
of Alon{Kim{Spencer [3], we say that the e�ect of every edge is at most 2e. The variance of any
edge is de�ned as p(1�p) times the square of its e�ect. Therefore, the total variance cannot exceed

�2 =

 
n

2

!
p(2e)2 = 4e3:

Applying the Martingale Inequality of [3], which is a variant of Azuma's Inequality [5] (see also
[4]), we obtain that for any positive � � �=e = 2

p
e,

Pr
h
jf(G)� E[f(G)]j > �� = 2�e3=2

i
< 2 exp(��2=4):

Our goal is to establish a similar bound for lin-cr�(G) in place of f(G). Obviously,

Pr [f(G) 6= lin-cr�(G)] � Pr [G 6= G�] < exp(�e=4):

Thus, we have

jE [f(G)]� E [lin-cr�(G)] j � Pr [f(G) 6= lin-cr�(G)] max lin-cr�(G) �

exp (�e=4)
n4

8
� �e3=2;

whenever � � (e=4)3 exp(�e=4) (say). Therefore,

Pr
h
jlin-cr�(G)� E[lin-cr�(G)]j > 3�e3=2

i
�
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iii3ia=2(Aia )ia=2. The probability of having these edges is at most (c=n)i(c=n)ia. Multiplying terms,
the probability is less than �

ne

i

c

n

�
c

n

�a
ii3a=2(

A

ia
)a=2

�i
which simpli�es to �

ec1+aAa=2a�a=2(
i

n
)a
�i
�
h
ec1+aAa=2a�a=2Æa

ii
We select Æ suÆciently small so that the bracketed term is less than one. Then the sum over
Æn � i > ln1=3 n is o(1), completing the theorem.

Now we put the two results together to bound cr(G). The classic Erd}os-R�enyi results give that
G(n; cn), with c > 1, almost surely have a giant component with � kn vertices and � kn(1 + b)
edges where k; b are explicit functions of c and both are positive. We split the vertex set into l
parts so that the number of edges between vertices in di�erent parts is � (l � 1)A(G). Each part
has size � Æn where Æ = 8

l . Pick l so large so that Æ is so small that every i � Æn vertices have at

most i(1 + b
2) edges. Then at most kn(1 + b

2 ) edges from the giant component are between vertices

in the same part. Thus at least kb
2 n edges of the giant component are between vertices in di�erent

parts. That is, (l � 1)A(G) � kb
2 n. But l; k; b are all constants (i.e., dependent only on c) and so

A(G) = 
(n). Thus cr(G) = 
(n2).
Comments and Open Questions: From Theorem 1 we know �cr(n; p)! 
cr as p! 1 and we

have just shown that �cr(n; cn) is bounded from below. How large does p = p(n) need to be so
that �cr(n; p(n)) � 
cr? We have already conjectured that for any p = p(n) with np!1 we have
�cr(n; p)! 
cr. But we cannot even show that �cr(n; p)! 
cr when p < 1 is a constant. Suppose
(which is surely true though we are unable to show it) that limn �cr(n; cn) exists and call it g(c).
Then g(c) would be increasing so limc!1 g(c) would exist but might be a value strictly less than

cr. Would there be a second (or even a third or more) region (something like p = �(n�1=2) or,
more likely, p = �(1)) where �cr(n; p) increases (in some asymptotic sense) until it �nally reaches

cr?

5 The rectilinear crossing number

Here we show Theorem 5. An order type of the points x1; x2; : : : ; xn in the plane (with no three
colinear) is a list of orientations of all triples xixjxk, i < j < k [15]. Elementary geometry gives
that the order type of the four triples xixjxk; xixjxl; xixkxl; xjxkxl determines whether or not the
straight line segments xixj and xkxl intersect. Let X be the set of all order types of the points
x1; x2; : : : ; xn in the plane. We shall make critical use of a result of Goodman and Pollack [15, 16]
that jXj < n6n. We note that the Goodman-Pollack result is derived from the Milnor-Thom
theorem, a now classical and very deep result concerning algebraic varieties.
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is at most A(GjVi). Restricting a graph to a subset can only lower cr(G) and lower the degrees
so that A(GjVi) � A(G). Replace Vi by T;B, setting Vi  T , Vi+1  B. Continue this procedure
until the partition has l parts.

Observe that in the �nal partition V = V1 [ : : : [ Vl all the edges between Vi; Vj occurred
exactly once as an edge from T to B. Hence the total number of edges between all Vi; Vj is at most
(l � 1)A(G).

What about the sizes of the Vi? Here we use that at each stage we split the largest set. If a set
Vi is split when the partition has i parts then jVij � n

i � n
l and so each part has size at least n

3l .
Any �nal set Vj must be created as a T or B at some time so it has size at least n

3l . For the upper
bound (where 8 is surely not the best constant) we �rst show that for l = 2t all jVij � 4n

l . This is

immediate for t = 0; 1; 2. Suppose it is true for t � 2 with l = 2t. At most l
2 sets have size greater

than 2n
l . Say 2n

l < jVij � 4n
l . After one split the smaller part has size � 2n

l and the larger has size
� 8n

3l . Splitting the larger set gives sets of size � 16n
9l � 2n

l . That is, it takes at most two splits to
make all parts have size � 2n

l . Thus in at most l splits this has been done (recall we always split

the largest set) for all the at most l
2 such Vi. That is, by the time the partition has 2l sets every

set has size at most 4n
2l completing the induction. For general l say 2t � l < 2t+1. The split when

there are l sets cannot have bigger sets than when there were 2t sets so each has size � 4n
2t � 8n

l .
Now we show a density result for small subgraphs of G(n; cn) that uses a surprisingly subtle

argument.

Theorem 6 Fix c > 0 and a > 0. Then there exists Æ > 0 (dependent only on c; a so that G(n; cn)
almost surely has the following property: For every 0 < i � Æn every set of i vertices has less than
i(1 + a) edges.

Proof: If this property does not hold then there is an i with 0 < i � Æn and a set of i vertices
which form a connected subgraph with � i(1 + a) edges. For i small we use the well known result
that G almost surely has no bicyclic subgraphs. For completeness we give a very rough argument:
There are

�n
i

� � ni choices for the i vertices, � 2i(i�1)=2 choices (a gross overestimate) for a bicyclic
subgraph on the i vertices and probability (c=n)i+1 of having the i edges so the probability is
bounded from above by 1

nc
i+12i(i�1)=2. Summing this for, say, i � ln1=3 n gives o(1).

For Æn � i > ln1=3 n we exert greater care. There are
�n
i

� � (ne=i)i choices for the i vertices.
Now we look at the number of connected graphs on i vertices with i(1 + a) edges. (Technically
this is bi(1 + a)c edges but as a is �xed and we've already taken care of the cases with i �xed
this has negligible e�ect.) We use a result of Bollob�as [9]: The number of connected graphs on
m vertices with m � 1 + j edges is at most mm�2m3j=2(A=j)j=2. Here A is an absolute constant.
(In an asymptotic sense Bollob�as's work was greatly extended by  Luczak [23], who showed that
A = e

12 is the best constant, and Bender, Can�eld and McKay [6] who gave an asymptotic formula
for this number valid when m!1 through the entire range of j. For our purposes, however, it is
more convenient to use Bollob�as's result as it holds for all m; j.) In our case this factor is less then

9



T [ B such that 2
3 jV j � jT j; jBj � 1

3 jV j. (The speci�c constant 2
3 is not essential here, we need

only to assure that T , B are roughly the same size.) Leighton observed that there is an intimate
relationship between the bisection width and the crossing number of a graph [21], which is based
on the Lipton-Tarjan separator theorem for planar graphs [22]. The following version of this
relationship was obtained by Pach, Shahrokhi, and Szegedy [25]. Let G be a graph on vertex set
V with dv denoting the degree of vertex v. Then

b(G) � 10
q
cr(G) + 2

s X
v2V (G)

d2v

With G � G(n; cn), E[d2v ] � c2+c = O(1) and almost surely 2
qP

v2V d2v = O(
p
n) which proves

to be negligible. For c a large constant basic probabilistic methods give that almost surely every

partition V = T [ B with 2
3 jV j � jT j; jBj � 1

3 jV j has a constant proportion of the edges running
between them. That is, b(G) = 
(n). Hence cr(G) = 
(n2).

Now suppose c = 1 + � with � > 0 small. The diÆculty is: almost surely b(G) is zero! Why?
From classic Erd}os-R�enyi results G will have a \giant component" of size � kn with k = k(c) and
all other components will have size O(lnn). The function k = k(c) was given explicity by Erd}os
and R�enyi but we need here only to note that limc!1+ k(c) = 0. For � a small (actually, not so
small) but �xed constant and c = 1 + � the giant component has size kn with k < 2

3 . Place the
giant component in the top T . Now take all other components sequentially. Add them to the top
T if jT j remains below 2

3n, otherwise place them in the bottom B. This gives a partition with
2
3 jV j � jT j; jBj � 1

3 jV j and no edges running between T and B.
With c = 1+�, � small, we shall split the vertices of G into a large but �xed number l of roughly

equal parts. For convenience let us set

A(G) := 10
q
cr(G) + 2

s X
v2V (G)

d2v

so that b(G) � A(G). We claim that there exists a partition of the vertices V of G into l parts
V = V1 [ : : : [ Vl such that (with n = jV j):

1. The total number of edges between vertices in di�erent sets is at most (l � 1)A(G)

2. All jVij � n
3l

3. All jVij � 8n
l

To achieve this partition we employ the following procedure. Begin with V = V1 [ V2, V1 = T ,
V2 = B as given by the Pach-Shahrokhi-Szegedy result [25]. Suppose at a general point we have a
partition V = V1[: : :[Vi where, renumbering for convenience, Vi is the largest set. Split Vi = T[B,
using again the Pach-Shahrokhi-Szegedy result, so that the number of edges running from T to B

8



forming K5(L). Thus edges uv,wz lie on � L2n10L�9p10L�2 di�erent K5(L). So each crossing has
been counted at most that many times and hence the number of crossings is at least asymptotically

1
5!n

10L�5p10L

L2n10L�9p10L�2
=

1

120L2
n4p2

as desired.
Comments and Open Questions. As we must take L > "�1 the constant 1

120L
�2 in this result

goes to zero as " ! 0. This is in surprising contrast to the crossing number cr(G) discussed in
the next section. That crossing number becomes a positive proportion of the square of the number
of edges already at p = c

n when c > 1. Can the pair-crossing number and the crossing number
have such di�erent behavior? We doubt it. As mentioned in the Introduction we cannot rule out
the possibility that the pair-crossing number and the crossing number are always exactly the same.
We can certainly make the weaker conjecture that the expectation of the pair-crossing number of
G(n; p) becomes 
(n4p2) already at p = 1+�

n . We further note that we have no idea at which p
�pair-cr(n; p) gets within o(1) of its limit 
pair-cr.

Pach and T�oth [28] introduced another variant of the crossing number. The odd-crossing number
of any graph G is the minimum number of pairs of edges that cross an odd number of times, over
all drawings of G. Clearly, for any graph, odd-cr(G) � pair-cr(G). With a little modi�cation,
the above argument works also for the odd-crossing number, therefore, the statement of Theorem
3 holds also for the odd-crossing number.

4 The crossing number

Here we prove Theorem 4. Fix c > 1 and set p = c
n . Let G � G(n; p). Our object is to show

lim inf
n!1

E[cr(G)]��n
2

�
p
�2 > 0

As c is constant this is equivalent to showing that for n suÆciently large

E[cr(G)] > Æn2

for some Æ dependent only on c.
We begin by reviewing in outline form the argument of Pach and T�oth [28] which requires that

c be a suÆciently large constant. We will see why their argument does not work for c = 1 + � with
� > 0 small and then how a modi�cation of their argument, combined with results on G(n; p), does
work.

De�ne the bisection width of G, denoted by b(G), as the minimal number of edges running
between T (top) and B (bottom) over all partitions of the vertex set into two disjoint parts V =

7



This is equivalent to showing that for n suÆciently large

E[�pair-cr(G)] > Æn4p2

for some Æ dependent only on ". For L � 1 we let K5(L) denote the following graph:
� There are �ve vertices x1; : : : ; x5
� For each distinct pair xi; xj there is a path between them of length L.
There are no other vertices nor edges so K5(L) has 5 + 10(L�1) vertices and 10L edges. Note that
K5(L) is a topological K5. Hence in any drawing of K5(L) there must be at least one crossing. We
shall �x L such that L" > 1. We shall show that G contains many K5(L). Each K5(L) will force at
least one crossing. With L �xed this is a positive (albeit only 0:01L�2) proportion of the square of
the number of edges involved. When this is carefully counted over all K5(L) we shall see that the
total number of crossings is at least this constant times the square of the total number of edges.

We use three results about the almost sure behavior of G(n; p). In the third K is any �xed
constant.

1. Every vertex has degree � np.

2. Between every pair of distinct vertices there are � nL�1pL paths of length L.

3. For any distinct x; y; z1; : : : ; zK there are � nL�1pL paths of length L between x and y that
do not use any of the zj .

The �rst result holds whenever np � lnn and follows from basic Large Deviation bounds on
the degree of a vertex. Both the �rst and the second result are examples of a more general result
[30] on counting extensions. For the third we note from [30] that the probability that the number
of paths of length L between �xed x and y is not in [(1� �)nL�1pL; (1 + �)nL�1pL] is exponentially
small. Fix x; y; z1; : : : ; zK . Consider L-paths from x to y on G with z1; : : : ; zK deleted, which has
distribution G(n�K; p). The K has negligible e�ect and so with exponentially small failure this
number is as desired { hence almost surely it is as desired for all O(nK+2) choices of x; y; z1; : : : ; zK .

Now we count the K5(L). There are
�n
5

� � 1
5!n

5 choices for the x1; : : : ; x5. Between each pair
we place � nL�1pL L-paths not using previously chosen paths. This gives a total of 1

5!n
10L�5p10L

copies of K5(L). For each one we count one crossing. Now consider a crossing between, say, edges
uv and wz. How many K5(L) do they lie on? Renumbering for convenience say the path from x1
to x2 has u as its i-th and v as its i+ 1-st point and the path from x3 to x4 has w as its j-th and z
as its j+1-st point. There are L2 choices for i; j. Now �x u; v; w; z and i; j. From the �rst property
there are � (np)i paths of length i starting at u, � (np)L�i�1 paths of length L � i starting at v
and similarly for w; z. Further these numbers are not asymptotically e�ected when we require that
they miss a �xed number of points. So we extend u; v; w; z to some x1; x2; x3; x4 in � (np)2(L�1)

ways. We have n choices for x5 and then � (nL�1pL)8 ways to complete the remaining eight paths

6



particular crossing of the drawing of Kn in eight ways. so they have probability 8lin-cr(Kn)=(n)4
of being mapped to a crossing. Now the expected number of crossings of G in this random drawing
is at most, by Linearity of Expectation, e2

2
8lin-cr(Kn)

(n)4
and thus there exists a drawing of G with

at most that many crossings.
As the right hand side approaches 
lin-cr we have

lin-cr(G)

e2
� 
lin-cr + o(1)

where the o(1) term approaches zero in n, uniformly over all graphs G.
With c > 0 �xed (this argument is only needed for c > 1 but works for all positive c), p = c

n and
G � G(n; p) let X denote the number of edges and Y denote the number of isolated edges. The
savings comes from noting that isolated edges can always be added to a graph with no additional
crossings. Thus

E[lin-cr(G)] � E[(X � Y )2](
lin-cr + o(1))

Here E[X] � c
2n and E[Y ] =

�n
2

�
p(1� p)2n�4 � c

2e
�2cn and elementary calculations give

E[(X � Y )2] � E[X � Y ]2 � [
c

2
(1� e�2c)n]2

With e := p
�n
2

� � c
2n we have

E[lin-cr(G)]

e2
� 
lin-cr(1� e�2c)2(1 + o(1))

Comments and Open Questions. We note that as c approaches in�nity the (1 � e2c)2 term
above approaches one. The above bound may be improved somewhat by letting Y denote the
edges in isolated trees and unicyclic components and there are even further improvements possible.
Still, all these improvements seem to approach one as c approaches in�nity. This leads to an
intriguing conjecture: If p(n)� 1

n then �lin-cr(n; p)! 
lin-cr. One may make the same conjecture
for all three variants of the crossing number. Indeed, this entire paper may be viewed as an attempt
(thus far unsuccessful) of the authors to resolve these conjectures.

We conjecture that for any c � 0, the limits limn!1 �lin-cr(n; c=n), limn!1 �cr(n; c=n), and
limn!1 �pair-cr(n; c=n) exist. This follows from Theorem 2, for c � 1. If this conjecture is true, it is
not hard to see that the functions flin-cr(c) = limn!1 �lin-cr(n; c=n), fcr(c) = limn!1 �cr(n; c=n),
and fpair-cr(c) = limn!1 �pair-cr(n; c=n) are continous and increasing for all c � 0.

3 The pair-crossing number

Here we prove Theorem 3. Fix " > 0 and set p = p(n) = n"�1. Our object is to show

lim inf
n!1

�pair-cr(n; p) > 0

5



with expected number of crossings q2�cr(n; p). We do not claim this drawing is optimal, but it
does give the desired upper bound as E[cr(G(n; pq))] � q2E[cr(G(n; p))], completing Theorem 1.

The �rst six parts of Theorem 2 will come as no surprise to those familiar with random graphs
as in the classic papers of Erd}os and R�enyi it was shown that with p = c

n the random graph G(n; p)
is almost surely planar when c < 1. Our argument is a bit technical, however, as we must bound
the expected crossing number.

Fix c < 1, set p = c
n and X = lin-cr(G) with G � G(n; p). Let Y be the number of cycles

of G and Z the number of edges of G. Then we claim X � Y Z. Remove from G one edge from
each cycle. This leaves a forest which can be drawn with straight lines and no crossings. Now
add back in those Y edges as straight lines. At worst they could hit every edge, giving � Y Z
crossings. With c < 1 E[Y ] =

Pn
i=3

(n)i
2i p

i <
P
1

i=3 c
i is bounded by a constant, say A. As Z has

Binomial Distribution standard bounds give, say, Pr[Z > 10n] < ��n for some explicit � > 1.
As X � n4 always, X � 10nY + n4�(Z > 10n) where � is the indicator random variable. Thus
E[X] � 10An + n4��n = o(n2).

Now �x c = 1 + " with " positive and small. Set p = 1+"
n , p0 = 1�"

n and let p� satisfy
p0 + p� � p0p� = p so that p� � 2"

n . We may consider G(n; p) as the union of independently chosen
G(n; p0) and G(n; p�). Say the �rst has rectilinear crossing number X and Y edges and the second
has Z edges. Then their union has rectilinear crossing number at most X + Y (Y + Z) as we draw
G(n; p0) optimally and assume all other pairs of edges do intersect. But E[X] = o(n2) and it is
easy to show that E(Y (Y + Z)) � E(Y )(E(Y + Z)) � 1

2n
2"(1 + "). Thus

E[lin-cr(G)] � (1 + o(1))
1

2
"(1 + ")n2

from which part 4 of Theorem 2 follows. Parts 5 and 6 then also follow as they involve smaller
crossing numbers.

The �nal three parts of Theorem 2 are also natural to those familiar with random graphs. For
c > 1 �xed G(n; cn) has a \giant component" with 
(n) vertices. Outside the giant component
there are 
(n) edges all lying in trees or unicylic components. These edges may be drawn with
no crossings and that will involve a positive proportion of the potential edge crossings. Again, our
argument will be a bit technical as we must deal with expectations. We state the argument only
for rectilinear crossing number but it is the same in all three cases.

We �rst note a precise result: Let G be any graph on n vertices with e edges. Then

lin-cr(G)

e2
� 4lin-cr(Kn)

(n)4

Fix a drawing of Kn with lin-cr(Kn) crossings. De�ne a random drawing of G by randomly
mapping its n vertices bijectively to the n vertices of the drawing. Let e1; e2 be two edges of G
with no common vertex, there being at most e2=2 such unordered pairs. They may be mapped to a

4



7. lim supn!1 �lin-cr(n; c=n) < 
lin-cr for all c

8. lim supn!1 �cr(n; c=n) < 
cr for all c

9. lim supn!1 �pair-cr(n; c=n) < 
pair-cr for all c

Theorem 2 gives only upper bounds for the various crossing numbers. The main results of this
paper, given in Theorems 3, 4, 5, deal with lower bounds for the three crossing numbers. Our
weakest result is for the pair-crossing number.

Theorem 3 For any " > 0, p = p(n) = n"�1, lim infn!1 �pair-cr(n; p) > 0.

For the crossing number we have a much stronger result.

Theorem 4 For any c > 1 with p = p(n) = c=n

lim inf
n!1

�cr(n; p) > 0

As lin-cr(G) � cr(G) the lower bound of Theorem 4 applies also to the rectilinear crossing
number. Our most surprising result is that with the rectilinear crossing number one reaches an
asymptotically best limit in relatively short time.

Theorem 5 If p = p(n)� lnn
n then

lim
n!1

�lin-cr(n; p) = 
lin-cr(n; p)

2 Upper Bounds

Let f be any real valued function on graphs. Then with G � G(n; p)

E[f(G)] =
X
H

f(H)pe(H)(1� p)(
n

2)�e(H)

where H runs over the labelled graphs on n vertices and e(H) is the number of edges of H. This
is a polynomial and hence a continuous function of p, giving the �rst part of Theorem 1. We argue
that �cr(n; p) is an increasing function of p, the other arguments being identical. For 0 � p; q � 1
we may view G(n; pq) as a two step process, �rst creating G(n; p) and then taking each edge from
G(n; p) with probability q. After the �rst stage consider a drawing with the minimal number of
crossing X, so that E[X] = �cr(n; p). Now keep that drawing but take each edge with probability
q. Each crossing is still in the new picture with probability q2. This gives a drawing of G(n; pq)

3



These limits are known to exist [29] and the best known bounds are 1=30 � 
pair-cr � 1=16,
1=20 � 
cr � 1=16, 1=20 � 
lin-cr � 0:639 [18, 29, 10].

In this paper we investigate the crossing numbers of random graphs. Let G = G(n; p) be a
random graph with n vertices, whose edges are chosen independently with probability p. Let e
denote the expected number of edges of G, i.e., e = p

�n
2

�
. We shall always have e ! 1 (indeed,

p = 
(n�1)) so that G almost surely has e(1 + o(1)) edges.

In [27] it was shown that if e > 10n, then almost surely we have cr(G) � e2

4000 : Consequently,

almost surely we also have lin-cr(G) � e2

4000 : As we always can draw with straight lines the crossing
number (in any form) is never larger than the number of pairs of edges and the expected number

of pairs of edges is �e2

2 Our interest will be in those regions of p for which the various crossing
numbers are, asymptotically, a positive proportion of the number of pairs of edges.

Let

�lin-cr(n; p) =
E [lin-cr(G)]

e2
; �cr(n; p) =

E [cr(G)]

e2
; �pair-cr(n; p) =

E [pair-cr(G)]

e2
:

We have �pair-cr(n; p) � �cr(n; p) � �lin-cr(n; p) for any n, p.

Theorem 1 For any �xed n, �lin-cr(n; p), �cr(n; p), �pair-cr(n; p) are increasing, continous func-

tions of p.

With Theorem 1 we may express (roughly) our two central concerns. At which p = p(n) are
�lin-cr(n; p), �cr(n; p), �pair-cr(n; p) bounded away from zero? At which p = p(n) are �lin-cr(n; p),
�cr(n; p), �pair-cr(n; p) close to their limiting values 
lin-cr; 
cr; 
pair-cr? Our results for these
three variants of crossing number shall be quite di�erent. We are uncertain whether or not that
represents the reality of the situation. The following relatively simple result shows basically that
for p = 1

n all three crossing numbers are asymptotically negligible and that for p = c
n with c > 1

�xed the three crossing numbers have not reached their limiting values.

Theorem 2 1. lim supn!1 �lin-cr(n; c=n) = 0 for c � 1

2. lim supn!1 �cr(n; c=n) = 0 for c � 1

3. lim supn!1 �pair-cr(n; c=n) = 0 for c � 1

4. limc!1 lim supn!1 �lin-cr(n; c=n) = 0

5. limc!1 lim supn!1 �cr(n; c=n) = 0

6. limc!1 lim supn!1 �pair-cr(n; c=n) = 0
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Abstract

The crossing number of G is the minimum number of crossing points in any drawing of

G. We consider the following two other parameters. The rectilinear crossing number is the

minimum number of crossing points in any drawing of G, with straight line segments, as edges.

The pairwise crossing number of G is the minimum number of pairs of edges that cross over all

drawings of G. We prove several results on the expected values of these parameters of a random

graph.

1 Introduction

A drawing of a graph G is a mapping which assigns to each vertex a point of the plane and to
each edge a simple continuous arc connecting the corresponding two points. We assume that in a
drawing no three edges (arcs) cross at the same point, and the edges do not pass through any vertex.
The crossing number cr(G) of G is the minimum number of crossing points in any drawing of G.
We consider the following two variants of the crossing number. The rectilinear crossing number is
the minimum number of crossing points in any drawing of G, with straight line segments, as edges.
The pairwise crossing number pair-cr(G) of G is the minimum number of pairs of edges that cross
over all drawings of G.

Clearly, pair-cr(G) � cr(G) � lin-cr(G).
Bienstock and Dean [8] constructed a series of graphs with crossing number 4, whose rectilinear

crossing numbers are arbitrary large. On the other hand, Pach and T�oth [28] proved that for any
graph G, cr(G) � 2(pair-cr(G))2. Probably this bound is very far from being optimal, we can
not even rule out that cr(G) = pair-cr(G) for any graph G.

The determination of the crossing numbers is extremely diÆcult. Even the crossing numbers of
the complete graphs are not known. Let


pair-cr = lim
n!1

pair-cr(Kn)�n
2

�2 ; 
cr = lim
n!1

cr(Kn)�n
2

�2 ; 
lin-cr = lim
n!1

lin-cr(Kn)�n
2

�2 :
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