
X

�1=5��<1

c��2
p
�G(�) = O(�

1

2
� 2

5 ln2(��1))

X

1��

c��2
p
�G(��1�) � c0

X

1��

��2
p
�(ln � + ln(��1))

= O(
p
� ln(��1))

which are all o(�) so that (14) holds when �0 is picked su�ciently small.
We bound

2n�1=4
X

�

b(�
p
n) � X

�<�1=5

� 0:4 +
X

�1=5��<1

� 1=2�+
X

1��

��1=2�

The �rst sum dominates and this is O(�4=25) as �! 0. We have shown:

Lemma 5.3 There are absolute positive constants �0; c so that if jXj = �n, � < �0 then

there exists a partial coloring � so that

j�(A \X)j � cn1=4�4=25

for all A 2 A and with at least half the points of X colored.

The exponent 4

25
clearly could be improved by more careful calculation but it does not

matter. We are done. Begin with X = [n]. Apply Lemma 3.1 and then Lemma 5.1 until
jXj < �0n and then apply Lemma 5.3 until jXj < n1=4 and then color the remaining points

arbitrarily. The �nal coloring � has

j�(A)j � cn1=4+
1X

i=0

c0n1=4(�02
�i)4=25 + n1=4 � c�n1=4

for all A 2 A and has no points uncolored.
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Let f(m; s) denote the number of s-sets in CX so that f(m; s) � s�1U with U as in x4.
We �rst apply the elementary bound

f(m; s) � mn

s2

Lemma 5.2 There is a partial coloring � of X with

j�(A \X)j � cn1=4

for all A 2 A and with more than half the points of X colored.

Proof: We follow the proof of Lemma 3.1 precisely. For s = �
p
n we set

b(�
p
n) =

q
�
p
n�(�

p
n) with �(�

p
n) =

(
c0��1 if � � 1
c0��0:1 if � < 1

Again we need (8) and the bound (9) is the same. 2
We iterate this result, beginning at X = [n], resetting X to be the uncolored points at

each iteration, stopping when jXj < �0n, with �0 a su�ciently small (as determined later)

absolute constant. This is a constant number of iterations (recall the number of uncolored
points is at least halved at each iteration) so together we have a partial coloring � with
j�(A)j � cn1=4 for all A 2 A and a set X of fewer that �0n points uncolored.

Remark: Continuing this process until jXj < n1=4 and then coloring the remaining
points arbitrarily would give a full coloring with all j�(A)j � cn1=4 lnn. Our \slight"
improvement of x4 will allow a slight improvement as X becomes smaller so that the sum
converges to O(n1=4).

Now �x X with jXj = �n, n�3=4 � � � �0. We set b(�
p
n) =

q
�
p
n�(�

p
n) with

�(�
p
n) =

8><
>:
��0:1 if � < �1=5

� if �1=5 � � < 1
��1� if 1 � �

(13)

and set

f(�
p
n) =

(
m��2 if � < �1=5

cm��2
p
� if � � �1=5

which, by a slight weakening of Proposition 4.1, is an upper bound on the number of

�
p
n-sets in CX .
We �rst claim that for � appropriately small

m�1
X
�

f(�
p
n)G(�(�

p
n)) � 0:2 (14)

(we recall the convention from x3 | � in summation runs thru integral powers of 2). We
split the sum by the ranges of (13). As functions of �

X
�<�1=5

��2G(��0:1) = O(��2=5e��
�1=30

)
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The upper bound (12) suggests to de�ne the di's by the initial condition d1 = "n=s and by
the recurrence

di+1 = di +

$
s2d2i
9mn

%
:

One may check that with our choice of parameters, s2d21=(9mn) � 2, and therefore di+1 �
di + s2d2i =(18mn). We need to check the validity of (11), but this follows by calculation
from the assumption s � 5

p
m.

It remains to estimate the smallest k such that dk+1 � n=s. Set � = s2=(18mn).

Then di+1 � di(1 + �di). Given i, let us estimate the number j of steps needed so that
di+j � 2di. We have di+j � di(1 + �di)j � di(j�di), so j � 1=(2�di) su�ces for the
doubling. Therefore, the �rst doubling (from d1 to at least 2d1) needs

1

2d1�
=

9m

s"
= O(

n

s

p
�)

steps. Then the successive doubling times decrease geometrically, until the ratio of suc-
cessive two members of the sequence of the di's exceeds 2. The number of remaining steps

needed for reaching n=s after this happens is at most log2((n=s)=d1) = log2(1="). Therefore
k = O((n=s)

p
�+ log(1=�)) = O((n=s)

p
�), and

P
d2J jU(d)j = O((mn=s)

p
�) as claimed.

2

Remark: The set S = f1; . . . ;mg gives a value U � m2

s
= nm

s
�. Finding the maximal

value of U = U(n;m; s) is an intriguing problem we do not pursue here but we conjecture
that our Proposition 4.1 is not best possible.

5 The End of the Hunt

Let X � [n], jXj = m = �n with n�3=4 � � � 1. Our object is to �nd a partial coloring �

of X so that j�(X \A)j is small for all A 2 A and at least half the points of X are colored.
Once successful, we'll apply this process iteratively beginning with X = [n] (which we did
in x3), resetting X to be the uncolored points, until jXj < n1=4 at which time the remaining
points may be colored arbitrarily.

Following (6) set

C = CX =
[

1�d�n

[
0�i<d

CINT [fx 2 X : x � i mod dg]

For any A 2 A we may, as in x2.1, decompose A \X = B nC with C � B and B;C both
disjoint unions of sets of CX of di�erent cardinalities. Lemma 3.3 now generalizes.

Lemma 5.1 If � is a partial coloring of X so that j�(Y )j � b(jY j) for all Y 2 CX then

j�(A \X)j � 2
X
s=2i

b(s)

for all A 2 A.

9



Proof. A number x 2 U(d) \ U(d0) can be speci�ed by giving the number r =
bx=lcm(dd0)c plus thes residue classes of x modulo d and modulo d0, by the Chinese Re-
mainder Theorem. The number r can be chosen in at most dn=lcm(d; d0)e ways, and we

note that U(d) may intersect at most jU(d)j=s residue classes modulo d, and similarly for
U(d0). 2

Lemma 4.3 Let I � f1; 2; . . . ; ng be a set such that d � d0 for all d 2 I, and gcd(d; d0) �
M for all distinct d; d0 2 I. Suppose that d20=n �M � s2d20=(9mn). ThenX

d2I

jU(d)j � 2m:

Proof. If not add indices to I one by one until the sum �rst gets over 2m. Stopping then

would give a set I with the same assumptions where x =
P

d2I jU(d)j satis�es 2m < x � 3m.
We use Inclusion-Exclusion:

m �
������
[
d2I

U(d)

������ �
X
d2I

jU(d)j � X
d;d02I; d<d0

jU(d) \ U(d0)j : (10)

By Lemma 4.2 and by the assumptions on I, we have

X
d<d0

jU(d) \ U(d0)j � X
d<d0

jU(d)j � jU(d0)j
s2

&
nM

d20

'
� 1

2s2

0
@X
d2I

jU(d)j
1
A

2  
nM

d20
+ 1

!

The assumption on M implies nM=d20 � 1. Thus, from (10), we further get

m � x� x2

2s2
2nM

d20
> 2m� 9m2nM

s2d20
� 2m�m =m

(using the upper bound on M in the assumption of the Lemma), a contradiction. 2

Proof of Proposition 4.1. We may suppose that m;n; s; ��1 are all su�ciently large

(otherwise the claim is satis�ed trivially). We �x a parameter " = 5
p
�. We let J be the

interval

J =
�
"
n

s
;
n

s

�

(we may also suppose that "mn=s is an integer). We note that the d lying outside the

interval J only contribute at most "mn=s = 5(nm=s)
p
� to U . Hence it su�ces to boundP

d2J jU(d)j.
We want to partition the interval J into consecutive intervals I1; I2; . . . ; Ik, in such a

way that Lemma 4.3 can be applied to each of them, giving the bound
P

d2Ii jU(d)j � 2m.

It remains to calculate how small can k be made. If we denote Ii = [di; di+1), then we
have gcd(d; d0) � di+1 � di for any 2 distinct numbers d; d0 2 Ii. Thus, in order to apply
Lemma 4.3, it is enough to have

di+1 � di � d2i
n

(11)

di+1 � di � s2d2i
9mn

: (12)
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O(��2 exp(���0:2=9)) (� small) give convergent sums so we �nd an absolute constant T
for which X

��T

��2G(��1) +
X

�<T�1

��2G(��0:1) < 0:1

As limx!1G(x) = 0 we may now select c0 � 1 su�ciently large so that the �nite sum

X
T�1<�<T

��2G(c��0:1) < 0:1

yielding (8). Hence by Lemma 3.3 and Corollary 2.4 there is a partial coloring of [n] with
at least half of the points colored and with

j�(A)j � 2
X
�

b(�
p
n) � 2c0n1=4

2
4X
��1

��1=2 +
X
�<1

� 0:4

3
5 (9)

for all A 2 A. As the bracketed sums both converge this gives Lemma 3.1.

4 Number Theory

Let X � f1; . . . ; ng be an m-element set. Let s be an integer, 1 � s � n. For an integer
d, let U(d) denote the set of all x 2 X in residue classes modulo d for which at least s
elements of X lie in that residue class. We are interested in the quantity

U =
X
d

jU(d)j

We can clearly restrict ourselves to the range 1 � d � n=s (for larger d, U(d) = ;). Also,
for each d, jU(d)j � m, and thus we get U � nm=s. This is tight for s = 1 but, for large
enough s, the following theorem gives an improvement. The intuition behind it is that
while for some individual value of d, the members of X can be distributed among very few

residue classes modulo d only, such a distribution cannot occur for too many values of d
at once.

Set � = m=n. We have

Proposition 4.1 Suppose that 5
p
m � s � m, then

U � c
nm

s

p
� ;

for an absolute constant c.

Lemma 4.2 For any pair d; d0 of distinct natural numbers, we have

jU(d) \ U(d0)j � jU(d)j:jU(d0)j
s2

&
n

lcm(d; d0)

'
:
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Proof: With A = fxu : i � u � jg set B = fxu : 1 � u � jg and C = fxu : 1 � u � i�1g.
Take the binary expansion j = 2b1 + 2b2 + . . ., b1 > b2 > . . . of j. Decompose B into the
�rst 2b1 elements of X union the next 2b2 elements of X . . . , and do likewise with C. 2

We can think of any arithmetic progression as a subinterval of an entire residue class
so that

A =
[

1�d�n

[
0�i<d

INT [fx 2 [n] : x � i mod dg]

We de�ne the \canonical arithmetic progressions"

C = Cn =
[

1�d�n

[
0�i<d

CINT [fx 2 [n] : x � i mod dg] (6)

Lemma 3.3 If � is a partial coloring of [n] so that

�(X) � b(jXj)

for all X 2 C then

�(A) � 2
X

s; s=2i�n

b(s) (7)

for all X 2 A. 2

3.2 The Coloring

For s = 2i � n how many s-sets are in Cn? We restrict 1 � d � n�1
s�1 (otherwise the residue

classes have fewer than s elements) and for each d the s-sets are disjoint so there are at
most n

s
of them, giving an upper bound of n(n�1)

s(s�1) of them. For s = 1 there are only n

distinct singletons. Ignoring asymptotically insigni�cant terms we'll say that Cn has at
most n2s�2 sets of size s.

Remark: For s � p
n we have � n sets of size s and Corollary 2.4 gives a partial

coloring with j�(A)j � cn1=4 for all such sets. We need simultaneously color the larger
and smaller sets. To avoid a logarithmic term in applying (7) we'll need a slightly better

bound on j�(A)j when jAj is not near pn.
We parameterize s = �

p
n so that we have n��2 sets of size s. We'll assume for

convenience that
p
n is a power of two so that � = 2i, i integral. We set

b(�
p
n) =

q
�
p
n �(�

p
n) where �(� (

p
n)) =

(
c0��1 if � � 1
c0��0:1 if � < 1

We claim that, for an appropriately large constant c0, (5) is now satis�ed. We need show

X
��1

��2G(c0��1) +
X
�<1

��2G(c0��0:1) <
1

5
(8)

where � in the sums runs over integral powers of 2 and G is given by (4). We will insist
c0 � 1 so that G(c0y) � G(y). Both ��2G(��1) = O(��2 ln(� )) (� large) and ��2G(��0:1) =

6



Corollary 2.4 Let A be a family of subsets of an n-set 
 consisting of at most f(s) sets

of size s. If b(s) = �(s)
p
s where �(s) satis�es

X
s

f(s)G(�(s)) � n

5
(5)

then there is a partial coloring � of 
 with j�(A)j � b(jAj) for all A 2 A and at least half

the points of 
 colored. 2

With these bounds we can already give a result which is interesting in its own right

and may give signi�cant insight into the somewhat technical computations to come.

Theorem 2.5 There is an absolute constant c so that the following holds for all n; s. If

A1; . . . ; An � 
 and j
j = n and all jAij � s then there is a partial coloring � of 
 with

less than half the points of 
 uncolored and with

j�(Ai)j � c
p
s

for all 1 � i � n.

Proof. From Lemma 2.3 we may pick c so that G(c) � 0:2. Now apply Corollary 2.4. 2
The monotonicity of G allows a further generalization of Corollary 2.4. Suppose A is a

family of subsets of an n-set 
 which breaks into subfamilies consisting of at most f(s) sets
of size at most s. When (5) holds the conclusion of Corollary 2.4 then holds. In particular,

given any A1; . . . ; An � f1; . . . ; ng we have n sets of size at most n we may pick c so that
G(c) < 0:2 and then there exists a partial coloring � of f1; . . . ; ng with all j�(Ai)j � c

p
n

and at least half the points colored. The result was the core of [5].

3 The First Partial Coloring

Let A denote the family of arithmetic progressions contained in 
 = f1; . . . ; ng. Here we
show:

Lemma 3.1 There is a partial coloring of 
 so that j�(A)j � cn1=4 for all A 2 A and at

least half the points of 
 are colored.

3.1 The Decomposition

Let X = fx1; . . . ; xlg be any set of integers with x1 < . . . < xl. De�ne INT (X) to be

the family of intervals | i.e., all sets fxu : i � u � jg where 1 � i � j � l. Now de�ne
CINT (X) (the canonical intervals on X) by taking, for all powers of two s = 2i � l, all
sets fx(j�1)s+1; . . . ; xjsg with js � l. That is, we split X into consecutive intervals of length
s = 2i, ignoring the \extra". The following observation is standard:

Lemma 3.2 (Decomposition lemma) Any A 2 INT (X) can be written A = B n C with

C � B and with B and C both decomposable into disjoint unions of sets in CINT (X) of

di�erent sizes.

5



Corollary 2.2 Let A be a family of subsets of an n-set 
 consisting of at most f(s) sets

of size s. If b(s) satis�es X
s

f(s)ENT (s; b(s)) � n

5

then there is a partial coloring � with j�(S)j � b(jSj) for all S 2 A and fewer than half

the points of 
 uncolored.

In applying Corollary 2.2 we need upper bounds on ENT (n; b). The correct param-
eterization is b = �

p
n. Roughly Sn is like

p
nN where N is standard normal so that

ENT (n; �
p
n) should be like g(�) = H(R�(N)). Analysis gives that for � large g(�) =

�(�2e��
2=2)) (i = �1 giving the dominant terms) while for as �! 0 g(�) = �(ln(��1)), the

major contribution being pi = �(��1) for i = O(��1). The following results are somewhat
weaker and certainly not best possible but have the advantage of holding for all n; �.

Lemma 2.3 There is an absolute constant c so that ENT (n; �
p
n) � G(�) where we

de�ne

G(�) =

8><
>:
ce��

2=9 if � � 10
c if 0:1 � � � 10
c ln(��1) if � < 0:1

(4)

Proof (Outline): We employ the universal bound

Pr
h
Sn � �

p
n
i
� e��

2=2

Set gi = exp(��2(2i � 1)2=8), i � 1 and g0 = 1� 2 exp(��2=8). From (2) pi; p�i � gi and
p0 � g0. On [0; 1] the function �x log2 x increases to x = e�1 and then decreases. When
� � 10, gi � e�1 for all i � 1 and g0 � e�1 so

ENT (n; �
p
n) � �g0 log2 g0 + 2

1X
i=1

�gi log2 gi

This is a continuous function of � which is O(�2e��
2=8) or, giving ground, O(e��

2=9). When
0:1 � � � 10 set I = f�100; . . . ;+100g. The contribution to ENT (n; b) from i 2 I is at
most log2 jIj � 8. For i 62 I certainly gi < e�1 so

ENT (n; �
p
n) � 8 + 2

1X
i=101

�gi log2 gi � 9

For � < 0:1 set I = fi : jij < ��20g. Again for i 62 I we have gi � e�1 and

ENT (n; �
p
n) � log2(2�

�20 + 1) + 2
X

jij>��20

�gi log2 gi � 40 ln(��1)

by computation. 2
We may now further reexpress Corollary 2.2.
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With this de�nition we give our general criterion.

Lemma 2.1 Let S1; . . . ; Sv � 
 with j
j = n and jSij = ni. Suppose bi; " and  � 1
2
are

such that
vX
i=1

ENT (ni; bi) � "n

and
nX
j=0

 
n

j

!
< 2n(1�") (3)

Then there is a partial coloring � of 
 with

j�(Si)j � bi for all i

and more than 2n points x 2 
 colored.

Proof. Consider the uniform probability space of all � : 
 ! f�1;+1g and de�ne the
random variable

L(�) = (Rb1(�(S1)); . . . ; Rbv(�(Sv))

By subadditivity of entropy

H(L) �
vX
i=1

H(Rbi(�(Si))) =
vX
i=1

ENT (ni; bi) � "n

Hence some value of L has probability at least 2�"n of being achieved. As all � have
probability 2�n there is a set � of at least 2n(1�") colorings � so that if �1; �2 2 � then
L(�1) = L(�2).

We naturally associate such colorings � with points on the Hamming Cube f�1;+1gn.
(With 
 = f1; . . . ; ng associate � with (�(1); . . . ; �(n)).) A theorem of Kleitman [4]
(basically an isoperimetric inequality) states that any � � f�1;+1gn of size bigger thanPl

j=0

�
n
l

�
with l � n

2 contains two points at Hamming distance (i.e., the number of di�erent

coordinates) at least 2l. (This is \best possible" as � may be the set of all sequences with
at most l coordinates +1.) Thus there are �1; �2 2 � at Hamming distance at most 2n.
Set

�(x) =
�1(x) � �2(x)

2
for all x 2 
 :

Then � is a partial coloring. The number of colored points is precisely the Hamming
distance which is at least 2n. For each i the values �1(Si); �2(Si) have the same bi-

roundo� and therefore lie in a common open interval of length less than 2b. Thus

j�(Si)j =
������1(Si) � �2(Si)

2

����� < bi

as desired. 2

We note that (3) holds for, say,  = 1
4 and " = 0:2, this value will su�ce for our

purposes. Also, we shall always use a bound on j�(S)j dependent only on jSj. We'll use
the Lemma in the following simpler form.
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In words, we show the existence of a two-coloring � of the �rst n integers so that all
arithmetic progressions A have imbalance j�(A)j � Cn1=4. We remark that the proof does
not give a construction of � in the usual sense and is indeed not satisfactory from an

algorithmic point of view. The methods of x2 (see comments in [5]) are such that we have
not been able to obtain an algorithm that would output this coloring � in time polynomial
in n. Our proof involves variants of the probabilistic method, we give [1] as a general

reference. The technique of our proof combines methods of [2], [5], [6].
Throughout the paper, we'll use the symbols c; c0 etc. generically for denoting absolute

constants, and in order to limit the number of symbols, we reuse them freely.

2 Entropy

Let A1; . . . ; Av � 
. A partial coloring is a map � : 
 ! f�1; 0;+1g. When �(x) = 0 we
call x uncolored, otherwise x is called colored. We de�ne, for A � 
, �(A) =

P
x2A �(x).

Our object will be to give a general condition under which there exists a partial coloring
� with the j�(Ai)j \small" and \few" x 2 
 uncolored.

For any positive integer b de�ne the b-roundo� function Rb(x) as that i so that 2bi is
the nearest multiple of 2b to x. In case of ties take the larger. Thus

Rb(x) = 0 if and only if �b � x < b (2)

Rb(x) � i if and only if x � (2i � 1)b

Rb(x) � �i if and only if x < �(2i� 1)b

Let X be any discretely valued random variable. We use the standard de�nition of the

entropy function H(X)
H(X) =

X
i

�pi log2(pi)

where pi = Pr[X = i], the summation is over the possible values of X, and 0 log2 0 is
interpreted as 0. We shall use the following well known facts about entropy:

� Entropy is subadditive. That is, if X = (X1; . . . ;Xv) then H(X) � Pv
i=1H(Xi).

� When X takes on at most K values it has entropy at most log2K, the extreme case
being a uniformly chosen value from a K-set. Moreover

P
i2I �pi log2(pi) � log2 jIj

for any subset of values of X.

� When X has entropy less than K it takes on some value with probability at least
2�K.

Let Sn, as standard, denote the sum of n independent random variables, each uniform
on f�1;+1g. When � : 
 ! f�1;+1g is uniform and A � 
, jAj = n, then �(A) has
distribution Sn. Now we come to a key de�nition:

ENT (n; b) = H(Rb(Sn))

2
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Abstract

It is proven that there is a two-coloring of the �rst n integers for which all arithmetic

progressions have discrepancy less than const:n
1=4. This shows that a 1964 result of

K.F. Roth is, up to constants, best possible.

1 Results and History

Let A be a family of subsets of a �nite set 
. By a two-coloring of 
 we shall mean a map
� : 
! f�1;+1g. For any X � 
 we de�ne �(X) =

P
x2X �(x). The discrepancy of A is

de�ned by

disc(A) = min
�

max
A2A

j�(A)j (1)

Let 
 = f1; . . . ; ng, which we denote by [n]. Let A denote the set of arithmetic progressions
on [n]. The discrepancy of this set system was investigated in 1964 by K.F. Roth [7]. If
we de�ne the function ROTH(n) = disc(A), his result can be written

ROTH(n) � cn1=4

c a positive absolute constant. That is, for any two coloring � of the �rst n integers there
will be an arithmetic progression A on which the \imbalance" j�(A)j is at least cn1=4.

It is interesting that Roth himself did not believe his result to be best possible and
speculated that perhaps ROTH(n) = n1=2�o(1). Indeed a bound ROTH(n) = O(

p
n lnn)

follows by elementary probabilistic considerations. In the early 1970's S�ark�ozi (see [3])
showed ROTH(n) � n1=3+o(1). A breakthrough was given in 1981 by Beck [2] who showed
ROTH(n) � cn1=4 ln5=2 n. Here we show

Theorem 1.1

ROTH(n) � Cn1=4

with C an absolute constant.
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