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� There are no x; y with y = x + r and U(x); U(y)
A countable model may be given on Z�Z. There is a natural lexicographical
< with (x; y) = � < � = (x0; y0) if and only if x < x0 or x = x0 ^ y < y0.
De�ne the clockwise ternary relation C(�; �; ) by � < � <  or � <  < �
or  < � < �. Now erase the <. Let U(x; y) hold if and only if y = 0. (In
our minds eye we have a countable number of lines and U holds for precisely
one point on each line.)

When n�1=2 � p � n�1=3 the situation gets more complex. Now pairs
of close elements have appeared but triples have not. Here is one axiom
schema.
� There are no x; y; z with U(x); U(y); U(z) and all pairs less than r apart.
� If U(x); U(y); U(x0); U(y0) and x; x0 are within r and y; y0 are within r then
there are (at least) s points z between y and x0 with U(z).
� (for any a1; . . . ; am < r) There are x1; . . . ; xm in order with U(xi) and
U(xi + ai), all i and no other z with C(x1; z; xm) and U(z) and U(z + c) for
any c � r.
A countable model can be given on Z �Z � Z. Again order it lexicograph-
ically, use the order to de�ne C, and erase the order. Let ax; x 2 Z be a
doubly in�nite sequence of positive integers so that every �nite sequence
of positive integers appears as a subsequence of consecutive values of ax.
Now for each x we de�ne U on fxg � Z � Z by U(x; y; 0) for all y 2 Z and
U(x; 0; ax). Here the picture is of a countable number of planes, stacked into
a 3-space. Each plane has a countable number of lines, one of which has two
points on it. The situation with even larger values of k seems to get even
more complex but it appears that for the range n�1=(k�1) � p� n�1=k there
is a countable model on Zk. It would be interesting to prove, for example,
that there is no such model on Zk�1.
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so that M may be regarded as a property of unary predicates U . Basically
(see, e.g., [14]) the power of �nite state machines M is the power of the
language of unary predicates with < plus the power of being able to count
occurances modm for some �xed m. Using this one can show that for every
machine M there exists m so that the following holds for all k : Let p = p(n)
satisfy n�1=(k+1) � p(n) � n�1=k . Fix 0 � j < m. Let n ! 1 so that
n � j mod m. Let �1 . . . ; �n be a random sequence with Pr[�i = 1] = p, these
events mutually independent. Then the probability that M accepts �1 . . . ; �n
approaches a limit, independent of the particular choice of p = p(n).

12 Complete Theories and Countable Models

Any Zero-One Law leads to a complete theory - simply the set of sentences
A that hold almost surely. And any complete theory has countable models.
The new Zero-One laws with p = p(n) sparse lead to a wealth of new com-
plete theories and new problems on countable models. The case of G(n; p)
with p = n��, � 2 (0; 1) irrational has been examined in [23,24]. Suppose,
for partial de�niteness, that :5 < � < :51. Only some of the extension
sentences will be in the complete theory. The complete theory will include

8x9yx � y (35)

and
8w;z9x;yw � x ^ x � y ^ y � z (36)

but not, as mentioned earlier, that every two vertices have a common neigh-
bor. The complete theory has been axiomatized in terms of those extension
sentences it does have and certain other nonexistence sentences and a schema
of generic extension. These theories are di�erent for di�erent � so that there
are a continuum of distinct complete theories. The theories are not @0- cat-
egorical but there is a particularly interesting countable model. This is a
minimal model that satis�es all the extension statements in the theory. One
creates the model step by step. If, for example, 36 is an axiom and vertices
37; 92 have already been created then at some time two new vertices, say
683; 684 are created with 37; 683; 684; 92 forming a path and no other edges
from x < 683 to either 683 or 684.

The situation with Uo(n; p) is also intriguing. When n�1 � p � n�1=2

the complete theory can be axiomatized by the following schema. (r ranges
over all positive integers.)
� There are r distinct x with U(x)
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exists x so that the restriction of the graph to the set of z adjacent to x

has property A. If A holds for a �nite H add a focal point to H giving
H+; when H+ occurs as a component then A+ holds. Thus A+ would hold
almost surely. The Traktenbrot theorem gives Nonseparability.

Let A have quanti�er depth t. Let H1; . . . ; Hs be a list of representatives
for the Ehrenfeucht classes of depth t that have a �nite representative and
let H consist of t disjoint copies of each Hi. Almost surely Gn contains H
as an isolated graph. All such graphs Gn have the same Ehrenfeucht value
and so A holds either almost always or almost never.

11 Sparse Unary Predicates

The model U<(n; p) can pro�tably be considered with p = p(n). Consider
the property 9xU(x). Its immediate to show that p = n�1 is a threshold
function. The sentence (using the conventions of x2)

9x9yy = x + 1 ^ U(x)^ U(y) (33)

has the meaning that some two consecutive elements have U and this prop-
erty can be shown to have threshold function n�1=2. More generally n�1=k

is the threshold function for there being k consecutive elements with U . In
work in progress [2] it is shown, roughly, that these are the only threshold
functions. (We assume p � 1

2 as p and 1� p will have the same properties.)

More precisely, for any k it is shown that if n�1=(k+1) � p(n)� n�1=k then
Convergence holds and furthermore the value limn!1 Pr[U<(n; p) j= A] does
not depend on the particular p(n) but only on A and k.

Dolan [7] has shown that the Zero-One law holds if and only if p� n�1

or n�1 � p� n�1=2. If n�1=2 � p � 1
2 he noted that (using the conventions

of x2)

9xU(x)^U(x+ 1)^:U(x+ 2)^:9y [U(y) ^ U(y + 2) ^ :U(y + 1)^ y < x]
(34)

has limiting probability 1
2 . One may consider this example a little arti�cial

as it depends on the edges of f1; . . . ; ng. The circular Uo(n; p) e�ectively
removes those edge e�ects and, indeed, when n�1=(k+1) � p(n)� n�1=k the
random Uo(n; p) does indeed satisfy the Zero-One law.

These investigations have an interesting application to Finite State Ma-
chines. Such a machine M either accepts or rejects a string �1 . . . ; �n of bits.
Such a string may naturally be regarded as a unary predicate on f1; . . . ; ng
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cutting near 2n
3 one gets some yl0� . . .�ys+1 = s which is usually persistent.

Then P has value p �m � s = p � s. When an element is dropped in the
middle it usually does not change the waists in the �rst or last third and so
gives P 0 on n+1 elements with class p�m0�s = p�s. The probability of any
of the above not occuring can be shown to drop exponentially. As before,
the values an = Pr[P (n; p) j= A] satisfy jan+1 � anj < c�n and therefore
converge.

The classi�cation of random posets P (n; p) with p = p(n) ! 0 remains
an open and intriguing problem.

10 Convergence and Nonseparability

Our usual experience is that when Convergence is proven an algorithm can
be given that �nds limn!1 Pr[Rn j= A] within any prescribed positive �.
Compton [3] has shown this need not be the case. Indeed, there are some
quite natural examples where this is very much not the case.

Fix a constant p and consider the random poset P (n; p). In the above
section we indicated an argument of  Luczak that Convergence holds. Non-
separability is quite simple. For any sentence A in the �rst order theory of
partial orders let A� be the sentence that there exist x; y so that the partial
order restricted to those z with x � z � y has property A. Any �nite partial
order almost surely appears as the restriction of P (n; p) to some interval. If
A holds for any �nite partial order then A� holds almost surely, otherwise
A� holds almost never. Using Traktenbrot's theorem one can show there
is no decision procedure for determining if A holds for some �nite partial
order, and hence Nonseparability holds for P (n; p).

Let f(d) be a function de�ned on the positive integers with all 0 � f(d) �
1. De�ne a random graph Gn on vertex set f1; . . . ; ng by letting i; j be
adjacent with probability f(d), where d = ji�jj, each adjacency determined
independently. Varying the function f gives an interesting class of random
structures. Let us take f(d) = 2�d to be speci�c. The language is simply
the �rst order language of graphs. In particular, < is not in the language.
This random structure satis�es the Zero-One Law and Nonseparability.

The key probability result is that every �nite graph H almost surely
appears as an isolated graph in Gn. That is, there are no adjacencies between
the vertices v in the copy of H and those not in the copy. Indeed, this
property alone implies the Zero-One Law and Nonseparability.

Given any sentence A about graphs let A� be the sentence that there
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The above are all equivalent. Furthermore, if x; y 2M are persistent then

8mx�m� y = x� y (32)

Roughly, a U in class x is persistent if it has all \nonedge" properties up
to quanti�er depth t. For example, it must have �ve (for appropriate t)
consecutive x with U(x). However, U(1) may or may not hold.

For U on f1; . . . ; ng let UL; UR denote the restriction of U to the �rst and
last n

3 values respectively. With U selected from distribution U<(n; p) the
values UL; UR are independently selected from distribution U<(n3 ; p). The
value of the equivalence class of UL (and similarly UR) is then the result of
a random walk of length n

3 on directed graph GR in which one begins at ;
(the equivalence class of the null sequence) and moves from x to x� i with
i = 0; 1 chosen with probabilities 1 � p; p respectively. The probability of
avoiding a minimal closed set in this graph of �xed size drops exponentially
with time and so at time n

3 is less than c�n for some c < 1.
We may think of U<(n+1; p) as being generated from U<(n; p) by drop-

ping in a new element in the middle at position n
2 . With probability at least

1� 2c�n we may write the class of U<(n; p) as x�m� y, representing the
�rst, middle and last third of the sequence, with x; y persistent. Dropping
in an extra element in the middle changes m to m0 but by 32 this will not
a�ect the value. Any A of quanti�er depth t may be regarded as the union
of classes in M . From this, the values an = Pr[U<(n; p) j= A] can change by
only O(c�n) when U<(n; p) is changed to U<(n+ 1; p). As

P
jan+1 � anj is

�nite, the an must approach a limit.
A similar argument has been given by  Luczak [15] to show that the

random poset P (n; p) satis�es Convergence for any constant p. Fix t and let
M be the set of equivalence classes of posets under the t-move Ehrenfeucht
game. De�ne the sum P = P1 � P2 of two posets (letting V1; V2 denote
their underlying sets, assumed disjoint) by letting x < y and P (x; y) have
their induced meanings if x; y 2 V1 or x; y 2 V2 and setting x < y for all
x 2 V1; y 2 V2 and, critically, setting P (x; y) for all x 2 V1; y 2 V2. As
before, this induces an addition � on M .

On P (n; p) call x a waist if y < x! P (y; x) and x < y ! P (x; y). That
is, in the underlying G there are increasing paths from x to x + 1; x+ 2; . . .
and decreasing paths from x to x�1; x�2; . . .. The probability x is a waist is
larger than a positive constant �. P (n; p) usually has waists x1; . . . ; xs with
s � �n. These waists split P into P1 � . . .Ps � Ps+1 with Pi the restriction
of P to [xi�1; xi�1). Letting yi be the class of Pi, P has class y1� . . .�ys+1.
Cutting near n

3 one gets some y1�. . .�yl = p which is usually persistent and
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will win EHR(S1; S2; t). Let n = m ! 1. With probability 1
2 precisely

one of independently chosen S1; S2 � Rn have property A and so Spoiler's
probability of winning EHR(S1; S2; t) is at least 1

2 and so 31 does not hold.
In general, the appeal of the Ehrenfeucht game approach to nonlogicians

is that 31 is a statement involving \only" probability and discrete math
and so is approachable without any background in Logic. A simple (to
graph theorists) proof of the Glebskii/Fagin Theorem may be given using
the Ehrenfeucht Game. Fix p 2 (0; 1). The random G � G(n; p) has what
P. Winkler has dubbed the \Alice's Restaurant" property. For any �xed
r; s almost surely for any distinct x1; . . . ; xr and y1; . . . ; ys there exists a
z adjacent to all of the xi and none of the yj . To win EHR(G1; G2; t)
Duplicator on each round needs only to �nd a vertex with the appropriate
adjacencies to previously chosen vertices, and almost surely he can do so.

Let p = n�� with � 2 (0; 1) irrational. Now the Alice's Restaurant
property no longer holds. Suppose, for example, :5 < � < :51. Then it
almost surely is not true that every two vertices have a common neighbor.
Here Duplicator's strategy must be more subtle. In [22] a winning Duplicator
strategy is given which gives an alternate proof of the Zero-One law of [20].

9 Convergence via Ehrenfeucht

Here we give an argument somewhat di�erent from [18] to show thatU<(n; p)
has convergence (p constant) and then show how this may be applied to
P (n; p), p constant. Consider models U of unary predicates with underlying
<. Fix an integer t and de�ne the U � U 0 if Duplicator wins EHR(U; U 0; t).
This is the equivalence relation of having the same quanti�er depth t prop-
erties. Let M be the (�nite!) set of equivalence classes. There is a natural
addition U1 � U2 given by placing the \sequence" U2 \to the right of" U1.
This induces an addition x � y on M which gives a semigroup. Let 0; 1
denote the equivalence classes of the models on f1g with :U(1), U(1) re-
spectively. On M de�ne a directed graph GR with edges (x; x� i), x 2M ,
i = 0; 1 and a directed graph GL with edges (x; i� x), x 2M , i = 0; 1. We
say x is persistent if
� x lies in a minimal closed set of GR

� x lies in a minimal closed set of GL

� 8y9zx� y � z = x
� 8y9zz � y � x = x

� 9p9s8mp�m� s = x

11



one sets pi(n) = i=
�n
2

�
for i = 1; 2; . . .. Set

�ij = lim
n!1

Pr[G<(n; pi(n)) j= Aj ] (30)

where the Aj enumerate the sentences of the theory. One needs the existence
of the limit, Convergence for pi(n). Given that one goes to a subsequence
il for which the �il;j converge for all j and then one patches together these
pil(n) into a p(n) with the desired properties. The other, more complicated,
portion of the argument requires an encoding of binary relations on sets
whose size is a given function of f(n).

8 The Ehrenfeucht Game

There are quite naturally several approaches to proving a Zero-One Law
but one that is of particular interest to graph theorists is via the Ehren-
feucht game. Given two disjoint structures S1; S2 and a positive integer t
the Ehrenfeucht game, lets call it EHR(S1; S2; t) is a t-round perfect infor-
mation game between two players, Spoiler and Duplicator. On each round
Spoiler selects a vertex from either structure (his choice, and it may vary
from turn to turn) and then Duplicator must select a vertex from the other
structure. Let x1; . . . ; xt and y1; . . . ; yt denote the vertices selected from
S1; S2 respectively, the index denoting the round. Duplicator wins if the
structures resticted to these moves are isomorphic. In the case of graphs
that requirement is that xi � xj if and only if yi � yj . With ordered graphs
we also require xi < xj if and only if yi < yj and in general all predicated
in the underlying language must be preserved. The now classic result [9] is
that S1; S2 are elementarily equivalent if and only if for every t Duplicator
(with perfect play) wins EHR(S1; S2; t)
Theorem. The random structures Rn satisfy the Zero-One Law if and
only if for every t

lim
n;m!1

Pr[Duplicator wins EHR(Rn; Rm; t)] = 1 (31)

Here we think of structures S1; S2 being chosen independently from proba-
bility spaces Rn; Rm respectively. Again, both players are assumed to play
perfectly.

To get a feeling for the argument imagine there is a sentence A for which
limn!1 Pr[Rn j= A] = 1

2 . Let t be the quanti�er depth of A. Basic analysis
of the Ehrenfeucht game gives that if S1 j= A and S2 j= :A then Spoiler
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recursively de�ned. By itself, of course, this does not prove the nonexistence
of recursive p(n).

We outline the argument for (b) with p = p(n) given by 22. Let N =
N(x; y; z) be the set of common neighbors of x; y; z and let H(x; y; z) be the
predicate that N 6= ;. Set

q = Pr[H ] � np3 � n�3=�(n) (29)

For this outline we will regard regard H as a random predicate with proba-
bility q. Any choice of z induces a binary predicate H(x; y). The maximal
size jN j is known to be � �. With N1; N2 disjoint (for convenience) call
N1 bigger than N2 if there is a z so that the binary H on N1 [ N2 gives
an injection which is not a bijection from N2 to N1. With sets of size, say,
�=10 each H has probability � q�=10 � n�1 of giving this injection (assum-
ing it exists) and almost surely one of the n choices of z gives that H . Sets
of common neighbors N with no bigger N1 then must have size �(�). By
technical means one can now speak of sets of common neighbors N of size
� �� with �� = �(n)1=3. Now any symmetric binary R on N holds for at
most (��)2 � � pairs and so H has probability at least qo(�) � n�1 of being
R. Almost surely the n choices of z induce all binary R on N .

To avoid technical di�culties, suppose we can speak of N = N(x; y; z)
having precisely ��(n) = b�(n)1=3c elements. Let B be any sentence in the
�rst order theory of graphs and let S = Sp(B) be the (usual) spectrum of
B, the set of m for which there is a graph on m vertices satisfying B. Let B�

be the �rst order sentence with the almost surely meaning that there exist
x; y; z so that N = N(x; y; z) has �� elements and there exists w so that
the graph on N given by H(�;�; w) satis�es B. Let T be the set of values
��(n). For n large Pr[B�] will be near one when ��(n) 2 S and near zero
otherwise. If Pr[B�]! 1 then all large t 2 T have t 2 S while if Pr[B�]! 0
then all large t 2 T have t 62 S. For p = p(n) to satisfy the Zero-One Law
it must satisfy it for sentences B� and hence either T \ S or T \ S must be
�nite for every possible spectrum S. Results of Fagin [11] and others give
that the class of such spectrum S is very broad so that, as argued in [16],
no recursive T , hence no recursive p(n), can have this property.

This phenomenon also appears in joint work, still in progress, of J. Lynch
and P. Dolan on the random ordered graph G<(n; p). Consider the case
p = f(n)=

�n
2

�
with f(n) ! 1 but slowly, say, f(n) < ln n. Basically these

G look like � f(n) disjoint edges in a scrambled order. There is such a p(n)
for which Convergence holds but there is no such recursive function. Here
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or, equivalently, that we may write

p = p(n) = n
�

1
3�

1
�(n) (22)

with �(n)! +1 and �(n) = o(lnn).
Theorem (a) There exist p = p(n) satisfying 21 for which the Zero-One
law holds
(b) There are no recursive p = p(n) satisfying 21 for which the Zero-One
law holds.

We can give a fairly complete outline for (a). For i = 1; 2; . . . de�ne

pi(n) = n��i with �i = �
1

3
�

1

�i
(23)

Enumerate A1; A2; . . . the sentences of the �rst order theory of graphs. As
�i is irrational the Zero-One law holds for pi(n) and

�ij = lim
n!1

Pr[G(n; pi(n)) j= Aj ] = 0 or 1 (24)

for all i; j. Standard diagonalization techniques give a subsequence i1 <
i2 < . . . so that for each j there is a �j 2 f0; 1g with

�j = �ij ;j = �ij+1;j = �ij+2;j = . . . (25)

Setting �l = �il for convenience, now de�ne p = p(n) by

p(n) = n��l for nl � n < nl+1 (26)

(p(n) arbitrary for n < n1) where n1 < n2 < . . . are chosen so that

�
�
�Pr[G(n; n��l) j= Aj ]� �j

�
�
� <

1

l
(27)

for 1 � j � l. Then for all j

lim
n!1

Pr[G(n; p(n)) j= Aj ] = �j (28)

and so the Zero-One law holds.
Observe why this procedure is not itself recursive. Indeed, there is no

recursive procedure to separate those A which hold almost always for pi(n)
for i su�ciently large from those A which hold almost never for pi(n) for i
su�ciently large. Hence the �j , and so the subsequence i1 < i2 < . . . is not

8



it does so very slowly and since there are n choices for c almost surely one of
them will work, and similarly there will be an [e; f ] inducing multiplication.)
Call [a; b] maximally arithmetizable if neither [a � 1; b] nor [a; b + 1] are
arithmetizable. Almost surely all such maximally arithmetizable intervals
will have � = log log n < b�a and, trivially, b�a � n, and furthermore there
will be maximally arithmetizable intervals. With [a; b] aritmetized standard
techniques allow us to say many things about the length b�a. Let log� x be
the number of times one must iterate log, beginning at x, until the number
falls below 1. Almost surely

log� n > log�(b� a) > log�(n)� 2 (20)

for all maximally arithmetizable intervals [a; b]. Consider the sentence A

that there exists a maximal arithmetizable [a; b] with log�(b � a) between
0 and 50 modulo 100. If, say, log� n � 25 mod 100 then almost surely the
maximal arithmetizable [a; b] have log�(b�a) either 25; 24 or 23 mod 100 and
A holds. If, say, log� n � 75 mod 100 then almost surely all arithmetizable
[a; b] have log�(b� a) either 75; 74 or 73 mod 100 and A will not hold.

A similar argument works with G(n; p) for p = n�1=7 is given in [20]. In-
stead of intervals [a; b] we have the set V of common neighbors of x1; . . . ; x7.
An exterior vertex w generates a 6-ary predicate on V by saying R(v1; . . . ; v6)
if v1; . . . ; v6; w have a common neighbor. V is arithmetized if the predicate
induces plus and times. (There is a technical problem in that as stated this
is a symmetric predicate and one has to desymmetrize it.) One V is shorter
than another V 0 if there are w1; . . . ; w5 so that the binary predicate on their
union given by w1 . . . ; w5; x; y having a common neighbor provides an injec-
tion which is not a bijection from V to V 0. One needs some (not so easy)
technical lemmas that all maximal arithmetizable V will have at least, say,
log log n vertices and then the remainder of the argument is as before.

7 No Recursive Convergence

In [16], while giving a near complete classi�cation of those p = p(n) for which
the Zero-One law holds for G(n; p), a peculiar phenomenon was discovered.
Restrict (just to be speci�c) p = p(n) so that

p(n)� n�1=3 (21)

p(n) = n�1=3�o(1)
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i.e., that vi; vj; w have no common neighbor is (1 � p3)n�3 � e�1 so the
chance of getting the particular pentagon with vi; vi+1 adjacent is �2 =
(e�1)5(1� e�1)5. The total probability that Hx;y;z;w

�= H is then more than
a positive constant � = �1�2. Almost surely one of n

4 disjoint choices of
x; y; z; w will give this H . Of course, the notions of independence must be
eshed out to make this a full argument.

Assume the Representation Theorem. For any sentence A we can con-
struct the still �rst order

A� : 9x;y;z;wHx;y;z;w j= A (18)

If A holds for no �nite graph then A� holds for no �nite graph and so
Pr[A�] ! 0 in any probability space. If A holds for some �nite graph
H then in G(n; p) with p = n�1=3 there almost surely are x; y; z; w with
Hx;y;z;w

�= H so that A� would hold almost surely. A decision procedure
that could separate the A� holding almost never from those holding almost
always would separate the A holding for some �nite H from those holding
for no �nite H and this contradicts the Traktenbrot Theorem.

The situation is even easier if we take, for example, G<(n; p) with p

constant. With < a built in relation we can transform any A into

A� : 9a;bGj[a;b] j= A (19)

For any �nite ordered graph H there almost surely are a; b with Gj[a;b] �= H

and the proof is as above.

6 Proving Nonconvergence

We outline the argument that G<(n; p) has nonconvergence for p = 1
2 , or

any constant. We want to give an interval [a; b] the structure of an initial
fragment of arithmetic. Given other intervals [c; d] and [e; f ] induce on [a; b]
the ternary x + y = z by x; y < z and the existence of v 2 [c; d] adjacent
to x; y; z and no other points in [a; b]. (The case x = y can be handled
specially.) We similarly use [e; f ] to induce the ternary predicate xy = z.
Consider a as \1". Say [a; b] is arithmetizable if there exist c; d; e; f so
that with these induced de�nitions plus and times satisfy the axioms for
a fragment of arithmetic. Take � = �(n) = log logn. Almost surely any

[a; b] with b� a � � will be arithmetizable. (Rougly, take some [c; d] of size
around �2. If [c; d] has just the right adjacencies to [a; b] then it will induce
plus and the probability that this occurs is like 2��

3
. While this goes to zero

6



and
lim
n!1

Pr[no isolated triangles] = e�c
3e�3c=6 (14)

Lynch [19] showed that the limit always existed and further, as a function
of c, that it must have a form \similar" to the examples above.

In the negative direction this author [21] has shown that Nonseparability
holds for the random graph G(n; p) with p = n�1=3 and this was extended
[6] by his then student Peter Dolan to p = n�� for any rational � 2 (0; 1).
Let 0 < p < 1 be arbitrary but �xed and let G<(n; p) be the random
ordered graph of x2. Compton, Hanson and Shelah [4] have shown that
Nonconvergence holds; they have given A for which limn!1 Pr[G<(n; p) j=
A] does not exist.

Actually, in the two previous examples both Nonconvergence and Non-
separability hold. This is often (not always, see x10) the case though
for many random structures proving Nonconvergence requires considerably
more technical e�ort than proving Nonseparability.

5 Proving Nonseparability

The basic tool usually used in proving nonseparability is the Traktenbrot
theorem [25]. This result (in somewhat limited form) states that there is no
decision procedure to determine if a sentence A in the �rst order theory of
graphs is satis�ed for any �nite graph. We outline how this is used in [21] to
show Nonseparability for G(n; p) with p = n�1=3. We de�ne Hxyzw = (V;E)
by the �rst order

a 2 V  ! a � x ^ a � y ^ a � z (15)

and
fa; bg 2 E  ! a; b 2 V ^ :9vv � a ^ v � b^ v � w (16)

That is, given a graph G and vertices x; y; z; w this de�nes a new graph H .
The de�nitions are designed for the following.
Representation Theorem. Let H be any �nite graph. Then almost
surely

9x;y;z;wHx;y;z;w
�= H (17)

We give a rough outline when H is a pentagon. Pick x; y; z; w 2 G(n; p)
at random. Each a 2 G has probability p3 = n�1 of being in V so that
jV j has a Poisson distribution with mean one and with probability �1 = 1

e5!
the size jV j = 5. Given V = fv1; . . . ; v5g the probability that fvi; vjg 2 E,

5



4 Examples

The classic example for the Zero-One law, as we have already mentioned, is
the random graph G(n; p) where p is any constant. With Saharon Shelah
[20] we showed that the Zero-One law also holds when p = p(n) = n�� and
0 < � < 1 is irrational. This has a natural description in terms of threshold
functions. Let us take, as an example, the �rst order property A that the
graph contains a K4, i.e., that there exist four distinct vertices with all six
pairs adjacent. It is know, even from the original [8], that p = n�2=3 is the
threshold function for this property. When p � n�2=3 almost surely :A
while with p � n�2=3 almost surely A. In between the Pr[A] moves from
zero to one - the exact result is that with p = cn�2=3

lim
n!1

Pr[G(n; cn�2=3) contains no K4] = e�c
6=24 (11)

but the only important thing for us is that it is neither zero nor one. The
rough notion is that at a threshold function the probability is moving be-
tween zero and one so that for a Zero-One law to hold p = p(n) must be
between the threshold functions - it must be a dull function of n. While
this has strong intuitive appeal to graph theorists we must point out that
the notion of threshold function does not apply to all �rst order properties
A and so the feeling of Zero-One meaning \not a threshold function" must
remain only a feeling.

There are, of course, functions of n other than n��. In [16] a fairly
complete characterization of those p = p(n) for which the Zero-One law
holds is given.

A classic example of Convergence was given by Ehrenfeucht. He (as
attributed in [18]) showed that, for any constant p, Convergence held for
U<(n; p) - i.e., that limn!1 Pr[U<(n; p) j= A] existed for all sentences A.
Another example concerns the random function Fn. Here we have a function
symbol f taken uniformly from the nn functions f : f1; . . . ; ng ! f1; . . . ; ng.
Equality is the only other predicate. For example,

lim
n!1

Pr[:9xf(x) = x] = e�1 (12)

Lynch [17] showed that the limit always exists and, moreover, that it must
have a particular form. A �nal example concerns the random graph G(n; p)
with p = c

n , c a constant. There, for example,

lim
n!1

Pr[no triangles] = e�c
3=6 (13)
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f1; . . . ; ng as forming a cycle with 1 directly following n so that C(x; y; z) has
the meaning that x; y; z lie in a clockwise direction. (Note that if we added
a constant symbol this could be reduced to U<(n; p).) We write y = x + 1
for :9zC(x; z; y) and inductively we can write y = x+ r for any r 2 N . We
say x1; . . . ; xr are in order if C(xi; xj; xk) for all 1 � i < j < k � r.
Random Poset P (n; p)
The language consists of the built in < and a partial order P . To generate
P �rst generate the random graph G � G(n; p). Set xPy if there exists a
sequence (for arbitrary r, including r = 1) x = x0 < x1 < . . . < xr = y with
all fxi; xi+1g 2 G. (In other words set xPy if x < y and x; y are adjacent
and then take the transitive closure.) Sample sentence:

9x9yx 6= y ^ :9z [P (z; x)_ P (z; y)] (7)

meaning there is more than one minimal element under the partial order P .

3 Four Outcomes

In the general situation there will be de�ned for every n a random structure
Rn of \size" n and a language A. The assumption that A is a sentence of
the language A shall be assumed tacitly throughout. We say A holds almost

always if
lim
n!1

Pr[Rn j= A] = 1 (8)

and we say A holds almost never if :A holds almost always. We consider
four possible outcomes. On the positive side:
� Zero-One Law. Every sentence A holds almost always or almost never.
� Convergence. For every sentence A

lim
n!1

Pr[Rn j= A] exists (9)

On the negative side:
� Nonseparability. No recursive decision procedure separates those A
holding almost surely from those A holding almost never.
� Nonconvergence. There exists A for which

lim
n!1

Pr[Rn j= A] does not exist (10)

Observe that Nonseparability is formally stronger than saying that there
is no recursive decision procedure for determining limn!1 Pr[Rn j= A].
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Two recent surveys [5,26] of these problems from somewhat di�erent
perspectives are well worth reading.

2 Five Structures

All of these structures have parameters n and p. The underlying space is
always f1; . . . ; ng. The value p 2 [0; 1] represents a probability . In all cases
it is of interest to characterize the possible outcomes (see x3) for various
p = p(n). All languages are assumed to be �rst order with equality.
Random Graph G(n; p)
One symmetric areexive binary predicate adjacency, denoted x � y. Struc-
tures are graphs G on f1; . . . ; ng with probabilities determined by Pr[i �
j] = p, these events mutually independent. Sample sentences:

9x9y9zx � y ^ x � z ^ y � z (3)

8x9yx � y (4)

with meanings \there exists a triangle" and \there is no isolated vertex"
respectively.
Random Ordered Graph G<(n; p)
The structure is as above but the language also contains the built in binary
<. Sample sentence:

9x9yx � y ^ :9z [z 6= x ^ z 6= y ^ (z < x _ z < y)] (5)

with the meaning that 1; 2 are adjacent. We write \1" for that x so that
:9yy < x, y = x + 1 for x < y ^ :9z [x < z ^ z < y] and similarly y = x + r
for any r 2 N .
Random Ordered Unary Predicate U<(n; p)
Language consists of unary U and binary <. Structures are unary predicates
U with probabilities determined by Pr[U(i)] = p, these events mutually
independent. < is the built in less than on f1; . . . ; ng. The conventions for
Random Ordered Graphs apply. Sample sentence:

9x;y;zy = x + 1 ^ z = x + 2^ U(x)^ U(y)^ U(z) (6)

meaning that some three consecutive elements have U .
Random Circular Unary Predicate Uo(n; p)
U is as above. Instead of < we have the built in ternary relation C(x; y; z)
with the meaning that x < y < z or y < z < x or z < x < y. We think of
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Zero-One Laws With Variable Probability
Joel Spencer

Courant Institute

1 Introduction

One of this author's favorite theorems has long been the Zero-One law dis-
covered independently by Glebskii et.al. [12] and Ron Fagin [10]. Let A

be any �rst order property of graphs and let �n(A) be the proportion of
labelled graphs on n vertices for which A holds. Then

lim
n!1

�n(A) = 0 or 1 (1)

This result has inspired much work by logicians, generally in the direction
of showing 1 for more powerful languages. Thus it is known [5] that 1 holds
when A is a sentence in �xed point logic and it is known [13] that 1 does
not always hold when A is a sentence is second order monadic logic. Here,
however, we explore recent work in a totally di�erent direction. Let G(n; p)
denote the random graph on n vertices with edge probability p. (In x2 we
de�ne the random structures we will deal with.) A property A is an event in
the probability space and Pr[G(n; p) j= A] is well de�ned. When p = 1

2 , each
labelled graph on n vertices has equal weight so that 1 may be rewritten

lim
n!1

Pr[G(n; p) j= A] = 0 or 1 (2)

Fagin's proof actually gives that 2 holds for any constant 0 < p < 1.
To people who work in Random Graphs the cases p constant are only a

small and relatively uninteresting part of the theory. Rather, they consider
the edge probability p to be p = p(n), a function of the number of vertices n.
Take, for example, connectivity - though this is not a �rst order property. In
their classic paper Paul Erd}os and Alfred R�enyi [8] showed that if p(n)� lnn

n

then G almost surely is not connected while if p(n) � lnn
n then G almost

surely is connected. The called the function lnn
n the threshold function for

connectivity. Over the years analogous threshold functions have been found
for many natural graphtheoretic properties and invariably they involve the
edge probability p as a function of the number of vertices n. The new
direction in the study of Zero-One laws is to consider random structures
(Random Graphs the main but not the only example) with a probability
parameter p and to examine for which p = p(n) the Zero-One law, and the
other possibilities to be described, apply.
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