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e There are no z,y with y = 2 + r and U(2), U(y)

A countable model may be given on Z x Z. There is a natural lexicographical
< with (z,y) =a < g =(ayy)ifandonly if z <z’ orz =2a' Ay < y.
Define the clockwise ternary relation C'(a,8,7) by a < f<yor f <7< «
or v < a < 3. Now erase the <. Let U(z,y) hold if and only if y = 0. (In
our minds eye we have a countable number of lines and U holds for precisely
one point on each line.)

When n71/2 « p <« n~1/3 the situation gets more complex. Now pairs
of close elements have appeared but triples have not. Here is one axiom
schema.

e There are no z,y, z with U(2),U(y),U(z) and all pairs less than r apart.
o IfU(2),U(y),U(2"),U(y") and z, 2" are within r and y, y’ are within r then
there are (at least) s points z between y and ' with U(z).

e (for any aq,...,a, < r) There are xq,...,2,, in order with U(z;) and
U(z; 4+ a;), all 7 and no other z with C'(z1, 2, 2,,) and U(z) and U(z + ¢) for
any ¢ < r.

A countable model can be given on Z X Z x Z. Again order it lexicograph-
ically, use the order to define ', and erase the order. Let a,,2 € Z be a
doubly infinite sequence of positive integers so that every finite sequence
of positive integers appears as a subsequence of consecutive values of a,.
Now for each 2 we define U on {2} x Z x Z by U(z,y,0) for all y € Z and
U(z,0,a,). Here the picture is of a countable number of planes, stacked into
a 3-space. Each plane has a countable number of lines, one of which has two
points on it. The situation with even larger values of £ seems to get even
more complex but it appears that for the range n=1/* =1 « p « n=1/* there
is a countable model on Z*. Tt would be interesting to prove, for example,
that there is no such model on Z*-1,
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so that M may be regarded as a property of unary predicates U. Basically
(see, e.g., [14]) the power of finite state machines M is the power of the
language of unary predicates with < plus the power of being able to count
occurances mod m for some fixed m. Using this one can show that for every
machine M there exists m so that the following holds for all & : Let p = p(n)
satisfy n~ /5D <« p(n) < n='*% Fix 0 < j < m. Let n — oo so that
n = j mod m. Let € ..., ¢, be a random sequence with Pr[e; = 1] = p, these
events mutually independent. Then the probability that M accepts €q...,¢,
approaches a limit, independent of the particular choice of p = p(n).

12 Complete Theories and Countable Models

Any Zero-One Law leads to a complete theory - simply the set of sentences
A that hold almost surely. And any complete theory has countable models.
The new Zero-One laws with p = p(n) sparse lead to a wealth of new com-
plete theories and new problems on countable models. The case of G(n,p)
with p = n=%, a € (0,1) irrational has been examined in [23,24]. Suppose,
for partial definiteness, that .5 < a < .51. Only some of the extension
sentences will be in the complete theory. The complete theory will include

Vydyr ~y (35)

and
Vi dogW~ 2 A ~yAy~z (36)

but not, as mentioned earlier, that every two vertices have a common neigh-
bor. The complete theory has been axiomatized in terms of those extension
sentences it does have and certain other nonexistence sentences and a schema
of generic extension. These theories are different for different & so that there
are a continuum of distinct complete theories. The theories are not Ng- cat-
egorical but there is a particularly interesting countable model. This is a
minimal model that satisfies all the extension statements in the theory. One
creates the model step by step. If, for example, 36 is an axiom and vertices
37,92 have already been created then at some time two new vertices, say
683,684 are created with 37,683, 684,92 forming a path and no other edges
from z < 683 to either 683 or 684.

The situation with U°(n,p) is also intriguing. When n™! < p < n~1/2
the complete theory can be axiomatized by the following schema. (r ranges
over all positive integers.)

e There are r distinct 2 with U(z)
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exists x so that the restriction of the graph to the set of z adjacent to x
has property A. If A holds for a finite H add a focal point to H giving
H*; when HY occurs as a component then AT holds. Thus AT would hold
almost surely. The Traktenbrot theorem gives Nonseparability.

Let A have quantifier depth ¢t. Let Hy,..., H; be a list of representatives
for the Ehrenfeucht classes of depth ¢t that have a finite representative and
let H comnsist of ¢ disjoint copies of each H;. Almost surely G, contains H
as an isolated graph. All such graphs G, have the same Ehrenfeucht value
and so A holds either almost always or almost never.

11 Sparse Unary Predicates

The model U«(n,p) can profitably be considered with p = p(n). Consider
the property 3,U(z). Its immediate to show that p = n=! is a threshold
function. The sentence (using the conventions of §2)

3.3,y =2+ 1A U() A U(y) (33)

has the meaning that some two consecutive elements have U and this prop-
erty can be shown to have threshold function n=1/2. More generally n=1/%
is the threshold function for there being k consecutive elements with U. In
work in progress [2] it is shown, roughly, that these are the only threshold
functions. (We assume p < % as p and 1 — p will have the same properties.)
More precisely, for any k it is shown that if n~1/(k+1) « p(n) < n~1/* then
Convergence holds and furthermore the value lim,,_.., Pr[U<(n,p) = A] does
not depend on the particular p(n) but only on A and k.

Dolan [7] has shown that the Zero-One law holds if and only if p < n~1
orn <« pgn 2 UnPgp< % he noted that (using the conventions
of §2)

FU(@)ANU(z+ D) AUz +2)A -3, [Uy) AU(y+2) AUy + 1) Ay < z]
(34)
has limiting probability % One may consider this example a little artificial
as it depends on the edges of {1,...,n}. The circular U°(n,p) effectively
removes those edge effects and, indeed, when n~1/(k+1) p(n) < n~ 1k the
random U°(n,p) does indeed satisfy the Zero-One law.
These investigations have an interesting application to Finite State Ma-
chines. Such a machine M either accepts or rejects a string €; .. ., €, of bits.
Such a string may naturally be regarded as a unary predicate on {1,...,n}
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cutting near %” one gets some yp P ...PHys+1 = s which is usually persistent.
Then P has value pdm @ s = p P s. When an element is dropped in the
middle it usually does not change the waists in the first or last third and so
gives P’ on n+1 elements with class p&m’@s = pds. The probability of any
of the above not occuring can be shown to drop exponentially. As before,
the values a,, = Pr[P(n,p) F A] satisfy |a,41 — a,| < ¢ and therefore
converge.

The classification of random posets P(n,p) with p = p(n) — 0 remains

an open and intriguing problem.

10 Convergence and Nonseparability

Our usual experience is that when Convergence is proven an algorithm can
be given that finds lim,_., Pr[R, | A] within any prescribed positive e.
Compton [3] has shown this need not be the case. Indeed, there are some
quite natural examples where this is very much not the case.

Fix a constant p and consider the random poset P(n,p). In the above
section we indicated an argument of Luczak that Convergence holds. Non-
separability is quite simple. For any sentence A in the first order theory of
partial orders let A* be the sentence that there exist z, y so that the partial
order restricted to those z with © < z < y has property A. Any finite partial
order almost surely appears as the restriction of P(n,p) to some interval. If
A holds for any finite partial order then A* holds almost surely, otherwise
A* holds almost never. Using Traktenbrot’s theorem one can show there
is no decision procedure for determining if A holds for some finite partial
order, and hence Nonseparability holds for P(n,p).

Let f(d) be afunction defined on the positive integers with all 0 < f(d) <
1. Define a random graph G, on vertex set {1,...,n} by letting i,j be
adjacent with probability f(d), where d = |¢—j|, each adjacency determined
independently. Varying the function f gives an interesting class of random
structures. Let us take f(d) = 277 to be specific. The language is simply
the first order language of graphs. In particular, < is not in the language.
This random structure satisfies the Zero-One Law and Nonseparability.

The key probability result is that every finite graph H almost surely
appears as an isolated graph in GG,;. That is, there are no adjacencies between
the vertices v in the copy of H and those not in the copy. Indeed, this
property alone implies the Zero-One Law and Nonseparability.

Given any sentence A about graphs let A* be the sentence that there
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The above are all equivalent. Furthermore, if 2,y € M are persistent then
Vet dmpy=—zGy (32)

Roughly, a U in class x is persistent if it has all “nonedge” properties up
to quantifier depth ¢. For example, it must have five (for appropriate )
consecutive z with U(z). However, U(1) may or may not hold.

For U on {1,...,n}let UL, U denote the restriction of U to the first and
last % values respectively. With U selected from distribution Uc(n,p) the
values UL, U are independently selected from distribution Uc(5,p). The
value of the equivalence class of UL (and similarly /) is then the result of
a random walk of length % on directed graph G in which one begins at {)
(the equivalence class of the null sequence) and moves from 2 to = & 7 with
¢ = 0,1 chosen with probabilities 1 — p, p respectively. The probability of
avoiding a minimal closed set in this graph of fixed size drops exponentially
with time and so at time % is less than ¢~" for some ¢ < 1.

We may think of U«(n+ 1, p) as being generated from U (n, p) by drop-

ping in a new element in the middle at position 3. With probability at least
1 — 2¢7™ we may write the class of U< (n,p) as @ & m & y, representing the
first, middle and last third of the sequence, with z,y persistent. Dropping
in an extra element in the middle changes m to m’ but by 32 this will not
affect the value. Any A of quantifier depth ¢ may be regarded as the union
of classes in M. From this, the values a,, = Pr[U<(n,p) E A] can change by
only O(¢™") when Uc(n,p) is changed to Uc(n+ 1,p). As Y |ap41 — ay] is
finite, the a,, must approach a limit.

A similar argument has been given by Luczak [15] to show that the
random poset P(n, p) satisfies Convergence for any constant p. Fix ¢ and let
M be the set of equivalence classes of posets under the t-move Ehrenfeucht
game. Define the sum P = P, & P; of two posets (letting Vi, V, denote
their underlying sets, assumed disjoint) by letting # < y and P(x,y) have
their induced meanings if z,y € V5 or 2,y € V5 and setting z < y for all
x € Vi,y € Vy and, critically, setting P(z,y) for all z € Vi,y € Va. As
before, this induces an addition ¢ on M.

On P(n,p) call  a waistif y < 2 — P(y,z) and 2 < y — P(z,y). That
is, in the underlying G there are increasing paths from z to z + 1,2+ 2, ...
and decreasing paths from x tox—1,2—2,.... The probability = is a waist is
larger than a positive constant a. P(n,p) usually has waists 21,..., 25 with
s ~ an. These waists split P into Py & ... P; & Ps4q with P; the restriction
of P to[x;—1,2;—1). Letting y; be the class of P;, P has class y1 ... B Ys41-

n

Cutting near § one gets some y @...@Hy = p which is usually persistent and
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will win EHR(S5Y,52%,¢). Let n = m — oo. With probability % precisely
one of independently chosen S, 5% ~ R, have property A and so Spoiler’s
probability of winning EH R(S!, 5%,t) is at least % and so 31 does not hold.
In general, the appeal of the Ehrenfeucht game approach to nonlogicians
is that 31 is a statement involving “only” probability and discrete math
and so is approachable without any background in Logic. A simple (to
graph theorists) proof of the Glebskii/Fagin Theorem may be given using
the Ehrenfeucht Game. Fix p € (0,1). The random G' ~ G(n,p) has what
P. Winkler has dubbed the “Alice’s Restaurant” property. For any fixed
r,s almost surely for any distinct z4,...,2, and y1,...,ys there exists a
z adjacent to all of the z; and none of the y;. To win EHR(G' G? 1)
Duplicator on each round needs only to find a vertex with the appropriate
adjacencies to previously chosen vertices, and almost surely he can do so.
Let p = n=® with @ € (0,1) irrational. Now the Alice’s Restaurant
property no longer holds. Suppose, for example, .5 < a < .51. Then it
almost surely is not true that every two vertices have a common neighbor.
Here Duplicator’s strategy must be more subtle. In [22] a winning Duplicator
strategy is given which gives an alternate proof of the Zero-One law of [20].

9 Convergence via Ehrenfeucht

Here we give an argument somewhat different from [18] to show that U< (n, p)
has convergence (p constant) and then show how this may be applied to
P(n,p), p constant. Consider models U of unary predicates with underlying
<. Fix an integer ¢ and define the U = U’ if Duplicator wins FH R(U,U’,t).
This is the equivalence relation of having the same quantifier depth ¢ prop-
erties. Let M be the (finite!) set of equivalence classes. There is a natural
addition Uy ¢ Us given by placing the “sequence” U; “to the right of” Us.
This induces an addition z ¢ y on M which gives a semigroup. Let 0,1
denote the equivalence classes of the models on {1} with =U(1), U(1) re-
spectively. On M define a directed graph GF with edges (z,xdi),z €M,
i = 0,1 and a directed graph G with edges (z,i ®2), 2 € M, i=0,1. We
say x is persistent if

e z lies in a minimal closed set of GF

e z lies in a minimal closed set of G*

oV, daoDydzr=u2

eV, d2dydr=u2x

o LA V,pdmds=x
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one sets pi(n) =1/(;) for i =1,2,... Set
bij = lim Pr[G<(n,pi(n)) |= Aj] (30)

where the A; enumerate the sentences of the theory. One needs the existence
of the limit, Convergence for p;(n). Given that one goes to a subsequence
t; for which the ¢é;, ; converge for all j and then one patches together these
pi,(n) into a p(n) with the desired properties. The other, more complicated,
portion of the argument requires an encoding of binary relations on sets
whose size is a given function of f(n).

8 The Ehrenfeucht Game

There are quite naturally several approaches to proving a Zero-One Law
but one that is of particular interest to graph theorists is via the Ehren-
feucht game. Given two disjoint structures S!, 5% and a positive integer ¢
the Ehrenfeucht game, lets call it EH R(S5!, 52 ¢) is a t-round perfect infor-
mation game between two players, Spoiler and Duplicator. On each round
Spoiler selects a vertex from either structure (his choice, and it may vary
from turn to turn) and then Duplicator must select a vertex from the other
structure. Let z1,...,2; and #1,...,y; denote the vertices selected from
51,52 respectively, the index denoting the round. Duplicator wins if the
structures resticted to these moves are isomorphic. In the case of graphs
that requirement is that x; ~ z; if and only if y; ~ y;. With ordered graphs
we also require z; < z; if and only if y; < y; and in general all predicated
in the underlying language must be preserved. The now classic result [9] is
that S, 52 are elementarily equivalent if and only if for every ¢ Duplicator
(with perfect play) wins EH R(S!, 5%, 1)

Theorem. The random structures R, satisfy the Zero-One Law if and
only if for every ¢

lim Pr[Duplicator wins EH R(R,, R,,t)] =1 (31)

Here we think of structures S!, $? being chosen independently from proba-

bility spaces R,, R,, respectively. Again, both players are assumed to play
perfectly.

To get a feeling for the argument imagine there is a sentence A for which

lim, . Pr[R, |= A] = . Let ¢ be the quantifier depth of A. Basic analysis
of the Ehrenfeucht game gives that if S! = A and 5% = = A then Spoiler
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recursively defined. By itself, of course, this does not prove the nonexistence
of recursive p(n).

We outline the argument for (b) with p = p(n) given by 22. Let N =
N(z,y,z) be the set of common neighbors of z,y, z and let H(z,y, z) be the
predicate that N # (). Set

q = Pr[H] ~ np® ~ n=3/%0) (29)

For this outline we will regard regard H as a random predicate with proba-
bility ¢. Any choice of z induces a binary predicate H(xz,y). The maximal
size |N| is known to be ~ x. With N1, N? disjoint (for convenience) call
N'! bigger than N? if there is a z so that the binary H on N!' U N? gives
an injection which is not a bijection from N? to N'. With sets of size, say,
k/10 each H has probability ~ ¢ > n=1 of giving this injection (assum-
ing it exists) and almost surely one of the n choices of z gives that H. Sets
of common neighbors N with no bigger N! then must have size ©(x). By
technical means one can now speak of sets of common neighbors N of size
~ K with g* = H(n)l/?’. Now any symmetric binary R on N holds for at
most (£*)? < k pairs and so H has probability at least ¢°F) > 7t of being
R. Almost surely the n choices of z induce all binary R on N.

To avoid technical difficulties, suppose we can speak of N = N(z,y, 2)
having precisely £*(n) = |#(n)'/?] elements. Let B be any sentence in the
first order theory of graphs and let S = Sp(B) be the (usual) spectrum of
B, the set of m for which there is a graph on m vertices satisfying B. Let B*
be the first order sentence with the almost surely meaning that there exist
z,y,z so that N = N(x,y,2) has k* elements and there exists w so that
the graph on N given by H(—, —,w) satisfies B. Let T" be the set of values
k*(n). For n large Pr[B*] will be near one when x*(n) € S and near zero
otherwise. If Pr[B*] — 1 then all large t € T have t € S while if Pr[B*] — 0
then all large t € T have t ¢ S. For p = p(n) to satisfy the Zero-One Law
it must satisfy it for sentences B* and hence either TN S or T N .S must be
finite for every possible spectrum 5. Results of Fagin [11] and others give
that the class of such spectrum S is very broad so that, as argued in [16],
no recursive 7', hence no recursive p(n), can have this property.

This phenomenon also appears in joint work, still in progress, of J. Lynch
and P. Dolan on the random ordered graph G'«(n,p). Consider the case
p = f(n)/(;) with f(n) — oo but slowly, say, f(n) < Inn. Basically these
G look like ~ f(n) disjoint edges in a scrambled order. There is such a p(n)
for which Convergence holds but there is no such recursive function. Here



or, equivalently, that we may write

1

with k(n) — 400 and x(n) = o(Inn).

Theorem (a) There exist p = p(n) satisfying 21 for which the Zero-One
law holds

(b) There are no recursive p = p(n) satisfying 21 for which the Zero-One
law holds.

We can give a fairly complete outline for (a). For i = 1,2,... define
1 1
i(n) =n~"" with a; = -5 — — 23
pi(n) = n~% with a 37 (23)

Enumerate Ay, As, ... the sentences of the first order theory of graphs. As
a; is irrational the Zero-One law holds for p;(n) and

6;; = lim Pr[G(n,pi(n)) = A;]=0o0r1 (24)

n—oo

for all ¢,5. Standard diagonalization techniques give a subsequence i1 <
iy < ...so that for each j thereis a ¢; € {0,1} with

85 =005 = bij05 = bijppi = (25)
Setting 3; = o, for convenience, now define p = p(n) by
p(n) =n"" for ny < m < gy (26)
(p(n) arbitrary for n < ny) where ny < ng < ... are chosen so that
[PriGn, n) | 4] - 8] < 7 (27)
for 1 < 57 <. Then for all §
lim Pr{G(n,p(n)) k= A;] = §; (28)

n—oo

and so the Zero-One law holds.

Observe why this procedure is not itself recursive. Indeed, there is no
recursive procedure to separate those A which hold almost always for p;(n)
for ¢ sufficiently large from those A which hold almost never for p;(n) for ¢
sufficiently large. Hence the ¢;, and so the subsequence 4; < i3 < ...is not



it does so very slowly and since there are n choices for ¢ almost surely one of
them will work, and similarly there will be an [e, f]inducing multiplication.)
Call [a,b] maximally arithmetizable if neither [a — 1,b] nor [a,b + 1] are
arithmetizable. Almost surely all such maximally arithmetizable intervals
will have & = loglogn < b—a and, trivially, b—a < n, and furthermore there
will be maximally arithmetizable intervals. With [a, b] aritmetized standard
techniques allow us to say many things about the length b —a. Let log™ = be
the number of times one must iterate log, beginning at x, until the number
falls below 1. Almost surely

log™ n > log™(b — a) > log™(n) — 2 (20)

for all maximally arithmetizable intervals [a,b]. Consider the sentence A
that there exists a maximal arithmetizable [a,b] with log™(b — a) between
0 and 50 modulo 100. If, say, log* n = 25 mod 100 then almost surely the
maximal arithmetizable [a, b] have log*(b—a) either 25,24 or 23 mod 100 and
A holds. If, say, log"n = 75 mod 100 then almost surely all arithmetizable
[a,b] have log™(b — a) either 75,74 or 73 mod 100 and A will not hold.

A similar argument works with G(n, p) for p = n~='/7 is given in [20]. In-
stead of intervals [a, b] we have the set V' of common neighbors of x4, ..., z7.
An exterior vertex w generates a 6-ary predicate on V' by saying R(v1, ..., vs)
if v1,...,vg, w have a common neighbor. V is arithmetized if the predicate
induces plus and times. (There is a technical problem in that as stated this
is a symmetric predicate and one has to desymmetrize it.) One V' is shorter
than another V' if there are wq, ..., ws so that the binary predicate on their
union given by wy ..., ws,z,y having a common neighbor provides an injec-
tion which is not a bijection from V to V’. One needs some (not so easy)
technical lemmas that all maximal arithmetizable V' will have at least, say,
loglog n vertices and then the remainder of the argument is as before.

7 No Recursive Convergence

In [16], while giving a near complete classification of those p = p(n) for which
the Zero-One law holds for G/(n, p), a peculiar phenomenon was discovered.
Restrict (just to be specific) p = p(n) so that

p(n) < n'/? (21)
p(n) _ n—1/3—o(1)



i.e., that v;,v;,w have no common neighbor is (1 — p®)"™3 ~ €71 so the
chance of getting the particular pentagon with v;, ;41 adjacent is € =
(e71)°(1—e~1)5. The total probability that H, , .., = H is then more than
a positive constant € = €;e;. Almost surely one of 7 disjoint choices of
x,y, z,w will give this H. Of course, the notions of independence must be
fleshed out to make this a full argument.

Assume the Representation Theorem. For any sentence A we can con-
struct the still first order

A" Elx,y,z,wa,y,z,w |: A (18)

If A holds for no finite graph then A* holds for no finite graph and so
Pr[A*] — 0 in any probability space. If A holds for some finite graph
H then in G(n,p) with p = n~1/? there almost surely are z,y,z, w with
Hyyow = H so that A* would hold almost surely. A decision procedure
that could separate the A* holding almost never from those holding almost
always would separate the A holding for some finite H from those holding
for no finite H and this contradicts the Traktenbrot Theorem.

The situation is even easier if we take, for example, G(n,p) with p

constant. With < a built in relation we can transform any A into
A o pGlap A (19)

For any finite ordered graph H there almost surely are a,b with G|[a7b] =il
and the proof is as above.

6 Proving Nonconvergence

We outline the argument that G'<(n,p) has nonconvergence for p = %, or
any constant. We want to give an interval [a,b] the structure of an initial
fragment of arithmetic. Given other intervals [¢, d] and [e, f] induce on [a, ]
the ternary « + y = z by 2,y < z and the existence of v € [¢,d] adjacent
to ,y,z and no other points in [a,b]. (The case 2 = y can be handled
specially.) We similarly use [e, f] to induce the ternary predicate zy = =.
Consider @ as “17. Say [a,b] is arithmetizable if there exist ¢,d,e, f so
that with these induced definitions plus and times satisfy the axioms for
a fragment of arithmetic. Take o = a(n) = loglogn. Almost surely any
[a,b] with b — a < a will be arithmetizable. (Rougly, take some [¢, d] of size
around a?. If [c, d] has just the right adjacencies to [a,b] then it will induce
plus and the probability that this occurs is like 27" While this goes to zero



and
3.—3c
lim Prno isolated triangles] = e~ ¢ /6 (14)

Lynch [19] showed that the limit always existed and further, as a function
of ¢, that it must have a form “similar” to the examples above.

In the negative direction this author [21] has shown that Nonseparability
holds for the random graph G(n,p) with p = n~1/3 and this was extended
[6] by his then student Peter Dolan to p = n~* for any rational a € (0,1).
Let 0 < p < 1 be arbitrary but fixed and let G«(n,p) be the random
ordered graph of §2. Compton, Hanson and Shelah [4] have shown that
Nonconvergence holds; they have given A for which lim,, .., Pr[G<(n,p) |=
A] does not exist.

Actually, in the two previous examples both Nonconvergence and Non-
separability hold. This is often (not always, see §10) the case though
for many random structures proving Nonconvergence requires considerably
more technical effort than proving Nonseparability.

5 Proving Nonseparability

The basic tool usually used in proving nonseparability is the Traktenbrot
theorem [25]. This result (in somewhat limited form) states that there is no
decision procedure to determine if a sentence A in the first order theory of
graphs is satisfied for any finite graph. We outline how this is used in [21] to
show Nonseparability for G(n,p) with p = n=1/3. We define Hpyory = (V, E)
by the first order

ac€Ve—a~zAha~yhar~z (15)

and
{a,b} e W —a,beVA-Tyov~ahv~bAv~w (16)

That is, given a graph G and vertices z,y, z, w this defines a new graph H.
The definitions are designed for the following.
Representation Theorem. Let H be any finite graph. Then almost
surely

JeyzwHeyzw = H (17)

We give a rough outline when H is a pentagon. Pick z,y,z,w € G(n,p)
at random. Fach a € G has probability p®> = n~! of being in V so that
|V| has a Poisson distribution with mean one and with probability ¢ = %
the size |V| = 5. Given V = {vq,...,vs} the probability that {v;,v;} € E,



4 Examples

The classic example for the Zero-One law, as we have already mentioned, is
the random graph G(n,p) where p is any constant. With Saharon Shelah
[20] we showed that the Zero-One law also holds when p = p(n) = n™¢
0 < a < 1isirrational. This has a natural description in terms of threshold
functions. Let us take, as an example, the first order property A that the
graph contains a K4, i.e., that there exist four distinct vertices with all six
pairs adjacent. It is know, even from the original [8], that p = n=2/3 is the
threshold function for this property. When p < n~2/3 almost surely —A
while with p > n~2/3 almost surely A. In between the Pr[A] moves from
zero to one - the exact result is that with p = en=2/3

and

Jim Pr[G(n, en™2/3) contains no K] = e/ (11)
but the only important thing for us is that it is neither zero nor one. The
rough notion is that at a threshold function the probability is moving be-
tween zero and one so that for a Zero-One law to hold p = p(n) must be
between the threshold functions - it must be a dull function of n. While
this has strong intuitive appeal to graph theorists we must point out that
the notion of threshold function does not apply to all first order properties
A and so the feeling of Zero-One meaning “not a threshold function” must
remain only a feeling.

There are, of course, functions of n other than n=“. In [16] a fairly
complete characterization of those p = p(n) for which the Zero-One law
holds is given.

A classic example of Convergence was given by Ehrenfeucht. He (as
attributed in [18]) showed that, for any constant p, Convergence held for
Uc(n,p) - ie., that lim, . Pr[Uc(n,p) = A] existed for all sentences A.
Another example concerns the random function F,,. Here we have a function
symbol f taken uniformly from the n” functions f : {1,....,n} — {1,...,n}.
Equality is the only other predicate. For example,

. -1
lim Pri-3,f(z)=z]=e (12)
Lynch [17] showed that the limit always exists and, moreover, that it must
have a particular form. A final example concerns the random graph G(n, p)
with p = £, ¢ a constant. There, for example,
lim Prlno triangles] = e=</6 (13)

n—oo



{1,...,n} as forming a cycle with 1 directly following n so that C'(z,y, z) has
the meaning that z,y, z lie in a clockwise direction. (Note that if we added
a constant symbol this could be reduced to Uc(n,p).) We write y = z + 1
for =3,C(x, z,y) and inductively we can write y = 2 + r for any r € N. We
say x1,...,%, are in order if C(z;, x5, xp) forall 1 <i<j <k <.
Random Poset P(n,p)

The language consists of the built in < and a partial order P. To generate
P first generate the random graph G ~ G(n,p). Set z Py if there exists a
sequence (for arbitrary r, including r = 1)z = 29 < 21 < ...< z, = y with
all {z;, 2,41} € G. (In other words set Py if < y and x,y are adjacent
and then take the transitive closure.) Sample sentence:

ey £y A3 [P(2,2)V P(z,y)] (7)

meaning there is more than one minimal element under the partial order P.

3 Four Outcomes

In the general situation there will be defined for every n a random structure
R, of “size” n and a language A. The assumption that A is a sentence of
the language A shall be assumed tacitly throughout. We say A holds almost
always if

lim Pr[R, = Al =1 (8)

n—oo
and we say A holds almost never if = A holds almost always. We consider
four possible outcomes. On the positive side:
e Zero-One Law. Every sentence A holds almost always or almost never.
e Convergence. For every sentence A

lim Pr[R,, = A] exists (9)

n—oo
On the negative side:
e Nonseparability. No recursive decision procedure separates those A
holding almost surely from those A holding almost never.
e Nonconvergence. There exists A for which

lim Pr[R,, = A] does not exist (10)

n—oo

Observe that Nonseparability is formally stronger than saying that there
is no recursive decision procedure for determining lim,,_., Pr[R, = A].



Two recent surveys [5,26] of these problems from somewhat different
perspectives are well worth reading.

2 Five Structures

All of these structures have parameters n and p. The underlying space is
always {1,...,n}. The value p € [0, 1] represents a probability . In all cases
it is of interest to characterize the possible outcomes (see §3) for various
p = p(n). All languages are assumed to be first order with equality.
Random Graph G(n,p)

One symmetric areflexive binary predicate adjacency, denoted x ~ y. Struc-
tures are graphs G on {1,...,n} with probabilities determined by Pr[i ~
j] = p, these events mutually independent. Sample sentences:

Jedydcr~vyAz 2z Ay~ 2 (3)
Vedyr ~y (4)

with meanings “there exists a triangle” and “there is no isolated vertex”
respectively.

Random Ordered Graph G.(n,p)

The structure is as above but the language also contains the built in binary
<. Sample sentence:

Jedyr ~yA-T ANz yN(z<aVz<y)] (5)

with the meaning that 1,2 are adjacent. We write “1” for that = so that
-y <z,y=ax+1forz <yA-3 ]z <zAz<y|and similarly y =2 + r
for any r € V.

Random Ordered Unary Predicate U.(n,p)

Language consists of unary U and binary <. Structures are unary predicates
U with probabilities determined by Pr[U(7)] = p, these events mutually
independent. < is the built in less than on {1,...,n}. The conventions for
Random Ordered Graphs apply. Sample sentence:

Jeyy=a+1Az=a04+2AU)ANU(y)AU(2) (6)

meaning that some three consecutive elements have U.

Random Circular Unary Predicate U°(n,p)

U is as above. Instead of < we have the built in ternary relation C(z,y, )
with the meaning that z < y < zory < z <z or z < z < y. We think of
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1 Introduction

One of this author’s favorite theorems has long been the Zero-One law dis-
covered independently by Glebskii et.al. [12] and Ron Fagin [10]. Let A
be any first order property of graphs and let pu,(A) be the proportion of
labelled graphs on n vertices for which A holds. Then

Jim pn(A)y=0or1 (1)
This result has inspired much work by logicians, generally in the direction
of showing 1 for more powerful languages. Thus it is known [5] that 1 holds
when A is a sentence in fixed point logic and it is known [13] that 1 does
not always hold when A is a sentence is second order monadic logic. Here,
however, we explore recent work in a totally different direction. Let G(n,p)
denote the random graph on n vertices with edge probability p. (In §2 we
define the random structures we will deal with.) A property A is an event in
the probability space and Pr[G(n,p) = A] is well defined. When p = %, each
labelled graph on n vertices has equal weight so that 1 may be rewritten

lim Pr[G(n,p)E= A]=0or1 (2)

Fagin’s proof actually gives that 2 holds for any constant 0 < p < 1.

To people who work in Random Graphs the cases p constant are only a
small and relatively uninteresting part of the theory. Rather, they consider
the edge probability p to be p = p(n), a function of the number of vertices n.
Take, for example, connectivity - though this is not a first order property. In
their classic paper Paul Erdds and Alfred Rényi [8] showed that if p(n) < lnT”
then G almost surely is not connected while if p(n) > lnT” then G almost
surely is connected. The called the function lnT” the threshold function for
connectivity. Over the years analogous threshold functions have been found
for many natural graphtheoretic properties and invariably they involve the
edge probability p as a function of the number of vertices n. The new
direction in the study of Zero-One laws is to consider random structures
(Random Graphs the main but not the only example) with a probability
parameter p and to examine for which p = p(n) the Zero-One law, and the
other possibilities to be described, apply.



