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Abstract

We consider liar games in which player Paul must ask one full batch of questions,
receive all answers, and then ask a second and final batch of questions. We show that
the effect of this restriction is asymptotically negligible. The strategy for Paul is given
explicitly.

1 Introduction

In this paper, we present a variant of the Rényi-Ulam game which is similar to the one we
considered in [5]. The main difference consists in the type of strategy Paul is allowed to
employ; the case we study here has Paul using a semi-offline strategy, as opposed to the
completely online one of [5]. We introduce the game and present a few variants and recent
results, comparing and contrasting them to the results in our current work.

1.1 History and recent results

In the original 2-player Rényi-Ulam game, Carole (player 1) thinks of a number x ∈ {1, . . . , n},
while Paul (player 2) must find it by asking q Yes/No questions. The catch is that Carole is
allowed to lie, but only at most k times (k being a fixed integer). The question is “for which
n, q, k can Paul guess the number and win?”

Many researchers have examined this game and variants thereof; there is an extensive
literature on the subject, of which we mention Pelc’s excellent survey article [6]. For the
reader interested in the history of the subject, good references are provided in Rényi [7], Ulam
[10], and Berlekamp [2].

Historically, the full-lie version (where Carole is allowed to lie in whichever way she chooses,
when she chooses to do it) was considered first; it is known that for this case, Carole can win
when

2q < n

(
k∑

i=0

(
q

i

))
,

and the converse is roughly true when n and q are large (while k is fixed; see [8]).
The more recently introduced half-lie case restricts Carole’s ability to lie by requiring her

to tell the truth when the truthful answer is Yes. Cicalese and Mundici [3] have shown that
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in the one half-lie case (k = 1), the maximal n for which Paul can win with q questions is
asymptotic to 2q+1

q , as q goes to infinity.
In our paper [4], we have shown that for any fixed number k of half-lies, the asymptotics

for the maximal value of n as a function of q and k as q goes to infinity are given by 2q+k

(q
k)

.

There is a simple connection between the half-lie case and the Z-channel of Coding Theory,
where during communication, a 0 can be accidentally transformed into a 1, but a 1 has to be
always transmitted as a 1 (we allow for false positives, but not for false negatives; see Figure
1).
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Figure 1: The Z-channel

Following this idea, we have further extended our results in [5], where we found asymptotics
for arbitrary channels C.

Below we give a few definitions (which will be referred to throughout this paper) and state
the main theorem from [5].

Definition 1. A t-ary channel C is a set of ordered pairs (x, y) with 1 ≤ x, y ≤ t, both
integers, such that for each 1 ≤ x ≤ t, (x, x) ∈ C. The pairs (x, y) ∈ C with y 6= x are called
potential errors. The total number of potential errors is denoted by E.

We include below a picture of an “arbitrary” channel (Figure 2) which we have also used
in [5].
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Figure 2: A 5-ary channel C, with E = 4

We now define (from [5]) the focus of our work, the (n, k, C)-liargame with q questions.
There are two players, Paul and Carole, and q rounds. There is a set Ω of size n, the

2



possibilities. Carole thinks of an α ∈ Ω. On each round Paul partitions Ω into disjoint sets
A1, . . . , At; Carole finds that i for which α ∈ Ai and responds with either i or some j 6= i
with (i, j) ∈ C. The latter case is called a lie or an error, we use the terms interchangably
in this work. (We note that in the Coding Theory literature one wishes to send information
through a channel and one wishes that it be deciphered accuratedly even when there are a
certain number E or errors. These are called E-error correcting codes.)

Paul’s choice of partitions in later rounds can, and in general will, depend on Carole’s
responses — hence we say that the channel allows for feedback.

Carole can make at most k lies in the course of the game. At the end of the q rounds Paul
has won if and only if there is only one possible α ∈ Ω for which Carole could have made her
responses.

Definition 2. Let AC,k(q) be the maximal n such that there is a winning strategy for Paul in
the (n, k, C) game with q questions.

Theorem 1.1. (main result from [5]) Let C be an arbitrary (fixed) t-ary channel with E > 0
potential errors. Then for any fixed k ∈ N,

AC,k(q) ∼
(

t

E

)k tq(q
k

) ,

where the asymptotics are taken as q →∞.

We recall the vector format of [5].

Definition 3. Consider an intermediate position in the game. For 0 ≤ i ≤ k let xi be
the number of possibilities for which Carole has lied precisely i times. We call the vector
x = (x0, . . . , xk) the state vector.

We remark that the state vector completely characterizes the state of the game, up to
a renaming of Carole’s possible choices. We further allow a game to have starting state
x = (x0, . . . , xk). In such a game Carole has xj possibilities for which she may lie (k−j) times,
0 ≤ j ≤ k.

1.2 Two batch strategies and the main result

In the Coding Theory setting described in the previous section, we have the following problem:
Bob sends x ∈ {1, . . . , t}q to Alice through channel C, and the channel may make as many as
k mistakes. Bob’s full message is one of n possibilities. Is there a protocol by which correct
reception of the message by Alice is assured?

The answer is yes if and only if Paul can win the (n, k, C) game with q questions by
asking all the questions in advance. This is an additional and very strong constraint imposed
on the game we have described in the previous section, which assumes complete feedback
(each question is followed by an answer and each question is based on all previous answers,
in a completely online strategy). The offline, no feedback constraint appears to change the
problem drastically. We denote by A−

C,k(q) the maximal n for which Paul wins under the
offline constraint. Clearly A−

C,k(q) ≤ AC,k(q). However, the asymptotics of A−
C,k(q) (indeed,

even those of A−
C,1(q)) remain a challenging open question.

In this work we consider a two-batch strategy for Paul. In this variant of the game, Paul
is constrained to first ask a batch of q1 questions (all at once, offline). After listening to
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Carole’s answers, he asks a second batch of q2 = q − q1 offline questions. Finally, depending
on the answers to the second batch of questions, Paul wins if he is certain which one of the n
possibilities Carole had in mind. We allow Paul to determine q1.

This constraint that we impose on Paul naturally makes it harder for him to win. Denote
by ÃC,k(q) the maximal n for which Paul wins the two-batch liar game over the channel C
with q questions and up to k lies. Then ÃC,k(q) ≤ AC,k(q), so an immediate upper bound for
the asymptotics of ÃC,k(q) is given by Theorem 1.1:

ÃC,k(q) ≤ (1 + o(1))
(

t

E

)k tq(
q
k

) .

When we first considered the two-batch variant of the game, we expected that the asymp-
totics were going to be significantly smaller than in the online case. To our surprise, the
asymptotics turned out to coincide. We summarize this in the statement of this paper’s main
result.

Theorem 1.2. (main result). Let C be an arbitrary (fixed) t-ary channels with E > 0 potential
errors. Then for any fixed k ∈ N,

ÃC,k(q) ∼
(

t

E

)k tq(
q
k

) ,

where the asymptotics are taken as q →∞.

1.3 Main Idea

We sketch here the main idea of the proof of Theorem 1.2.
We will consider a strategy for Paul which will ask almost all questions in the first batch;

asymptotically, we will have q1 ∼ q, while q2 ∼ k log q. This means that Paul will ask most
of the questions offline, at first, narrowing the possibilities in a way that will make it possible
for him to use in the second batch a logarithmically smaller number of questions in order to
separate the right answer.

As seen in the previous section, an asymptotic upper bound for ÃC,k(q) is represented by
the asymptotics for AC,k(q), since restricting Paul to a two-batch strategy makes things harder
for him. To prove Theorem 1.2, we thus need only to prove that

(
t
E

)k tq

(q
k)

is an asymptotic

lower bound for ÃC,k(q). In other words, the essential element of our current work is to give
an effective strategy for Paul.

To do this we will prove that for any α <
(

t
E

)k, there is a q0 large enough so that for every
q ≥ q0 and every n < α tq

(q
k)

Paul can win the two-batch (n, k, C) game.

As in [5], we will first basically reduce the problem to considering n of the form (1− δ)ats

with δ a small positive constant and a a positive integer of bounded size. The heart of the
argument is the notion of balanced strings of length s, strings from the channel alphabet A
(usually A = {1, . . . , t}) in which each letter appears roughly the same number of times.
The possible answers of Carole are then represented as pairs (i, u1 · · ·us) with 1 ≤ i ≤ a
and u1 · · ·us one of these balanced strings. Paul then asks for the values of u1, . . . , us. This
strategy forces Carole to give each of the t possible replies roughly the same number of times.
Carole is thus, roughly speaking, precluded from taking advantage of the asymmetries of the
channel.

For the endgame, we will employ the same type of “packing is winning” argument that we
have used in [5].
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2 Preliminaries

2.1 Balanced Strings and (1− δ)

Definition 4. Given s, t ∈ N and r > 0, we call a string of length s letters from the alphabet
A = {1, 2, . . . , t} r-balanced if for every i ∈ A, the number of occurrences of the letter i is at
most s/t + r.

We let B r
s,t denote the set of such r-balanced strings.

Lemma 2.1. Given t ∈ N, δ > 0, there exists a s0 such that for all s ≥ s0, for r = s2/3, the
number of r-balanced strings of length s with letters from the alphabet A is at least (1− δ)ts.

Proof. For any particular letter i, the number of strings where that letter appears more than
s/t+r times is ts times Pr[B[s, 1/t] > s/t+r], where B denotes the Binomial Distribution. A
standard second moment method (see, e.g., Theorem A.1.11 of [1] for tighter Chernoff bounds)
gives that this probability is o(1), where t is fixed and the asymptotics are as s →∞.

There is a fixed number t of letters, so the probability that any one of them appears more
than s/t + r times in a string of length s is still o(1). Thus, the number of r-balanced strings
is at least (1− o(1))ts.

By taking s sufficiently large this is at least (1− δ)ts.

2.2 Choosing the density parameter a

We show in this section that it is enough to consider numbers of the type b(1− δ)atsc, where
a ∈ (tT , tT+1] ∩N with T an integer that depends only on δ and t.

Lemma 2.2. Given t, E, k, δ ∈ (0, 1) and given any 0 < α < α′ < (t/E)k, there exists T ∈ N

and q0 ∈ N such that for any q ≥ q0, for any n ≤ α tq

(q
k)

, there exist a ∈ (tT , tT+1] ∩ N and

nonnegative integer s such that

n ≤ (1− δ)ats < α′ tq(q
k

) .

Proof. With foreknowledge, we let T be such that

α′
(

1− 1
tT + 1

)
> α

Set M = (1− δ)−1tq/
(q
k

)
for notational convenience. We require of q0 that α′M > tT for all

q ≥ q0. We now let a ∈ [tT , tT+1)∩N and s be such that ats < α′M ≤ (a + 1)ts. (These exist
as the intervals (ats, (a+ 1)ts] have union (tT ,∞).) The upper bound on ats gives the desired
upper bound on (1− δ)ats. We also have a lower bound

ats = (1− 1
a + 1

)(a + 1)ts ≥ (1− 1
tT + 1

)α′M > αM

so that n ≤ α(1− δ)M ≤ (1− δ)ats.
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3 Two-batch strategy

We now fix a positive real α < (t/E)k. In this section we provide the two-batch strategy for
Paul with a total number q of questions that works for any n < α tq

(q
k)

, if q is sufficiently large.

To avoid trivialities we assume throughout the section that

n = bα tq(q
k

)c .

3.1 First batch

In this subsection we give the strategy for Paul’s first batch of questions, and estimate the
number of possibilities left after Carole provides her answers to these questions.

The strategy is as follows: Paul fixes α′ with α < α′ < (t/E)k, then fixes a positive δ so
that α′

1−δ < (t/E)k. Finally, Paul fixes a, s as given by Lemma 2.2.

Remark 3.1. Because of the way it was chosen, s = q−k logt q+O(1). In particular, s →∞
and q − s →∞ as q →∞.

Once these quantities are all fixed, Paul’s first batch consists of q1 = s queries, and here
is the strategy he employs for it.

Paul identifies the n possible answers with distinct pairs (i, u), with 1 ≤ i ≤ a and
u = u1 . . . us ∈ B r

s,t. Here, for definiteness, we may fix r = r(s) = bs2/3c though we observe
that any r(s) such that

√
s � r(s) � s would do. That there are sufficiently many such pairs

follows from Lemmas 2.1 and 2.2.
Paul’s first batch of queries is then simple to describe. For 1 ≤ i ≤ s he asks:

What is the value of ui?

Carole’s first batch of responses gives a string w = w1 · · ·ws. If Carole always responded
truthfully then w would necessarily be a balanced string. She is allowed to lie at most k
times; hence u must be nearly balanced in the sense that every letter of A must appear in the
response string u at most s

t + r + k times.
Let x = (x0, . . . , xk) denote the state of the position after these responses. That is, let xj

be the number of possibilities for which Carole has lied precisely j times.

Lemma 3.2. For each 0 ≤ j ≤ k, xj ≤ aEj

j! ( s
t + r + k)j

Proof. Let w = w1 · · ·ws be Carole’s actual response. Then xj is the number of (i, w′) with
1 ≤ i ≤ a and where w, w′ differ in precisely j places and furthermore (and crucially) each
such place is an allowable lie pattern. There are Ej sequences (a1, b1), . . . , (aj, bj) where the
ai, bi ∈ A and (ai, bi) is an allowable lie pattern. For each such sequence there are at most
( s

t + r + k)j sequences of positions i1, . . . , ij so that in Carole’s response w the il-th position
had letter bl. For each of these at most Ej( s

t + r + k)j possibilities Carole may have lied by
changing the il-th position from al. This gives every possible w′. Each w′ has been counted
j! times as you can permute the sequence i1, . . . , ij in that many ways. Thus the number of
possible w′ is at most Ej

j! ( s
t + r + k)j. Finally, there are a choices of i with 1 ≤ i ≤ a.
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3.2 Packing is the same as winning

In this subsection we will provide the instruments to use for the second batch of questions, in
the strategy we give for Paul.

A liar game in which all questions must be asked in a single batch of Q questions can
be described as a packing problem. Let the alphabet A and channel C be fixed as given by
Definition 1.

We use a notation from our [5].

Definition 5. For any j ≥ 0 and any w = w1 · · ·wQ ∈ AQ the j-shadow of w is the set of
w′ = w′

1 · · ·w′
Q such that

1. wi 6= w′
i for at most j values 1 ≤ i ≤ Q.

2. If wi 6= w′
i then (wi, w

′
i) ∈ C.

For the benefit of the reader, we have included the following example.

Example. Assume Paul, after a first batch of 7 questions, has received the message 1443532
through the channel C of Figure 2, and suppose he knows that at most 2 errors have been
made. The 2-shadow of (1, 4, 4, 3, 5, 3, 2) is given by the set A ∪ B, where A is the set of
possibilities in case exactly one error was made, and B is the set of possibilities if exactly two
errors were made:

A = {(1, 1, 4, 3, 5, 3, 2), (1, 4, 1, 3, 5, 3, 2), (1, 4, 4, 5, 5, 3, 2), (1, 4, 4, 3, 5, 5, 2),
(1, 4, 4, 3, 5, 3, 1), (1, 4, 4, 3, 5, 3, 4)} ,

B = {(1, 1, 1, 3, 5, 3, 2), (1, 1, 4, 5, 5, 3, 2), (1, 1, 4, 3, 5, 5, 2), (1, 1, 4, 3, 5, 3, 1),
(1, 1, 4, 3, 5, 3, 4), (1, 4, 1, 5, 5, 3, 2), (1, 4, 1, 3, 5, 5, 2), (1, 4, 1, 3, 5, 3, 1),
(1, 4, 1, 3, 5, 3, 4), (1, 4, 4, 5, 5, 5, 2), (1, 4, 4, 5, 5, 3, 1), (1, 4, 4, 5, 5, 3, 4),
(1, 4, 4, 3, 5, 5, 1), (1, 4, 4, 3, 5, 5, 4)} .

Theorem 3.3. Paul wins the Q question one-batch liar game from starting state (x0, . . . , xk)
if and only if there exist xj (k−j)-shadows in AQ, all vertex disjoint for every 0 ≤ j ≤ k.

Remark 3.4. To clarify, we require even when j 6= j ′ that no (k−j)-shadow overlaps any
(k−j ′)-shadow.

Proof. Let wj
l , 0 ≤ j ≤ k, 1 ≤ l ≤ xj, be such that the (k−j)-shadows of wj

l are all vertex
disjoint. Paul identifies the xj possibilities for which Carole may lie (k−j) times with wj

l .
Paul asks for the coordinates of the vector. If the correct answer is wj

l then Carole must
respond with an element of its (k−j)-shadow. The disjointness of these shadows means that
any response w∗ of Carole is in precisely one such shadow and therefore Paul can determine
which one.

We omit the proof in the other direction as we shall not be requiring it; it is essentially
the same as the one for our “packing is equivalent to winning” argument of [5].
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3.3 Second batch/endgame

Here we show that a simple greedy algorithm allows the packing Paul requires from Theorem
3.3, for the second batch of questions. Indeed, we show that Paul can win even if Carole’s
lies to the second batch of questions are unrestricted by the channel. The j-ball with center
w ∈ AQ is the set of w′ ∈ AQ that differ from w in at most j places. Let F (Q, t, j) denote
the size of the j-ball. Then

F (Q, t, j) =
j∑

l=0

(
Q

l

)
(t− 1)l

Note that the j-ball of w contains its j-shadow and is equal to its j-shadow when the channel
C consists of all (x, y) ∈ A× A. Note also that F (Q, t, 0) = 1.

Theorem 3.5. Let x0, . . . , xk satisfy

k∑
j=0

xjF (Q, t, 2(k− j)) ≤ tQ

Then there exist xj (k−j)-balls in AQ, for 0 ≤ j ≤ k, all
∑k

j=0 xj of them mutually disjoint.

Proof. We select the centers wj
l , 0 ≤ j ≤ k, 1 ≤ l ≤ xj, sequentially. We do this in increasing

order of j, first selecting the x0 centers of k-balls, then the x1 centers of (k−1)-balls and
continuing until finally selecting the xk centers of 0-balls. We insist only that no new center
selected lie in the 2(k−j)-ball of any previously selected center wj

l . The assumed inequality
gives that this prohibits less than tQ vertices from being selected and therefore some w ∈ AQ

is available. Consider any two centers selected in the order of their selection, say wj
l , w

′j′
l′ .

The ordering of selection insures that j ≤ j ′. As wj′
l′ does not lie in the 2(k− j)-ball of wj

l the
(k−j)-balls of wj

l , w
j′
l′ are disjoint and so the (k−j)-ball of wj

l does not overlap the smaller
(or equal) (k−j ′)-ball of w′j′

l′ .

To conclude the proof we need only show that x0, . . . , xk satisfying the upper bounds of
Lemma 3.2 will satisfy the conditions of Theorem 3.5 with Q = q−s. The most important case
is xk. We have xk ≤ aEk

k! ( s
t + r +k)k. We examine this asymptotically as q (and hence both s

and q−s) approach infinity. As q ∼ s, r = o(s), and t, k are fixed, ( s
t +r+k)k = (q/t)k(1+o(1))

so that xk ≤ a(E/t)k
(
q
k

)
(1 + o(1)). As (1− δ)ats < α′tq/

(
q
k

)
we find

xk ≤ α′

1− δ
(E/t)ktq−s(1 + o(1))

Paul’s careful choice of δ sufficiently small insures that we may express xk = (1−Ω(1))tq−s.
For 0 ≤ j < k we may use a more coarse upper bound for xj, by absorbing a, Ej, j!

into the constant factor xj = O(sj) = O(qj). Furthermore, n = Θ(ts) and n = Θ(tqq−k) so
qk = Θ(tq−s), and therefore xj = O(t(q−s)j/k). (Note that xj is bounded above by a fractional
power of the number of elements in Aq−s.) We bound F (q−s, t, 2(k−j)) = O((q−s)2(k−j))
which is only polynomial in q−s. Hence

k−1∑
j=0

xjF (Q, t, 2(k− j)) =
k−1∑
j=0

O
(
t(q−s)j/k (q − s)2(k−j)

)
= o(tq−s)
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That is, the x0, . . . , xk−1 terms (corresponding to the cases in which Carole did not use the
maximal permissible number of lies in her responses to the first batch of questions) are asymp-
totically negligible and

k∑
j=0

xjF (Q, t, 2(k− j)) = (1− Ω(1))tq−s

For q sufficiently large q−s is therefore sufficiently large so that the conditions of Theorem
3.5 hold. For such large q Paul therefore has a second batch of (q−s) questions that allows
him to determine Carole’s answer.

4 Conclusions

In this paper we have proven that there exists a strategy for Paul which allows him to win the
(n, k, C) two-batch liar game with q questions for n ∼ ( t

E

)k tq

(q
k)

. We have done this by giving

a strategy that allows him to ask most of the questions in the first offline batch (q1 ∼ q), and
use an exponentially smaller number of questions (q2 ∼ k log q) for the second batch.

One may argue that this strategy is a very desirable one, since it allows for most of the
questions to be asked in an offline fashion at first, and uses only an exponentially smaller
number of “corrective” questions in the second batch. At the same time, one might also argue
that Paul receives much feedback from Carole’s answers to his first batch of questions, and
that is why the number of corrective questions needs to be much smaller.

We raise two open questions. First, to what extent can the results of our work be tightened.
We note that in [9] second order terms were given for original Rényi-Ulam game, perhaps
similar results apply in our more general setting. Second, suppose Paul does not have the
freedom of choosing the size q1 of his first batch of questions. For what range of values q1 can
Paul still win?

We close with the connection between the two-batch problem and the one-batch, or com-
pletely offline, problem. The asymptotics of A−

C,k(q) (the maximal n for the one-batch variant
of the liar game) remain open. Indeed, this has been a prime motivating force in our research.
Is A−

C,k(q) ∼ AC,k(q)? In words, do the completely offline and completely online problems have
the same asymptotic solution? We feel (mildly) that our results point in this direction. We
hope that the tools we constructed for our analysis will be helpful in extending the asymptotics
to these cases.
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