
P. Erd}os and L. Lov�asz (1975), Problems and results on 3-chromatic hypergraphs and some
related questions, in: In�nite and Finite Sets (A. Hajnal et al., eds.), North-Holland, Ams-
terdam, pp. 609-628.

P. Erd}os and A. R�enyi (1960), On the Evolution of Random Graphs, Mat Kutat�o Int. K�ozl. 5,
17-60

P. Erd}os and J. Spencer (1991), Lopsided Lov�asz Local Lemma and Latin Transversals, Disc.
Appl. Math. 30, 151-154

P. Erd}os and G. Szekeres (1935), A Combinatorial Problem in Geometry, Compositio Math. 2,
463-470

P. Erd}os and P. Tetali (1990), Representations of integers as the Sum of k Terms, Random
Structures and Algorithms 1, 245-261.

R. Fagin (1976), Probabilities in Finite Models, J. Symbolic Logic 41, 50-58

Y.V. Glebskii, D.I. Kogan, M.I. Liagonkii and V.A. Talanov (1969), Range and degree of realiz-
ability of formulas the restricted predicate calculus, Cybernetics 5, 142-154 (Russian original:
Kibernetica 5, 1969, 17-27)

L. Harper (1966), Optimal numberings and isoperimetric problems on graphs, J. Combinatorial
Theory 1, 385-394.

S. Janson, T.  Luczak, A. Rucinski (1990), An Exponential Bound for the Probability of Nonex-
istence of a Speci�ed Subgraph in a Random Graph, in Random Graphs '87 (M. Karonski,
J. Jaworski, A. Rucinski, eds.), John Wiley, 73-87

R.M. Karp (1990), The transitive closure of a Random Digraph, Random Structures and Algo-
rithms 1, 73-94

T.  Luczak (1990), Component Behavior near the Critical Point of the Random Graph Process,
Random Structures and Algorithms 1, 287-310.

P. Mani-Levitska and J. Pach (1988), Decomposition problems for multiple coverings with unit
balls, to appear.

D.W. Matula (1976), The Largest Clique Size in a Random Graph, Tech. Rep. Dept. Comp.
Sci. Southern Methodist University, Dallas

B. Maurey (1979), Construction de suites sym�etriques, Compt. Rend. Acad. Sci. Paris 288,
679-681.

V. D. Milman and G. Schechtman (1986), Asymptotic Theory of Finite Dimensional Normed
Spaces, Lecture Notes in Mathematics 1200, Springer Verlag, Berlin and New York.

E. Shamir and J. Spencer (1987), Sharp concentration of the chromatic number in random
graphs Gn;p, Combinatorica 7, 121-130

J. Shearer (1985), On a problem of Spencer, Combinatorica 5, 241-245.

S. Shelah and J. Spencer (1988), Zero-One Laws for Sparse Random Graphs, J. Amer. Math.
Soc. 1, 97-115

J. Spencer (1977), Asymptotic Lower Bounds for Ramsey Functions, Disc. Math. 20, 69-76

J. Spencer (1990a), Threshold Functions for Extension Statements, J. Comb. Th. (Ser A) 53,
286-305

J. Spencer (1990b), Counting Extension, J. Combinatorial Th. (Ser A ) 55, 247-255.

P. Tur�an (1934), On a theorem of Hardy and Ramanujan, J. London Math Soc. 9, 274-276

E.M. Wright (1977), The number of connected sparsely edged graphs, Journal of Graph Theory
1, 317-330.



entries of A. Then A has a Latin Transversal.

Let � be a random permutation of f1; 2 � ng, chosen according to a uniform distribution
among all possible n! permutations. Denote by T the set of all ordered fourtuples (i; j; i0; j0)
satisfying i < i0; j 6= j0 and aij = ai0j0 . For each (i; j; i0; j 0) 2 T , let Aiji0j0 denote the event
that �(i) = j and �(i0) = j0. The existence of a Latin transversal is equivalent to the statement
that with positive probability none of these events hold. Let us de�ne a symmetric digraph,
(i.e., a graph) G on the vertex set T by making (i; j; i0; j0) adjacent to (p; q; p0; q0) if and only if
fi; i0g\fp; p0g 6= ; or fj; j 0g \fq; q0g 6= ;. Thus, these two fourtuples are not adjacent i� the four
cells (i; j); (i0; j 0); (p; q) and (p0; q0) occupy four distinct rows and columns of A. The maximum
degree of G is less than 4nk; indeed, for a given (i; j; i0; j0) 2 T there are 4n choices of (p; q)
with either p 2 fi; i0g or q 2 fj; j0g, and for each of these choices of (p; q) there are less than k
choices for (p0; q0) 6= (p; q) with apq = ap0q0 . Since e � 4nk � 1

n(n�1) � 1, the desired result follows
from the above mentioned strengthening of the symmetric version of the Lov�asz Local Lemma,
if we can show that

Pr(Aiji0j0 j
^
S

Apqp0q0) � 1=n(n� 1)

for any (i; j; i0; j 0) 2 T and any set S of members of T which are nonadjacent in G to (i; j; i0; j0).
By symmetry, we may assume that i = j = 1; i0 = j0 = 2 and that hence none of the p's nor q's
are either 1 or 2. Let us call a permutation � good if it satis�es

V
S Apqp0q0 , and let Sij denote

the set of all good permutations � satisfying �(1) = i and �(2) = j. We claim that jS12j � jSijj
for alll i 6= j. Indeed, suppose �rst that i; j > 2. For each good � 2 S12 de�ne a permutation ��

as follows. Suppose �(x) = i, �(y) = j. Then de�ne ��(1) = i; ��(2) = j; ��(x) = 1; ��(y) = 2
and ��(t) = �(t) for all t 6= 1; 2; x; y. One can easily check that �� is good, since the cells
(1; i); (2; j); (x; 1); (y; 2) are not part of any (p; q; p0; q0) 2 S. Thus �� 2 Sij , and since the
mapping � ! �� is injective jS12j � jSij j, as claimed. Similarly one can de�ne injective mappings
showing that jS12j � jSij j even when fi; jg\ f1; 2g 6= ;. It follows that Pr(A1122

VV
S Apqp0q0) �

Pr(A1i2j
VV

S Apqp0q0) for all i 6= j and hence that Pr(A1122jVVS Apqp0q0) � 1=n(n � 1). By
symmetry, this implies (6.1) and completes the proof.2
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two pairwise disjoint families F1 and F2, each being a covering of R3. Mani and Pach [1988]
constructed, for any integer k � 1, a non-decomposable k-fold covering of R3 by open unit balls.
On the other hand they proved that any k-fold covering of R3 in which no point is covered by
more than c2k=3 balls is decomposable. This reveals a somewhat surprising phenomenon that
it is more di�cult to decompose coverings that cover some of the points of R3 too often, than
to decompose coverings that cover every point about the same number of times. The exact
statement of the Mani-Pach Theorem is the following.
Theorem 4.1. Let F = fBigi2I be a k-fold covering of the 3 dimensional Euclidean space by
open unit balls. Suppose, further, than no point of R3 is contained in more than t members of
F . If

e � t3218=2k�1 � 1

then F is decomposable.

Let fCjgj2J be the connected components of the set obtained from R3 by deleting all the
boundaries of the balls Bi in F . Let H = (V (H); E(H)) be the (in�nite) hypergraph de�ned
as follows; the set of vertices of H , V (H) is simply F = fBigi2I . The set of edges of H is
E(H) = fEjgj2J , where Ej = fBi : i 2 I and Cj � Big. Since F is a k-fold covering, each
edge Ej of H contains at least k vertices. We claim that each edge of H intersects less than
t3218 other edges of H . To prove this claim, �x an edge El, corresponding to the connected
component Cl, where l 2 J . Let Ej be an arbitrary edge of H , corresponding to the component
Cj , that intersects El. Then there is a ball Bi containing both Cl and Cj . Therefore, any ball
that contains Cj intersects Bi. It follows that all the unit balls that contain or touch a Cj , for
some j that satis�es Ej \El 6= ; are contained in a ball B of radius 4. As no point of this ball is
covered more than t times we conclude, by a simple volume argument, that the total number of
these unit balls is at most t � 43 = t � 26. It is not too di�cult to check that m balls in R3 cut R3

into less than m3 connected components, and since each of the above Cj is such a component
we have jfj : Ej \ El 6= ;gj < (t � 26)3 = t3218, as claimed.

Consider, now, any �nite subhypergraph L of H . Each edge of L has at least k vertices, and
it intersects at most d < t3218 other edges of L. Since, by assumption, e(d+1) � 2k�1, Theorem
2.1 (which is a simple corollary of the local lemma), implies that L is 2-colorable. This means
that one can color the vertices of L blue and red so that no edge of L is monochromatic. Since
this holds for any �nite L, a compactness argument, analogous to the one used in the proof
of Theorem 2.2, shows that H is 2-colorable. Given a 2-coloring of H with no monochromatic
edges, we simply let F1 be the set of all blue balls, and F2 be the set of all red ones. Clearly,
each Fi is a covering of R3, completing the proof of the theorem.2

It is worth noting that Theorem 4.1 can be easily generalized to higher dimensions. We omit
the detailed statement of this generalization.

5 Latin Transversals

Following the proof of the Lov�asz Local Lemma we noted that the mutual independency assump-
tion in this lemma can be replaced by the weaker assumption that the conditional probability
of each event, given the mutual non-occurance of an arbitrary set of events, each nonadjacent
to it in the dependency digraph, is su�ciently small. In this section we describe an application,
from Erd}os-Spencer [1991], of this modi�ed version of the lemma. Let A = (aij) be an n of
n matrix with, say, integer entries. A permutation � is called a Latin transversal (of A) if the
entries ai�(i) (1 � i � n) are all distinct.
Theorem 6.1. Suppose k � (n � 1)=(4e) and suppose that no integer appears in more than k



It is obvious that each event AS is mutually independent of all the events AT , but those which
satisfy jS \T j � 2, since this is the only case in which the corresponding complete graphs share

an edge. We can therefore apply Corollary 1.2 with p = 21�(k2) and d =
�k
2

�� n
k�2
�

to conclude;

Proposition 3.1. If e
��k

2

�� n
k�2
�

+ 1
�
� 21�(k2) < 1 then R(k; k) > n.

A short computation shows that this gives R(k; k) >
p
2
e (1 + o(1))k2k=2, only a factor 2

improvement on the bound obtained by the straightforward probabilistic method. Although this
minor improvement is somewhat disappointing it is certainly not surprising; the Local Lemma
is most powerful when the dependencies between events are rare, and this is not the case here.
Indeed, there is a total number of K =

�n
k

�
events considered, and the maximum outdegree d in

the dependency digraph is roughly
�k
2

�� n
k�2
�
. For large k and much larger n (which is the case

of interest for us) we have d > K1�O(1=k), i.e., quite a lot of dependencies. On the other hand,
if we consider small sets S, e.g., sets of size 3, we observe that out of the total K =

�n
3

�
of them

each shares an edge with only 3(n � 3) � K1=3. This suggests that the Lov�asz Local Lemma
may be much more signi�cant in improving the o�-diagonal Ramsey numbers R(k; l), especially
if one of the parameters, say l, is small. Let us consider, for example, following Spencer (1977),
the Ramsey number R(k; 3). Here, of course, we have to apply the nonsymmetric form of the
Lov�asz Local Lemma. Let us 2-color the edges of Kn randomly and independently, where each
edge is colored blue with probability p. For each set of 3 vertices T , let AT be the event that the
triangle on T is blue. Similarly, for each set of k vertices S, let BS be the event that the complete

graph on S is red. Clearly Pr(AT ) = p3 and Pr(BS) = (1 � p)(
k
2). Construct a dependency

digraph for the events AT and BS by joining two vertices by edges (in both directions) i� the
corresponding complete graphs share an edge. Clearly, each AT -node of the dependency graph
is adjacent to 3(n� 3) < 3n AT 0-nodes and to at most

�n
k

�
BS0 -nodes. Similarly, each BS -node

is adjacent to
�k
2

�
(n � k) < k2n=2 AT nodes and to at most

�n
k

�
BS0 -nodes. It follows from the

general case of the Lov�asz Local Lemma that if we can �nd a 0 < p < 1 and two real numbers
0 � x < 1 and 0 � y < 1 such that

p3 � x(1� x)3n(1� y)(
n
k)

and
(1� p)(

k
2) � y(1� x)k

2n=2(1� y)(
n
k)

then R(k; 3) > n.

Our objective is to �nd the largest possible k = k(n) for which there is such a choice of
p; x and y. An elementary computation (if you have a spare weekend!) shows that the best

choice is when p = c1n
�1=2, k = c2n

1=2 logn; x = c3=n
3=2 and y = c4e

�n1=2 log2 n. This gives that
R(k; 3) > c5k

2= log2 k. A similar argument gives that R(k; 4) > k5=2+o(1). In both cases the
amount of computation required is considerable. However, the hard work does pay; the bound
R(k; 3) > c5k

2= log2 k matches a lower bound of Erd}os proved in 1961 by a highly complicated
probabilistic argument. The bound above for R(k; 4) is better than any bound for R(k; 4) known
to be proven without the Local Lemma.

4 A geometric result

A family of open unit balls F in the 3-dimensional Euclidean space R3 is called a k-fold covering

of R3 if any point x 2 R3 belongs to at least k balls. In particular, a 1-fold covering is simply
called a covering . A k-fold covering F is called decomposable if there is a partition of F into



is incident with k edges (including f), it follows that f intersects at most d = k(k � 1) other
edges. The desired result follows, since e(k(k� 1) + 1) < 2k�1 for each k � 9. This special case
has a di�erent proof (see [Alon-Bregman (1988)]), which works for each k � 8. It is plausible to
conjecture that in fact for each k � 4 each k-uniform k-regular hypergraph is has Property B.
The next result we consider, which appeared in the original paper of Erd}os and Lov�asz, deals
with k-colorings of the real numbers. For a k-coloring c : R ! f1; 2 . . .kg of the real numbers
by the k colors 1; 2 . . .k, and for a subset T � R, we say that T is multicolored (with respect to
c) if c(T ) = f1; 2 . . .kg, i.e., if T contains elements of all colors.
Theorem 2.2. Let m and k be two positive integers satisfying

e (m(m� 1) + 1)k

�
1� 1

k

�m
� 1

Then, for any set S of m real numbers there is a k-coloring so that each translation x + S (for
x 2 R) is multicolored.

Notice that the condition holds whenever m > (3 + o(1))k log k. There is no known proof of
existence of any m = m(k) with this property without using the local lemma.

We �rst �x a �nite subset X � R and show the existence of a k-coloring so that each
translation x + S (for x 2 X) is multicolored. This is an easy consequence of the Lov�asz Local
Lemma. Indeed, put Y =

S
x2X(x+ S) and let c : Y ! f1; 2 . . .kg be a random k-coloring of Y

obtained by choosing, for each y 2 Y , randomly and independently, c(y) 2 f1; 2 . . . ; kg according
to a uniform distribution on f1; 2 . . .kg. For each x 2 X , let Ax be the event that x + S is not

multicolored (with respect to c). Clearly Pr(Ax) � k
�
1� 1

k

�m
. Moreover, each event Ax is

mutually independent of all the other events Ax0 but those for which (x+ S)\ (x0 + S) 6= ;. As
there are at most m(m� 1) such events the desired result follows from Corollary 1.2.

We can now prove the existence of a coloring of the set of all reals with the desired properties,
by a standard compactness argument. Since the discrete space with k points is (trivially)
compact, Tychanov's Theorem (which is equivalent to the axiom of choice) implies that an
arbitrary product of such spaces is compact. In particular, the space of all functions from the
reals to f1; 2 . . .kg, with the usual product topology, is compact. In this space for every �xed
x 2 R, the set Cx of all colorings c, such that x + S is multicolored is closed. (In fact, it is
both open and closed, since a basis to the open sets is the set of all colorings whose values
are prescribed in a �nite number of places). As we proved above, the intersection of any �nite
number of sets Cx is nonempty. It thus follows, by compactness, that the intersection of all
sets Cx is nonempty. Any coloring in this intersection has the properties in the conclusion of
Theorem 2.2.2

Note that it is impossible, in general, to apply the Lov�asz Local Lemma to an in�nite
number of events and conclude that in some point of the probability space none of them holds.
In fact, there are trivial examples of countably many mutually independent events Ai, satisfying
Pr(Ai) = 1=2 and

V
i�1Ai = ;. Thus the compactness argument is essential in the above proof.

3 Lower bounds for Ramsey numbers

The deriviation of lower bounds for Ramsey numbers by Erd}os in 1947 was one of the �rst
applications of the probabilistic method. The Lov�asz Local Lemma provides a simple way of
improving these bounds. Let us obtain, �rst, a lower bound for the diagonal Ramsey number
R(k; k). Consider a random 2-coloring of the edges of Kn. For each set S of k vertices of Kn,

let AS be the event that the complete graph on S is monochromatic. Clearly Pr(AS) = 21�(k2).



�
�
1� Pr

�
Aj2 jAj1 ^B

��
� � �
�
1� Pr

�
Ajr jAj1 ^ . . .^Ajr�1 ^B

��
� (1� xj1) � � �(1� xjr ) �

Y
(i;j)2E

(1� xj)

Substituting we conclude that Pr
�
AijVj2S Aj

�
� xi, completing the proof of the induction.

The assertion of Lemma 1.1 now follows easily, as

Pr

 
n̂

i=1

Ai

!
= (1� Pr(A1)) � (1� Pr(A2jA1)) � . . . � (1� Pr(Anj

n�1̂

i=1

Ai) �
nY
i=1

(1� xi)

completing the proof. 2
Corollary 1.2 (Lov�asz Local Lemma; Symmetric Case): Let A1; A2 . . .An be events in an arbi-
trary probability space. Suppose that each event Ai is mutually independent of a set of all the
other events Aj but at most d, and that Pr(Ai) � p for all 1 � i � n. If

ep(d+ 1) � 1

then Pr
�Vn

i=1Ai

�
> 0.

If d = 0 the result is trivial. Otherwise, by the assumption there is a dependency digraph
D = (V;E) for the events A1 . . .An in which for each i jfj : (i; j) 2 Egj � d. The result now
follows from Lemma 1.1 by taking xi = 1=(d + 1)(< 1) for all i and using the fact that for any

d � 2,
�
1� 1

d+1

�d
> 1=e.2

It is worth noting that as shown by Shearer in 1985,the constant \e" is the best possible
constant in inequality (1.5). Note also that the proof of Lemma 1.1 indicates that the conclusion
remains true even when we replace the two assumptions that each Ai is mutually independent
of fAj : (i; j) 62 E) and that Pr(Ai) � xi

Q
(ij)2E(1 � xj) by the weaker assumption that for

each i and each S2 � f1 . . .ng � fj : (i; j) 2 Eg, Pr
�
xijVj2S2 Aj

�
� xi

Q
(i;j)2E(1� xj). This

turns out to be useful in certain applications.

In the next few sections we present various applications of the Lov�asz Local Lemma for
obtaining combinatorial results. There is no known proof of any of these results, which does not
use the this Lemma.

2 Property B and multicolored sets of real numbers

A hypergraph H = (V;E) is said to have property B if there is a coloring of V by two colors so
that no edge f 2 E is monochromatic.
Theorem 2.1. Let H = (V;E) be a hypergraph in which every edge has at least k elements, and
suppose that each edge of H intersects at most d other edges. If e(d + 1) � 2k�1 then H has
property B.

Color each vertex v of H , randomly and independently, either blue or red (with equal
probability). For each edge f 2 E, let Af be the event that f is monochromatic. Clearly
Pr(Af ) = 2=2jf j � 1=2k�1. Moreover, each event Af is clearly mutually independent of all the
other events Af 0 for all edges f 0 that do not intersect f . The result now follows from Corollary
1.2. 2

A special case of Theorem 2.1 is that for any k � 9, any k-uniform k-regular hypergraph
H has property B. Indeed, since any edge f of such an H contains k vertices, each of which



1 The Lemma

In a typical probabilistic proof of a combinatorial result, one usually has to show that the
probability of a certain event is positive. However, many of these proofs actually give more and
show that the probability of the event considered is not only positive but is large. In fact, most
probabilistic proofs deal with events that hold with high probability, i.e., a probability that
tends to 1 as the dimensions of the problem grow. On the other hand, there is a trivial case
in which one can show that a certain event holds with positive, though very small, probability.
Indeed, if we have n mutually independent events and each of them holds with probability at
least p > 0, then the probability that all events hold simultaneously is at least pn, which is
positive, although it may be exponentially small in n.

It is natural to expect that the case of mutual independence can be generalized to that of
rare dependencies, and provide a more general way of proving that certain events hold with
positive, though small, proability. Such a generalization is, indeed, possible, and is stated in
the following lemma, known as the Lov�asz Local Lemma. This simple lemma, �rst proved in
[Erd}os-Lov�asz (1975)] is an extremely powerful tool, as it supplies a way for dealing with rare
events.
Lemma 1.1 (The Local Lemma; General Case):

Let A1; A2 . . .An be events in an arbitrary probability space. A directed graph D = (V;E)
on the set of vertices V = f1; 2 . . .ng is called a dependency digraph for the events A1 . . .An if
for each i, 1 � i � n, the event Ai is mutually independent of all the events fAj : (i; j) 62 Eg.
Suppose that D = (V;E) is a dependency digraph for the above events and suppose there are
real numbers x1 . . .xn such that 0 � xi < 1 and Pr(Ai) � xi

Q
(i;j)2E(1� xj) for all 1 � i � n.

Then Pr
�Vn

i=1Aj

�
�

nQ
i=1

(1� xi). In particular, with positive probability no event Ai holds.

We �rst prove, by induction on s, that for any S � f1 . . .ng, jSj = s < n and any i 62 S

Pr

0
@Aij

^
j2S

Aj

1
A � xi

This is certainly true for s = 0. Assuming it holds for all s0 < s, we prove it for S. Put

S1 = fj 2 S; (i; j)2 Eg; S2 = S � S1

Then

Pr

0
@Aij

^
j2S

Aj

1
A =

Pr
�
Ai ^ (

V
j2S1 Aj)jVl2S2 Al

�
Pr
�V

j2S1 Aj jVl2S2 Al

�
To bound the numerator observe that since Ai is mutually independent of the events fAl : l 2 S2g

Pr

0
@Ai ^ (

^
j2S1

Aj)j
^
l2S2

Al

1
A � Pr

0
@Aij

^
l2S2

Al

1
A = Pr(Ai) � xi

Y
(i;j)2E

(1� xj)

The denominator, on the other hand, can be bounded by the induction hypothesis. Indeed,
suppose S1 = fj1; j2 . . .jrg. If r = 0 then the denominator is 1, and (1.1) follows. Otherwise,
setting B = ^l2S2Al,

Pr
�
Aj1 ^Aj2 . . .Ajr jB

�
= (1� Pr (Aj1 jB)) �



at a time. The value of �i can only change X by two so direct application of Theorem 4.1 gives
jXi+1 �Xij � 2. But let �; �0 be two n-tuples di�ering only in the i-th coordinate.

Xi(�) =
1

2

�
Xi+1(�) + Xi+1(�

0)
�

so that

jXi(�)�Xi+1(�)j = 1

2

��Xi+1(�
0)�Xi+1(�)

�� � 1

Now apply Azuma's Inequality. 2

For a third illustration let � be the Hamming metric on f0; 1gn. For A � f0; 1gn let B(A; s)
denote the set of y 2 f0; 1gn so that �(x; y) � s for some x 2 A. (A � B(A; s) as we may take
x = y.)
Theorem 5.3. Let �; � > 0 satisfy e��2=2 = �. Then

jAj � �2n ) jB(A; 2�
p
n)j � (1� �)2n

Proof. Consider f0; 1gn as the underlying probability space, all points equally likely. For y 2
f0; 1gn set

X(y) = min
x2A

�(x; y)

Let X0; X1; . . . ; Xn = X be the martingale given by exposing one coordinate of f0; 1gn at a time.
The Lipschitz condition holds for X : If y; y0 di�er in just one coordinate then X(y)�X(y0) � 1.
Thus, with � = E[X ]

Pr[X < � � �
p
n] < e��

2=2 = �

Pr[X > � + �
p
n] < e��

2=2 = �

But
Pr[X = 0] = jAj2�n � �

so � � �
p
n. Thus

Pr[X > 2�
p
n] < �

and
jB(A; 2�

p
n)j = 2n Pr[X � 2�

p
n] � 2n(1� �) 2

Actually, a much stronger result is known. Let B(s) denote the ball of radius s about
(0; . . . ; 0). The Isoperimetric Inequality proved by Harper in 1966 states that

jAj � jB(r)j ) jB(A; s)j � jB(r + s)j

One may actually use this inequality as a beginning to give an alternate proof that �(G) �
n=2 log2 n and to prove a number of the other results we have shown using martingales.

Lecture 9: The Lov�asz Local Lemma



where qh� is the conditional probability that g agrees with h� on Bi+1 given that it agrees with
h on Bi. (This is because for h� 2 H [h0] wh0 is also the conditional probability that g = h� given
that g = h� on Bi+1.) Thus

jXi+1(h)�Xi(h)j =
���Ph02H wh0 [L(h0)�Ph�2H [h0] L(h�)qh� ]

���
�Ph02H wh0

P
h�2H [h0] jqh� [L(h0)� L(h�)]j

The Lipschitz condition gives jL(h0)� L(h�)j � 1 so

jXi+1(h)�Xi(h)j �
X
h02H

wh0
X

h�2H[h0]

qh� =
X
h02H

wh0 = 1 2

Now we can express Azuma's Inequality in a general form.
Theorem 4.2. Let L satisfy the Lipschitz condition relative to a gradation of length m and let
� = E[L(g)]. Then for all � > 0

Pr[L(g) > � + �
p
m] < e��

2=2

Pr[L(g) < �� �
p
m] < e��

2=2

5 Three Illustrations

Let g be the random function from f1; . . . ; ng to itself, all nn possible function equally likely. Let
L(g) be the number of values not hit, i.e., the number of y for which g(x) = y has no solution.
By Linearity of Expectation

E[L(g)] = n

�
1� 1

n

�n
� n

e

Set Bi = f1; . . . ; ig. L satis�es the Lipschitz condition relative to this gradation since changing
the value of g(i) can change L(g) by at most one. Thus
Theorem 5.1.

Pr[jL(g)� n

e
j > �

p
n] < 2e��

2=2

Deriving these asymptotic bounds from �rst principles is quite cumbersome.

As a second illustration let B be any normed space and let v1; . . . ; vn 2 B with all jvij � 1.
Let �1; . . . ; �n be independent with

Pr[�i = +1] = Pr[�i = �1] =
1

2

and set
X = j�1v1 + . . . + �nvnj

Theorem 5.2.
Pr[X �E[X ] > �

p
n] < e��

2=2

Pr[X �E[X ] < ��pn] < e��
2=2

Proof. Consider f�1;+1gn as the underlying probability space with all (�1; . . . ; �n) equally likely.
Then X is a random variable and we de�ne a martingale X0; . . . ; Xn = X by exposing one �i



With probability at least 1 � � there is a u-coloring of all but at most c0
p
n vertices. By

the Lemma almost always, and so with probability at least 1 � �, these points may be colored
with 3 further colors, giving a u + 3-coloring of G. The minimality of u guarantees that with
probability at least 1� � at least u colors are needed for G. Altogether

Pr[u � �(G) � u + 3] � 1� 3�

and � was arbitrarily small. 2

Using the same technique similar results can be achieved for other values of �. For any �xed
� > 1

2 one �nds that �(G) is concentrated on some �xed number of values.

4 A General Setting

The martingales useful in studying Random Graphs generally can be placed in the following
general setting which is essentially the one considered in Maurey [1979] and in Milman and
Schechtman [1986]. Let 
 = AB denote the set of functions g : B ! A. (With B the set of pairs
of vertices on n vertices and A = f0; 1g we may identify g 2 AB with a graph on n vertices.)
We de�ne a measure by giving values pab and setting

Pr[g(b) = a] = pab

with the values g(b) assumed mutually independent. (In G(n; p) all p1b = p; p0b = 1� p.) Now
�x a gradation

; = B0 � B1 � . . . � Bm = B

Let L : AB ! R be a functional. (E.g., clique number.) We de�ne a martingale X0; X1; . . . ; Xm

by setting
Xi(h) = E[L(g)jg(b) = h(b) for all b 2 Bi]

X0 is a constant, the expected value of L of the random g. Xm is L itself. The values Xi(g)
approach L(g) as the values of g(b) are \exposed". We say the functional L satis�es the Lipschitz
condition relative to the gradation if for all 0 � i < m

h; h0 di�er only on Bi+1 � Bi) jL(h0)� L(h)j � 1

Theorem 4.1. Let L satisfy the Lipschitz condition. Then the corresponding martingale satis�es

jXi+1(h)�Xi(h)j � 1

for all 0 � i < m, h 2 AB.
Proof. Let H be the family of h0 which agree with h on Bi+1. Then

Xi+1(h) =
X
h02H

L(h0)wh0

where wh0 is the conditional probability that g = h0 given that g = h on Bi+1. For each h0 2 H
let H [h0] denote the family of h� which agree with h0 on all points except (possibly) Bi+1 �Bi.
The H [h0] partition the family of h� agreeing with h on Bi. Thus we may express

Xi(h) =
X
h02H

X
h�2H [h0]

[L(h�)qh� ]wh0



cliques.) G has no k-clique if and only if Y = 0. Apply Azuma's Inequality with m =
�n
2

� � n2=2

and E[Y ] � n2

2k4
(1 + o(1)). Then

Pr[!(G) < k] = Pr[Y = 0] � Pr[Y � E[Y ] � �E[Y ]]

� e�E[Y ]2=2(n2) � e�(c0+o(1))n2=k8

= e�(c+o(1))n
2= ln8 n

as desired. 2

Here is another example where the martingale approach requires an inventive choice of
graphtheoretic function.
Theorem 3.3. Let p = n�� where � is �xed, � > 5

6 . Let G = G(n; p). Then there exists
u = u(n; p) so that almost always

u � �(G) � u + 3

That is, �(G) is concentrated in four values.

We �rst require a technical lemma that had been well known.
Lemma 3.4. Let �; c be �xed � > 5

6 . Let p = n��. Then almost always every c
p
n vertices of

G = G(n; p) may be 3-colored.
Proof. If not, let T be a minimal set which is not 3-colorable. As T �fxg is 3-colorable, x must
have internal degree at least 3 in T for all x 2 T . Thus if T has t vertices it must have at least
3t
2 edges. The probability of this occuring for some T with at most c

p
n vertices is bounded

from above by
c
p
nX

t=4

 
n

t

! �t
2

�
3t
2

!
p3t=2

We bound  
n

t

!
� (

ne

t
)t and

 �t
2

�
3t
2

!
� (

te

3
)3t=2

so each term is at most"
ne

t

t3=2e3=2

33=2
n�3�=2

#t
�
h
c1n

1� 3�
2 t1=2

it � hc2n1� 3�
2 n1=4

it
=
�
c2n

���t

with � = 3�
2 � 5

4 > 0 and the sum is therefore o(1).
Proof of Theorem 3.3. Let � > 0 be arbitrarily small and let u = u(n; p; �) be the least integer
so that

Pr[�(G) � u] > �

Now de�ne Y (G) to be the minimal size of a set of vertices S for which G�S may be u-colored.
This Y satis�es the vertex Lipschitz condition since at worst one could add a vertex to S. Apply
the vertex exposure martingale on G(n; p) to Y . Letting � = E[Y ]

Pr[Y � � � �
p
n� 1] < e��

2=2

Pr[Y � � + �
p
n� 1] < e��

2=2

Let � satisfy e��2=2 = � so that these tail events each have probability less than �. We de�ned u so
that with probability at least � G would be u-colorable and hence Y = 0. That is, Pr[Y = 0] > �.
The �rst inequality therefore forces c � �

p
n� 1. Now employing the second inequality

Pr[Y � 2�
p
n� 1] � Pr[Y � � + �

p
n � 1] � �



Theorem 2.4 (Shamir, Spencer[1987]) Let n; p be arbitrary and let c = E[�(G)] where G �
G(n; p). Then

Pr[j�(G)� cj > �
p
n� 1] < 2e��

2=2

Proof. Consider the vertex exposure martingale X1; . . . ; Xn on G(n; p) with f(G) = �(G). A
single vertex can always be given a new color so the vertex Lipschitz condition applies. Now
apply Azuma's Inequality. 2

Letting �! 1 arbitrarily slowly this result shows that the distribution of �(G) is \tightly
concentrated" around its mean. The proof gives no clue as to where the mean is.

3 Chromatic Number

We have previously shown that �(G) � n=2 log2 n almost surely, where G � G(n; 1=2). Here
we give the original proof of B�ela Bollob�as using martingales. We follow the earlier notations

setting f(k) =
�n
k

�
2�(k2), k0 so that f(k0 � 1) > 1 > f(k0), k = k0 � 4 so that k � 2 log2 n and

f(k) > n3+o(1). Our goal is to show

Pr[!(G) < k] = e�n
2+o(1)

;

where !(G) is the size of the maximum clique of G. We shall actually show in Theorem 3.2 a
more precise bound. The remainder of the argument is as given earlier.

Let Y = Y (H) be the maximal size of a family of edge disjoint cliques of size k in H . This
ingenious and unusual choice of function is key to the martingale proof.
Lemma 3.1. E[Y ] � n2

2k4 (1 + o(1))
Proof. Let K denote the family of k-cliques of G so that f(k) = � = E[jKj]. Let W denote the
number of unordered pairs fA;Bg of k-cliques of G with 2 � jA \ Bj < k. Then E[W ] = �=2,
with � as described earlier, � � �2k4n�2. Let C be a random subfamily of K de�ned by setting,
for each A 2 K,

Pr[A 2 C] = q;

q to be determined. Let W 0 be the number of unordered pairs fA;Bg, A;B 2 C with 2 �
jA \Bj < k. Then

E[W 0] = E[W ]q2 = �q2=2

Delete from C one set from each such pair fA;Bg. This yields a set C� of edge disjoint k-cliques
of G and

E[Y ] � E[jC�j] � E[jCj]� E[W 0] = �q ��q2=2 = �2=2� � n2=2k4

where we choose q = �=� (noting that it is less than one!) to minimize the quadratic. 2

We conjecture that Lemma 3.1 may be improved to E[Y ] > cn2=k2. That is, with positive
probability there is a family of k-cliques which are edge disjoint and cover a positive proportion
of the edges.
Theorem 3.2.

Pr[!(G) < k] < e�(c+o(1))
n2

ln8 n

with c a positive constant.
Proof. Let Y0; . . . ; Ym, m =

�n
2

�
, be the edge exposure martingale on G(n; 1=2) with the function

Y just de�ned. The function Y satis�es the edge Lipschitz condition as adding a single edge
can only add at most one clique to a family of edge disjoint cliques. (Note that the Lipschitz
condition would not be satis�ed for the number of k-cliques as a single edge might yield many new



The �gure shows why this is a martingale. The conditional expectation of f(H) knowing the
�rst i� 1 edges is the weighted average of the conditional expectations of f(H) where the i-th
edge has been exposed. More generally - in what is sometimes referred to as a Doob martingale
process - Xi may be the conditional expectation of f(H) after certain information is revealed as
long as the information known at time i includes the information known at time i� 1.
The Vertex Exposure Martingale. Again let G(n; p) be the underlying probability space and f
any graphtheoretic function. De�ne X1; . . . ; Xn by

Xi(H) = E[f(G)jfor x; y � i; fx; yg 2 G ! fx; yg 2 H ]

In words, to �nd Xi(H) we expose the �rst i vertices and all their internal edges and take the con-
ditional expectation of f(G) with that partial information. By ordering the edges appropriately
the vertex exposure martingale may be considered a subsequence of the edge exposure martin-
gale. Note that X1(H) = E[f(G)] is constant as no edges have been exposed and Xn(H) = f(H)
as all edges have been exposed.

2 Large Deviations

Maurey [1979] applied a large deviation inequality for martingales to prove an isoperimetric
inequality for the symmetric group Sn. This inequality was useful in the study of normed spaces;
see Milman and Schechtman [1986] for many related results. The applications of martingales in
Graph Theory also all involve the same underlying martingale results used by Maurey, which
are the following.
Theorem 2.1 (Azuma's Ineqality) Let 0 = X0; . . . ; Xm be a martingale with

jXi+1 �Xij � 1

for all 0 � i < m. Let � > 0 be arbitrary. Then

Pr[Xm > �
p
m] < e��

2=2

Corollary 2.2 Let c = X0; . . . ; Xm be a martingale with

jXi+1 �Xij � 1

for all 0 � i < m. Then
Pr[jXm � cj > �

p
m] < 2e��

2=2:

A graph theoretic function f is said to satisfy the edge Lipschitz condition if whenever H and
H 0 di�er in only one edge then jf(H)� f(H 0)j � 1. It satis�es the vertex Lipschitz condition if
whenever H and H 0 di�er at only one vertex jf(H)� f(H 0)j � 1.
Theorem 2.3 When f satis�es the edge Lipschitz condition the corresponding edge exposure
martingale satis�es jXi+1 �Xij � 1. When f satis�es the vertex Lipschitz condition the corre-
sponding vertex exposure martingale satis�es jXi+1 �Xij � 1.

We prove these results in a more general context later. They have the intuitive sense that
if knowledge of a particular vertex or edge cannot change f by more than one then exposing a
vertex or edge should not change the expectation of f by more than one. Now we give a simple
application of these results.



objects) while here it depends only on their sizes. So it seems there should be a probability
space whose elements are histories - i.e., the value of P (�) for all real � - where the change from
P (�) to P (� + d�) is governed by these coagulation laws and where further there have to be
some appropriate entry laws so that each P (�) has the appropriate distribution. Not that any
of this has been done - but in theory there is a theory!

Lecture 8: Martingales

1 De�nitions

A martingale is a sequence X0; . . . ; Xm of random variables so that for 0 � i < m,

E[Xi+1jXi] = Xi

The Edge Exposure Martingale Let the random graph G(n; p) be the underlying probability
space. Label the potential edges fi; jg � [n] by e1; . . . ; em, setting m =

�n
2

�
for convenience, in

any speci�c manner. Let f be any graphtheoretic function. We de�ne a martingale X0; . . . ; Xm

by giving the values Xi(H). Xm(H) is simply f(H). X0(H) is the expected value of f(G) with
G � G(n; p). Note that X0 is a constant. In general (including the cases i = 0 and i = m)

Xi(H) = E[f(G)jej 2 G ! ej 2 H; 1 � j � i]

In words, to �nd Xi(H) we �rst expose the �rst i pairs e1; . . . ; ei and see if they are in H .
The remaining edges are not seen and considered to be random. Xi(H) is then the conditional
expectation of f(G) with this partial information. When i = 0 nothing is exposed and X0 is a
constant. When i = m all is exposed and Xm is the function f . The martingale moves from no
information to full information in small steps.
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The edge exposure martingale with n = m = 3; f the chromatic number, and the edges
exposed in the order \bottom,left,right". The values Xi(H) are given by tracing from the
central node to the leaf labelled H .



and letting X� be the total number of components of size between an2=3 and bn2=3

lim
n!1E[X�] =

Z b

a
e�

c3

6 ��2c
2 +�c2

2 c�5=2(2�)�1=2g(c)dc

where

g(c) =
1X
l=0

clc
3
2 l

a sum convergent for all c, (here c0 = 1). A component of size � cn2=3 will have probability

clc
3
2 l=g(c) of having l� 1 more edges than vertices, independent of �. As limc!0 g(c) = 1, most

components of size �n2=3 , � << 1, are trees but as c gets bigger the distribution on l moves
inexoribly higher.
An Overview. For any �xed � the sizes of the largest components are of the form cn2=3 with
a distribution over the constant. For � = �106 there is some positive limiting probability that
the largest component is bigger than 106n2=3 and for � = +106 there is some positive limiting
probability that the largest component is smaller than 10�6n2=3, though both these probabilities
are minuscule. The functions integrated have a pole at c = 0, re
ecting the notion that for any
� there should be many components of size near �n2=3 for � = �(�) appropriately small. When �
is large negative (e.g., �106) the largest component is likely to be �n2=3, � small, and there will
be many components of nearly that size. The nontree components will be a negligible fraction
of the tree components.

Now consider the evolution of G(n; p) in terms of �. Suppose that at a given � there are
components of size c1n

2=3 and c2n
2=3. When we move from � to � + d� there is a probability

c1c2d� that they will merge. Components have a peculiar gravitation in which the probability
of merging is proportional to their sizes. With probability (c21=2)d� there will be a new internal
edge in a component of size c1n

2=3 so that large components rarely remain trees. Simultaneously,
big components are eating up other vertices.

With � = �106, say, we have feudalism. Many small components (castles) are each vying
to be the largest. As � increases the components increase in size and a few large components
(nations) emerge. An already large France has much better chances of becoming larger than
a smaller Andorra. The largest components tend strongly to merge and by � = +106 it is
very likely that a giant component, Roman Empire, has emerged. With high probability this
component is nevermore challenged for supremacy but continues absorbing smaller components
until full connectivity - One World - is achieved.
An Continuous Model. In discussions at St. Flour it became apparent that there was a con-
tinuous model underlying the asymptotic behavior of G(n; p) with p = n�1 + �n�4=3. The
following should be regarded as only tentative steps toward de�ning of that continuous model.
For �xed � and k arbitrarily large but �xed one can look at the k largest components of G(n; p)
and parametrize them x1n

2=3; . . . ; xkn2=3 in decreasing order. One can give explicitly a limiting
distribution function H(x1; . . . ; xk) for these values. Now one can go to the limit with k and
consider the \state" P (�) at \time" � to be an in�nite sequence x1 > x2 > . . . of decreasing
reals. There will be a distribution over the possible sequences. The sequences must be well-
behaved; one can show, for example, that the number of xi bigger than c must be asymptotic to
2
3(2�)�1=2c�3=2 as c! 0. (There is further information concerning the nature of the components
- e.g., are they trees, unicyclic,. . . - that could also be added.) Now the intriguing thing is the
\gravity" that de�nes P (�+ d�) in terms of P (�) in an appropriate limiting sense. If P (�) has
terms xi; xj then with probability xixjd� they will \merge" and form a single term with value
xi + xj . This corresponds to certain coagulation models in physics though in the physical world
the probability of coagulation depends on the surface area (and perhaps other invariants) of the



so that
k�1X
i=1

� ln(1� i

n
) =

k2

2n
+

k3

6n2
+ o(1) =

k2

2n
+
c3

6
+ o(1)

Also

pk�1 = n1�k(1 +
�

n1=3
)k�1

(k� 1) ln(1 +
�

n1=3
) = (k � 1)(

�

n1=3
� �2

2n2=3
+ O(n�1)) =

�k

n1=3
� �2c

2
+ o(1)

Also

ln(1� p) = �p + O(n�2) = � 1

n
� �

n4=3
+ O(n�2)

and

k(n� k) +

 
k

2

!
� (k� 1) = kn� k2

2
+ O(n2=3)

so that

[k(n� k) +

 
k

2

!
� (k � 1)] ln(1� p) = �k +

k2

2n
� �k

n1=3
+
�c2

2
+ o(1)

and

E[X ]� nkkk�2

kk
p

2�knk�1
eA

where

A = k � k2

2n
� c3

6
+

�k

n1=3
� �2c

2
� k +

k2

2n
� �k

n1=3
+
�c2

2
+ o(1)

= �c
3

6
� �2c

2
+
�c2

2
+ o(1)

so that

E[X ]� n�2=3e�
c3

6 ��2c
2 +�c2

2 c�5=2(2�)�1=2

For any particular such k E[X ]! 0 but if we sum k between cn2=3 and (c+dc)n2=3 we multiply
by n2=3dc. Going to the limit gives an integral: For any �xed a; b; � let X be the number of tree
components of size between an2=3 and bn2=3. Then

lim
n!1E[X ] =

Z b

a
e�

c3

6 ��2c
2 +�c2

2 c�5=2(2�)�1=2dc

The large components are not all trees. E.M. Wright [1977] proved that for �xed l there are

asymptotically clk
k�2+ 3

2 l connected graphs on k points with k� 1 + l edges, where cl was given
by a speci�c recurrence. Asymptotically in l,

cl �
�

e

12l
(1 + o(1))

�l=2
:

The calculation for X(l), the number of such components on k vertices, leads to extra factors
of clk

3
2 l and n�l which gives clc

3
2 l. For �xed a; b; �; l the number X(l) of components of size

between an2=3 and bn2=3 with l� 1 more edges than vertices satis�es

lim
n!1E[X(l)] =

Z b

a
e�

c3

6 ��2c
2 +�c2

2 c�5=2(2�)�1=2(clc
3
2 l)dc



Here we use the nontrivial fact, due to Cayley, that there are kk�2 possible trees on a given
k-set. For c; k �xed

E[X ] � n
e�ckkk�2ck�1

k!

As trees are strictly balanced a second moment method gives X � E[X ] almost always. Thus
� pkn points lie in tree components of size k where

pk =
e�ck(ck)k�1

k!

It can be shown analytically that pk = Pr[T = k] in the Branching Process with mean c. Let Yk
denote the number of cycles of size k and Y the total number of cycles. Then

E[Yk] =
(n)k
2k

(
c

n
)k � ck

2k

for �xed k. For c < 1

E[Y ] =
X

E[Yk]!
1X
k=1

ck

2k

has a �nite limit whereas for c > 1, E[Y ]!1. Even for c > 1 for any �xed k the number of k-
cycles has a limiting expectation and so do not asymptotically a�ect the number of components
of a given size.

3 Inside the Phase Transition

In the evolution of the random graph G(n; p) a crucial change takes place in the vicinity of
p = c=n with c = 1. The small components at that time are rapidly joining together to form
a giant component. This corresponds to the Branching Process when births are Poisson with
mean 1. There the number T of organisms will be �nite almost always and yet have in�nite
expectation. No wonder that the situation for random graphs is extremely delicate. In recent
years there has been much interest in looking \inside" the phase transition at the growth of
the largest components. (See, e.g.  Luczak [1990].) The appropriate parametrization is, perhaps
surprisingly,

p =
1

n
+

�

n4=3

When � = �(n) ! �1 the phase transition has not yet started. The largest components are
o(n2=3) and there are many components of nearly the largest size. When � = �(n) ! +1
the phase transition is over - a largest component, of size >> n2=3 has emerged and all other
components are of size o(n2=3). Let's �x �; c and let X be the number of tree components of
size k = cn2=3. Then

E[X ] =

 
n

k

!
kk�2pk�1(1� p)k(n�k)+(k2)�(k�1)

Watch the terms cancel!  
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!
=

(n)k
k!
� nkek

kk
p

2�k

k�1Y
i=1

(1� i

n
)

For i < k

� ln(1� i

n
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n
+
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2n2
+ O(
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Now assume c > 1. For any �xed t, limn!1 Pr[T = t] = Pr[T � = t] but what corresponds
to T � =1? For t = o(n) we may estimate 1� (1� p)t � pt and n� 1 � n so that

Pr[Yt � 0] = Pr[B[n � 1; 1� (1� p)t] � t� 1] � Pr[B[n; tc=n] � t]

drops exponentially in t by Large Deviation results. When t = �n we estimate 1 � (1� p)t by
1�e�c�. The equation 1�e�c� = � has solution � = 1�y where y is the extinction probability.
For � < 1� y, 1� e�c� > � and

Pr[Yt � 0] � Pr[B[n; 1� e�c�] � �n]

is exponentially small while for � > 1� y, 1� e�c� < � and Pr[Yt � 0] � 1. Thus almost always
Yt = 0 for some t � (1 � y)n. Basically, T � = 1 corresponds to T � (1� y)n. Let �; � > 0 be
arbitrarily small. With somewhat more care to the bounds we may show that there exists t0 so
that for n su�ciently large

Pr[t0 < T < (1� �)n(1� y) or T > (1 + �)n(1� y)] < �

Pick t0 su�ciently large so that

y � � � Pr[T � � t0] � y

Then as limn!1 Pr[T � t0] = Pr[T � � 0] for n su�ciently large

y � 2� � Pr[T � t0] � y + �

1� y � 2� � Pr[(1� �)n(1� y) < T < (1 + �)n(1� y)] < 1� y + 3�

Now we expand our procedure to �nd graph components. We start with G � G(n; p), select
v = v1 2 G and compute C(v1) as before. Then we delete C(v1) , pick v2 2 G�C(v1) and iterate.
At each stage the remaining graph has distribution G(m; p) where m is the number of vertices.
(Note, critically, that no pairs fw;w0g in the remaining graph have been examined and so it
retains its distribution.) Call a component C(v) small if jC(v)j � t0, giant if (1� �)n(1� y) <
jC(v)j < (1 + �)n(1 � y) and otherwise failure. Pick s = s(�) with (y + �)s < �. (For �
small s � K ln ��1.) Begin this procedure with the full graph and terminate it when either
a giant component or a failure component is found or when s small components are found.
At each stage, as only small components have thus far been found, the number of remaining
points is m = n � O(1) � n so the conditional probabilities of small, giant and failure remain
asymptotically the same. The chance of ever hitting a failure component is thus � s� and the
chance of hitting all small components is � (y + �)s � � so that with probability at least 1� �0,
where �0 = (s+1)� may be made arbitrarily small, we �nd a series of less than s small components
followed by a giant component. The remaining graph has m � yn points and pm � cy = d, the
conjugate of c as de�ned earlier. As d < 1 the previous analysis gives the maximal components.
In summary: almost always G(n; c=n) has a giant component of size � (1� y)n and all other
components of size O(lnn). Furthermore, the Duality Principle has a discrete analog.
Discrete Duality Principle. Let d < 1 < c be conjugates. The structure of G(n; c=n) with its
giant component removed is basically that of G(m; d=m) where m, the number of vertices not
in the giant component, satis�es m � ny.

The small components of G(n; c=n) can also be examined from a static view. For a �xed k
let X be the number of tree components of size k. Then

E[X ] =

 
n

k

!
kk�2pk�1(1� p)k(n�k)+(k2)�(k�1)



the number of neutral vertices at time t and show, equivalently,

Nt � B[n � 1; (1� p)t]

This is reasonable since each w 6= v has independent probability (1 � p)t of staying neutral t
times. Formally, as N0 = n� 1 and

Nt = n � t � Yt = n� t� B[n� (t� 1)� Yt�1; p]� Yt�1 + 1
= Nt�1 � B[Nt�1; p]
= B[Nt�1; 1� p]

the result follows by induction. 2

We set p = c=n. When t and Yt�1 are small we may approximate Zt by B[n; c=n] which is
approximately Poisson with mean c. Basically small components will have size distribution as in
the Branching Process. The analogy must break down for c > 1 as the Branching Process may
have an in�nite population whereas jC(v)j is surely at most n. Essentially, those v for which the
Branching Process for C(v) does not \die early" all join together to form the giant component.

Fix c. Let Y �0 ; Y �1 ; . . . ; T �; Z�1 ; Z�2 ; . . . ; H� refer to the Branching Process and let the un-
starred Y0; Y1; . . . ; T; Z1; Z2; . . . ; H refer to the Random Graph process. For any possible history
(z1; . . . ; zt)

Pr[H� = (z1; . . . ; zt)] =
tY

i=1

Pr[Z� = zi]

where Z� is Poisson with mean c while

Pr[H = (z1; . . . ; zt)] =
tY

i=1

Pr[Zi = zi]

where Zi has Binomial Distribution B[n� 1� z1 � . . .� zi�1; c=n]. The Poisson distribution is
the limiting distribution of Binomials. When m = m(n) � n and c; i are �xed

lim
n!1Pr[B[m; c=n] = i] = lim

n!1

 
m

z

!
(
c

n
)z(1� c

n
)m�z = e�ccz=z!

hence
lim
n!1Pr[H = (z1; . . . ; zt)] = Pr[H� = (z1; . . . ; zt)]

Assume c < 1. For any �xed t, limn!1 Pr[T = t] = Pr[T � = t]. We now bound the size of
the largest component. For any t

Pr[T > t] � Pr[Yt > 0] = Pr[B[n� 1; 1� (1� p)t] � t] � Pr[B[n; tc=n] � t]

as 1� (1� p)t � tp and n� 1 < n. By Large Deviation Results

Pr[T > t] < e��t

where � = �(c) > 0. Let � = �(c) satisfy �� > 1. Then

Pr[T > � lnn] < n��� = o(n�1)

There are n choices for initial vertex v. Thus almost always all components have size O(lnn).



yi�1 + zi � 1 has yi > 0 for 0 � i < t and yt = 0. When Z is Poisson with mean �

Pr[H = (z1; . . . ; zt)] =
tY

i�1

e���zi

zi!
=
e��(�e��)t�1Qt

i=1 zi!

since z1 + . . . + zt = t� 1.

We call d < 1 < c a conjugate pair if

de�d = ce�c

The function f(x) = xe�x increases from 0 to e�1 in [0,1) and decreases back to 0 in (1;1) so
that all c 6= 1 have a uniqe conjugate. Let c > 1 and y = Pr[T < 1] so that y = ec(y�1). Then
(cy)e�cy = ce�c so

d = cy

Duality Principle. Let d < 1 < c be conjugates. The Branching Process with mean c, conditional
on extinction, has the same distribution as the Branching Process with mean d.
Proof. It su�ces to show that for every history H = (z1; . . . ; zt)

e�c(ce�c)t�1

y
Qt
i=1 zi!

=
e�d(de�d)t�1Qt

i=1 zi!

This is immediate as ce�c = de�d and ye�d = ye�cy = e�c:

2 The Giant Component

Now let's return to random graphs. We de�ne a procedure to �nd the component C(v) containing
a given vertex v in a given graph G. We are motivated by Karp [1990] in which this approach is
applied to random digraphs. In this procedure vertices will be live, dead or neutral. Originally
v is live and all other vertices are neutral, time t = 0 and Y0 = 1. Each time unit t we take a
live vertex w and check all pairs fw;w0g, w0 neutral, for membership in G. If fw;w0g 2 G we
make w0 live, otherwise it stays neutral. After searching all neutral w0 we set w dead and let Yt
equal the new number of live vertices. When there are no live vertices the process terminates
and C(v) is the set of dead vertices. Let Zt be the number of w0 with fw;w0g 2 G so that

Y0 = 1

Yt = Yt�1 + Zt � 1

With G = G(n; p) each neutral w0 has independent probability p of becoming live. Here,
critically, no pair fw;w0g is ever examined twice so that the conditional probability for fw;w0g 2
G is always p. As t� 1 vertices are dead and Yt�1 are live

Zt � B[n � (t� 1)� Yt�1; p]

Let T be the least t for which Yt = 0. Then T = jC(v)j. As in Section 1 we continue the
recursive de�nition of Yt, this time for 0 � t � n.
Claim 2.1 For all t

Yt � B[n � 1; 1� (1� p)t] + 1� t

It is more convenient to deal with
Nt = n� t� Yt



With additional work one can prove Theorem 3.2 with c1 = K(1 � �0); c2 = K(1 + �0) for
arbitrarily small �0 and K dependent only on �0.

Lecture 7: The Phase Transition

1 Branching Processes

Paul Erd}os and Alfred R�enyi, in their original 1960 paper, discovered that the random graph
G(n; p) undergoes a remarkable change at p = 1=n. Speaking roughly, let �rst p = c=n with
c < 1. Then G(n; p) will consist of small components, the largest of which is of size �(lnn).
But now suppose p = c=n with c > 1. In that short amount of \time" many of the components
will have joined together to form a \giant component" of size �(n). The remaining vertices are
still in small components, the largest of which has size �(lnn). They dubbed this phenomenon
the Double Jump. We prefer the descriptive term Phase Transition because of the connections
to percolation (e.g., freezing) in mathematical physics.

To better understand the Phase Transition we make a lengthy detour into the subject of
Branching Processes. Imagine that we are in a unisexual universe and we start with a single
organism. Imagine that this organism has a number of children given by a given random variable
Z. (For us, Z will be Poisson with mean c.) These children then themselves have children, the
number again being determined by Z. These grandchildren then have children, etc. As Z = 0
will have nonzero probability there will be some chance that the line dies out entirely. We want
to study the total number of organisms in this process, with particular eye to whether or not the
process continues forever. (The original application of this model was to a study of the -gasp!-
male line of British peerage.)

Now lets be more precise. Let Z1; Z2; . . . be independent random variables, each with distri-
bution Z. De�ne Y0; Y1; . . . by the recursion

Y0 = 1

Yi = Yi�1 + Zi � 1

and let T be the least t for which Yt = 0. If no such t exists (the line continuing forever) we
say T = +1. The Yi and Zi mirror the Branching Process as follows. We view all organisms as
living or dead. Initially there is one live organism and no dead ones. At each time unit we select
one of the live organisms, it has Zi children, and then it dies. The number Yi of live organisms
at time i is then given by the recursion. The process stops when Yt = 0 (extinction) but it is a
convenient �ction to de�ne the recursion for all t. Note that T is not a�ected by this �ction since
once Yt = 0, T has been de�ned. T (whether �nite or in�nite) is the total number of organisms,
including the original, in this process. (A natural approach, found in many probability texts, is
to have all organisms of a given generation have their children at once and study the number of
children of each generation. While we may think of the organisms giving birth by generation it
will not a�ect our model.)

We shall use the major result of Branching Processes that when E[Z] = c < 1 with probabil-
ity one the process dies out (T <1) but when E[Z] = c > 1 then there is a nonzero probability
that the process goes on forever (T =1).

When a branching process dies we call H = (Z1; . . . ; ZT ) the history of the process. A
sequence (z1; . . . ; zt) is a possible history if and only if the sequence yi given by y0 = 1; yi =



c2 logn for all su�ciently large n.
Proof. De�ne S randomly by

Pr[x 2 S] = px = min

"
10

�
ln x

x2

�1=3

;
1

2

#

Fix n. Now g(n) is a random variable and

� = E[g(n)] =
X

x+y+z=n

pxpypz

Careful asymptotics give

� � 103 ln n
Z 1

x=0

Z 1�x

y=0

dxdy

[xy(1� x� y)]2=3
= K lnn

where K is large. (We may make K arbitrarily large by increasing \10".) We apply the Janson
inequality. Here � = 1=8 as all px � 1=2. Also

� =
X

pxpypzpy0pz0 ;

the sum over all �ve-tuples with x + y + z = x + y0 + z0 = n. Roughly there are n3 terms, each
� p5n = n�10=3+o(1) so that the sum is o(1). Care must be taken that those terms with one (or
more) small variables don't contribute much to the sum.

Now we emulate the argument of Theorem 5.3.1. Call F a maximal disjoint family of solutions
if F is a family of sets fxi; yi; zig with all xi; yi; zi distinct, all xi + yi + zi = n, all xi; yi; zi 2 S
and so that there is no x; y; z 2 S with x + y + z = n and x; y; z distinct from all xi; yi; zi. Let
Z(s) denote the number of maximal disjoint families of solutions of size s. As in Theorem 5.3.1
when s < log2 n

E[Z(s)] <
�s

s!
e��(1+o(1))

while for s � log2 n
E[Z(s)] < �s=s!

so that
P�E[Z(s)] = o(n�10), say, where

P� is over those s with js� �j > ��. (Here � is �xed
and K must be su�ciently large.) With probability 1� o(n�10) there is an F with js��j < ��.

When this occurs g(n) � jF j � (1 � �)� but again we must worry about g(n) being con-
siderably larger than jF j. Here we use only that p = n�2=3+o(1). Note that the number of
representations of n = x + y + z with a given x is the number of representations m = y + z of
m = n� x.
Lemma 3.3. Almost surely no su�ciently large m has four (or more) representations as m = y+z,
y; z 2 S.
Proof. Here � = �(m�1=3) so the expected number of 4-tuples of representatives is O(m�4=3)
and so the probability of having four representatives is O(m�4=3). Apply Borel-Cantelli. 2

Now almost surely there is a C so that no m has more than C representations m = y + z.
Let S be such that this holds and that all maximal disjoint families of solutions F have

K(1� �) logn < jF j < K(1 + �) logn

Each triple x; y; z 2 S with x+y+z = n must include one of the at most 3K(1+�) logn elements
of sets of F and each such element is in less than C such triples so that g(n) < 3CK(1+ �) logn.
Take c1 = K(1� �) and c2 = 3KC(1 + �).



3 Counting Representations

For a given set S of natural numbers let (for every n 2 N) f(n) = fS(n) denote the number of
representations n = x + y, x; y 2 S; x 6= y. For many years it was an open question whether
there existed an S with f(n) � 1 for all su�ciently large n and yet f(n) � no(1).
Theorem 3.1. (Erd}os (1956)) There is a set S for which f(n) = �(ln n). That is, there is a set
S and constants c1; c2 so that for all su�ciently large n

c1 lnn � f(n) � c2 ln n

Proof. De�ne S randomly by

Pr[x 2 S] = px = min

2
410

s
ln x

x
; 1

3
5

Fix n. Now f(n) is a random variable with mean

� = E[f(n)] =
X

x+y=n

pxpy

Roughly there are n addends with pxpy > p2n = 100 lnn
n . We have pxpx = �( lnnn ) except in the

regions x = o(n); y = o(n) and care must be taken that those terms don't contribute signi�cantly
to �. Careful asymptotics (and �rst year Calculus!) yield

� � (100 lnn)

Z 1

0

dxp
x(1� x)

= 100� ln n

The negligible e�ect of the x = o(n); y = o(n) terms re
ects the �niteness of the inde�nite
integral at poles x = 0 and x = 1. The possible representations x + y = n are mutually
independent events so that from basic Large Deviation results

Pr[jf(n)� �j > ��] < 2(1� �)�

for constants �; �. To be speci�c we take � = :9; � = :1 and

Pr[jf(n)� �j > :9�] < :9314lnn < n�1:1

for n su�ciently large. Take c1 < :1(100�) and c2 > 1:9(100�).

Let An be the event that c1 ln n � f(n) � c2 ln n does not hold. We have Pr[An] < n�1:1 for
n su�ciently large. The Borel Cantelli Lemma applies, almost always all An fail for n su�ciently
large. Therefore there exists a speci�c point in the probability space, i.e., a speci�c set S, for
which c1 lnn � f(n) � c2 lnn for all su�ciently large n. 2

Now for a given set S of natural numbers let g(n) = gS(n) denote the number of represen-
tations n = x + y + z, x; y; z 2 S, all unequal.
Theorem 3.2. (Erd}os, Tetali[1990]) There is a set S and a positive constants c1; c2 so that

c1 logn � g(n) � c2 logn

for all su�ciently large n.

The full result of Erd}os and Tetali was that for each k there is a set S and constants c1; c2
so that the number of representations of n as the sum of k terms of S lies between c1 logn and



De�ne a random subset X � S by

Pr[y 2 X ] = py = 10(ln y)1=4y�1=4

for y 2 S, y � 108. For de�niteness say Pr[y 2 X ] = py = 1 for y 2 S, y < 108. Then

E[NX(x)] =
x1=2X
i=0

Pr[i2 2 X ] = O(x1=4(ln x)1=4)

and large deviation results give NX(x) = O(x1=4(ln x)1=4) almost always.

For any given n 6� 0(mod4), n � 108, let Fn denote the family of sets F of four squares
adding to n. For each F 2 Fn let AF be the event F � X . We apply Janson's Inequality to give
an upper bound to Pr[^F2FnAF ]. Observe that this probability increases when the py decrease
so, as the function py is decreasing in y, we may make the simplifying assumption

py = p = 10(lnn)1=4n�1=4

for all y 2 S, y � n. Then
Pr[AF ] = p4 = 104(lnn)=n

and
� � (1 + o(1))(n=48)104(lnn)=n � (100 + o(1))(lnn)

Thus e�� < n�100+o(1). The addends of � break into two parts, those Pr[AF ^ AF 0 ] with
jF \ F 0j = 1 and those with jF \ F 0j = 2. The bounds on r3(n) give that there are at most
n3=2+o(1) pairs F; F 0 of the �rst type and each has

Pr[F \ F 0] = p7 = n�7=4+o(1)

The bounds on r2(n) give that there are at most n1+o(1) pairs F; F 0 of the second type and each
has

Pr[F \ F 0] = p6 = n�3=2+o(1)

Hence
� � n3=2+o(1)�7=4+o(1) + n1+o(1)�3=2+o(1) = o(1)

Thus
Pr[^F2FnAF ] � (1 + o(1))e�� � n�100+o(1)

As
P
n�100+o(1) converges the Borel-Cantelli lemma gives that almost always all su�ciently

large n 6� 0(mod4) will be the sum of four elements of X .
Remark The constant \10" could be made smaller as long as the exponent of n here is less than
�1.

Let X be a particular set having the above properties. (As customary, the probabilistic
method does not actually \construct" X .) Suppose all n � n0, n 6� 0(mod4) are the sum of
four elements of X . Add to X all squares up to n0. This does not a�ect the asymptotics of
NX(x) and now all n 6� 0(mod4) are the sum of four elements of X . Finally, replace X by
X [ 4X [ 42X [ 43X [ . . .. This a�ects the asyptotics of NX(x) only by a constant and now all

integers are the sum of four elements of X .



With p; q distinct primes, XpXq = 1 if and only if pjx and qjx which occurs if and only if pqjx.
Hence

Cov[Xp; Xq] = E[Xp]E[Xq]� E[XpXq] =
bn=pqc

n
� bn=pc

n

bn=qc
n

� 1

pq
� (

1

p
� 1

n
)(

1

q
� 1

n
) � 1

n
(
1

p
+

1

q
)

Thus X
p6=q

Cov[Xp; Xq] � 1

n

X
p6=q

1

p
+

1

q
=
�(n)� 1

n

X
p

2

p

where �(n) � n
lnn is the number of primes p � n. So

X
p6=q

Cov[Xp; Xq] <
(n= lnn)

n
(2 ln lnn) = o(1)

That is, the covariances do not a�ect the variance, V ar[X ] � ln lnn and Chebyschev's Inequality
actually gives

Pr[jv(n)� ln ln nj > �
p

ln lnn] < ��2 + o(1)

for any constant �. 2

In a classic paper Paul Erd}os and Marc Kac [1940] showed, essentially, that X does behave
like a normal distribution with mean and variance ln lnn + o(1). Here is their precise result.
The Erd}os-Kac Theorem. Let � be �xed, positive, negative or zero. Then

lim
n!1

1

n
jfx : 1 � x � n; v(x) � ln ln n + �

p
ln lnngj =

Z 1

�

1p
2�

e�t
2=2dt

We do not prove this result here.

2 Four Squares with Few Squares

The classic theorem of Lagrange states that every nonnegative integer n is the sum of four
squares. How \sparse" can a set of squares be and still retain the four square property. For any
set X of nonnegative integers set NX(x) = jfi 2 X; i � xgj. Let S = f0; 1; 4; 9; . . .g denote the
squares. If X � S and every n � 0 can be expressed as the sum of four elements of X then how
slow can be the growth rate of NX(x) ? Clearly we must have NX(x) = 
(x1=4) . Our object
here is to give a quick proof of the following result of Wirsing.
Theorem. There is a set X � S such that every n � 0 can be expressed as the sum of four
elements of X and

NX(x) = O(x1=4(ln x)1=4)

In 1828 Jacobi showed that the number r4(n) of solutions in integers to n = a2 + b2 + c2 +d2

is given by eight times the sum of those djn with d 6� 0(mod4). In 1801 Gauss found an exact
expression for the number r2(n) of solutions in integers to n = a2 + b2. We will need only
r2(n) = no(1) which follows easily from his results. From this the number r3(n) of solutions to
n = a2 + b2 + c2 is O(n1=2+o(1)). Now suppose n 6� 0(mod4). Then r4(n) > 8n so, excluding
order there are at least n=48 di�erent solutions to n = a2 + b2 + c2 + d2 in nonnegative integers.
From r2(n) = no(1) it follows that there are O(n1=2+o(1)) solutions with a = b. Hence there are
at least (1 + o(1))n=48 sets F of four squares adding to n .



clK(x1; . . . ; xr) and Spoiler moved Inside. Hence xr+1 62 H0. Since jH j � K � a, H0 lies inside
cla(x1; . . . ; xr). The isomorphism between cla(x1; . . . ; xr) and cla(y1; . . . ; yr) maps H0 into a
copy of itself in the graph G2.

For any copy of H0 in G2, let N(H0) denote the number of extensions of H0 to H . From
Theorem 3.2 one can show that a.s all N(H0) = �(nv��e), with v = v(H0; H), e = e(H0; H) and
v��e > 0. For a given H0 each yr+1 is in only a bounded number of copies of H since all copies of
H lie in clb(y1; . . . ; yr; yr+1). Hence there are �(nv��e) vertices yr+1 so that clb(y1; . . . ; yr; yr+1)
contains H . Arguing as with the �rst move there a.s. are �(nv��e), hence at least one, yr+1
with clb(y1; . . . ; yr; yr+1) �= H . Duplicator selects such a yr+1.

Lecture 6: A Number Theory Interlude

We take a break from Graph Theory and explore applications of these methods to Number
Theory.

1 Prime Factors

The second moment method is an e�ective tool in number theory. Let v(n) denote the number of
primes p dividing n. (We do not count multiplicity though it would make little di�erence.) The
following result says, roughly, that \almost all" n have \very close to" ln ln n prime factors. This
was �rst shown by Hardy and Ramanujan in 1920 by a quite complicated argument. We give
the proof of Paul Turan [1934] a proof that played a key role in the development of probabilistic
methods in number theory.
Theorem 1.1 Let !(n)!1 arbitrarily slowly. Then the number of x in f1; . . . ; ng such that

jv(x)� ln lnnj > !(n)
p

ln lnn

is o(n).
Proof. Let x be randomly chosen from f1; . . . ; ng. For p prime set

Xp =

(
1 if pjx
0 otherwise

and set X =
P
Xp, the summation over all primes p � n, so that X(x) = v(x). Now

E[Xp] =
bn=pc
n

As y � 1 < byc � y

E[Xp] = 1=p+ O(1=n)

By linearity of expectation

E[X ] =
X
p�n

1

p
+ O(

1

n
) � ln lnn

Now we bound the variance

V ar[X ] � (1 + o(1)) ln lnn +
X
p 6=q

Cov[Xp; Xq]



Now we de�ne the a1; . . . ; at of the lookahead strategy by reverse induction. We set at = 0.
If at the end of the game Duplicator can assure that the 0-types of x1; . . . ; xt and y1; . . . ; yt are
the same then they have the same induced subgraphs and he has won. Suppose, inductively,
that b = ar+1 has been de�ned. Let, applying the Lemma, K be a.s. an upper bound on all
clb(z1; . . . ; zr+1). We then de�ne a = ar by a = K + b.

Now we need show that a.s. this strategy works. Let G1 � G(n; n��), G2 � G(m;m��) and
suppose Duplicator tries to play the (a1; . . . ; at) lookahead strategy on EHR(G1; G2; t).

Set a = a1 and consider the �rst move. Spoiler will select, say, y = y1 2 G2. Duplicator
then must play x = x1 2 G1 with cla(x) �= cla(y). Can he always do so - that is, do a.s. G1 and
G2 have the same values of cla(x)? The size of cla(x) is a.s. bounded so it su�ces to show for
any potential H that either there almost surely is an x with cla(x) �= H or there almost surely
is no x with cla(x) �= H .

Let H have v vertices and e edges. Suppose H has a subgraph H 0 (possibly H itself) with
v0 vertices, e0 edges and v0 � �e0 < 0. The expected number of copies of H 0 in G1 is

�(nv
0

pe
0

) = �(nv
0��e0) = o(1)

so a.s. G1 contains no copy of H 0, hence no copy of H , hence no x with cla(x) �= H . If this does
not occur then (since, critically, � is irrational) all v0��e0 > 0 so the expected number of copies
of all such H 0 approaches in�nity. From Theorem 1.4.5 a.s. G1 has �(nv��e) copies of H . For
x in appropriate position in such a copy of H we cannot deduce cla(x) �= H but only that cla(x)
contains H as a subgraph. (Essentially, x may have additional extension properties.) For each
such x as cla(x) is bounded, cla(x) contains only a bounded number of copies of H . Hence there
are �(nv��e) di�erent x 2 G1 so that cla(x) contains H as a subgraph.

Let H 0 be a possible value for cla(x) that contains H as a subgraph. Let H 0 have v0 vertices
and e0 edges. As (x;H 0) is rigid, (H;H 0) is dense and so

(v0 � v)� �(e0 � e) < 0

There are �(nv
0��e0) di�erent x with cla(x) containingH 0 but since v0 � �e0 < v � �e this is

o(nv��e). Subtracting o� such x for all the boundedly many such potential H 0 there a.s. remain
�(nv��e), hence at least one, x with cla(x) �= H .

Now, in general, consider the (r + 1)-st move. We set b = ar+1, a = ar for notational
convenience and recall a = K + b where K is an upper bound on clb(z1; . . . ; zr+1). Points
x1; . . . ; xr 2 G1, y1; . . . ; yr 2 G2 have been selected with

cla(x1; . . . ; xr) �= cla(y1; . . . ; yr)

Spoiler picks, say, xr+1 2 G1. We distinguish two cases. We say Spoiler has moved Inside if

xr+1 2 clK(x1; . . . ; xr)

Otherwise we say Spoiler has moved Outside.

Suppose Spoiler moves Inside. Then

clb(x1; . . . ; xr; xr+1) � clK+b(x1; . . . ; xr) = cla(x1; . . . ; xr)

The isomorphism from cla(x1; . . . ; xr) to cla(y1; . . . ; yr) sends xr+1 to some yr+1 which Duplicator
selects.

Suppose Spoiler moves Outside. Set H = clb(x1; . . . ; xr; xr+1). Let H0 be the union of
all rigid extensions of any size of x1; . . . ; xr in H . If xr+1 2 H0 then, as jH j � K, xr+1 2



will show that he almost always wins with perfect play - it only indicates that the strategy used
need be more complex. Now let us �x � 2 (0; 1), � irrational.

Now recall our notion of rooted graphs (R;H) but this time from the perspective of a
particular p = n��. We say (R;H) is dense if v � e� < 0 and sparse if v � e� > 0. The
irrationality of � assures us that all (R;H) are in one of these categories. We call (R;H) rigid
if for all S with R � S � V (H), (S;H) is dense.

For any r; t there is a �nite list (up to isomorphism) of rigid rooted graphs (R;H) containing
r roots and with v(R;H) � t. In any graph G we de�ne the t-closure clt(x1; . . . ; xr) to be the
union of all y1; . . . ; yv with (crucially) v � t which form an (R;H) extension where (R;H) is
rigid. If there are no such sets we de�ne the default value clt(x1; . . . ; xr) = fx1; . . . ; xrg. We say
two sets x1; . . . ; xr and x01; . . . ; x0r have the same t-type if their t-closures are isomorphic. (To
be precise, these are ordered r-tuples and the isomorphism must send xi into x0i.)
Example. Taking � � :51 (but irrational, of course), cl1(x1; x2) consists of x1; x2 and all y
adjacent to both of them. cl3(x1; x2) has those points and all y1; y2; y3 which together with
x1 form a K4 (note that this gives an (R;H) with v = 3; e = 6) and a �nite number of other
possibilities.

We can already describe the nature of Duplicator's strategy. At the end of the r-th move,
with x1; . . . ; xr and y1; . . . ; yr having been selected from the two graphs, Duplicator will assure
that these sets have the same ar � type. We shall call this the (a1; . . . ; at) lookahead strategy.
Here ar must depend only on t, the total number of moves in the game and �. We shall set
at = 0 so that at the end of the game, if Duplicator can stick to the (a1; . . . ; at) lookahead
strategy then he has won. If, however, Spoiler picks, say, xr so that there is no corresponding yr
with x1; . . . ; xr and y1; . . . ; yr having the same ar-type then the strategy fails and we say that
Spoiler wins. The values ar give the \lookahead" that Duplicator uses but before de�ning them
we need some preliminary results.
Lemma 4.6 Let �, r; t > 0 be �xed. Then there exists K = K(�; r; t) so that in G(n; n��) a.s.

jclt(x1; . . . ; xr)j � K

for all x1; . . . ; xr 2 G.
Proof. Set K = r + t(L � 1). If X = fx1; . . . ; xrg has t-closure with more than K points then
there will be L sets Y 1; . . . ; Y L disjoint from X , all jY j j � t so that each (X;X [ Y j) forms a
rigid extension and with each Y j having at least one point not in Y 1 [ . . .Y j�1. Begin with X

and add the Y j in order. Adding Y j will add, say, vj vertices and ej edges. Since (X;X [ Y j)
was rigid, (X [ Y 1[ . . .[ Y j�1; X [ Y 1[ . . .[ Y j) is dense and so vj � ej� < 0. As vj � t there
are only a �nite number of possible values of vj � ej� and so there is an � = �(�; r; t) so that all
vj � ej� � ��. Pick L (and therefore K) so that r�L� < 0. The existence of a t-closure of size
greater than K would imply the existence in G(n; n��) of one of a �nite number of graphs that
would have some r + v1 + . . . + vL vertices and at least e1 + . . . + eL edges. But the probability
of G containing such a graph is bounded by

nr+v1+...+vLpe1+...+eL = nr+v1+...+vL��(e1+...+eL)

nr+(v1��e1)+...+(vL��eL) � nr�L�

= o(1)

so a.s. no such t-closures exist. 2
Remark. The value of K given by the above proof depends strongly on how close � may be
approximated by rationals of denominator at most t. This is often the case. If, for example,
1
2 + 1

s+1 < � < 1
2 + 1

s then a.s. there will be two points x1; x2 2 G(n; n��) having s common
neighbors so that jcl1(x1; x2)j = s + 2.



We say that a graph G has the full level s extension property if for every distinct u1; . . . ; ua
and v1; . . . ; vb i G with a + b � s there is an x 2 V (G) with fx; uig 2 E(G), 1 � i � a and
fx; vjg 62 V (G), 1 � j � b. Suppose that G;H both have the full level s� 1 extension property.
Then Duplicator wins EHR[G;H; s] by the following simple strategy. On the i-th round, with
x1; . . . ; xi�1; y1; . . . ; yi�1 already selected, and Spoiler picking, say, xi, Duplicator simply picks
yi having the same adjacencies to the yj ; j < i as xi has to the xj ; j < i. The full extension
property says that such a yi will surely exist.
Theorem 4.5 For any �xed p, 0 < p < 1, and any s, G(n; p) almost always has the full level s
extension property.
Proof. For every distinct u1; . . . ; ua; v1; . . . ; vb; x 2 G with a + b � s let Eu1;...;ua;v1;...;vb;x be the
event that fx; uig 2 E(G), 1 � i � a and fx; vjg 62 V (G), 1 � j � b. Then

Pr[Eu1;...;ua;v1;...;vb;x] = pa(1� p)b

Now de�ne
Eu1;...;ua;v1;...;vb = ^xEu1;...;ua;v1;...;vb;x

the conjunction over x 6= u1; . . . ; ua; v1; . . . ; vb. But these events are mutually independent over
x since they involve di�erent edges. Thus

Pr[^xEu1;...;ua;v1;...;vb;x] = [1� pa(1� p)b]n�a�b

Set � = min(p; 1� p)s so that

Pr[^xEu1;...;ua;v1;...;vb;x] � (1� �)n�s

The key here is that � is a �xed (dependent on p; s) positive number. Set

E = _Eu1;...;ua;v1;...;vb

the disjunction over all distinct u1; . . . ; ua; v1; . . . ; vb 2 G with a + b � s. There are less than
s2ns such choices as we can choose a; b and then the vertices. Thus

Pr[E] � s2ns(1� �)n�s

But
lim
n!1 s2ns(1� �)n�s = 0

and so E holds almost never. Thus :E, which is precisely the statement that G(n; p) has the
full level s extension property, holds almost always. 2

But now we have proven Theorem 4.1. For any p 2 (0; 1) and any �xed s as m;n ! 1
with probability approaching one both G(n; p) and H(m; p) will have the full level s extension
property and so Duplicator will win EHR[G(n; p);H(m; p); s].

Why can't Duplicator use this strategy when p = n��? We illustrate the di�culty with a
simple example. Let :5 < � < 1 and let Spoiler and Duplicator play a three move game on
G;H . Spoiler thinks of a point z 2 G but doesn't tell Duplicator about it. Instead he picks
x1; x2 2 G, both adjacent to z. Duplicator simply picks y1; y2 2 H , either adjacent or not
adjacent dependent on whether x1 � x2. But now wily Spoiler picks x3 = z. H � H(m;m��)
does not have the full level 2 extension property. In particular, most pairs y1; y2 do not have a
common neighbor. Unless Duplicator was lucky, or shrewd, he then cannot �nd y3 � y1; y2 and
so he loses. This example does not say that Duplicator will lose with perfect play - indeed, we



that at a threshold function the Zero-One Law will not hold and so to say that p(n) satis�es the
Zero-One Law is to say that p(n) is not a threshold function - that it is a boring place in the
evolution of the random graph, at least through the spectacles of the First Order language. In
stark terms: What happens in the evolution of G(n; p) at p = n��=7? The answer: Nothing!

Our approach to Zero-One Laws will be through a variant of the Ehrenfeucht Game, which we
now de�ne. Let G;H be two vertex disjoint graphs and t a positive integer. We de�ne a perfect
information game, denoted EHR[G;H; t], with two players, denoted Spoiler and Duplicator.
The game has t rounds. Each round has two parts. First the Spoiler selects either a vertex
x 2 V (G) or a vertex y 2 V (H). He chooses which graph to select the vertex from. Then the
Duplicator must select a vertex in the other graph. At the end of the t rounds t vertices have
been selected from each graph. Let x1; . . . ; xt be the vertices selected from V (G) and y1; . . . ; yt
be the vertices selected from V (H) where xi; yi are the vertices selected in the i-th round. Then
Duplicator wins if and only if the induced graphs on the selected vertices are order-isomorphic:
i.e., if for all 1 � i < j � t

fxi; xjg 2 E(G) ! fyi; yjg 2 E(H)

As there are no hidden moves and no draws one of the players must have a winning strategy
and we will say that that player wins EHR[G;H; t].
Lemma 4.3 For every First Order A there is a t = t(A) so that if G;H are any graphs with
G j= A and H j= :A then Spoiler wins EHR[G;H; t].

A detailed proof would require a formal analysis of the First Order language so we give only
an example. Let A be the property 8x9y [x � y] of not containing an isolated point and set
t = 2. Spoiler begins by selecting an isolated point y1 2 V (H) which he can do as H j= :A.
Duplicator must pick x1 2 V (G). As G j= A, x1 is not isolated so Spoiler may pick x2 2 V (G)
with x1 � x2 and now Duplicator cannot pick a \duplicating" y2.
Theorem 4.4 A function p = p(n) satis�es the Zero-One Law if and only if for every t, letting
G(n; p(n)); H(m; p(m)) be independently chosen random graphs on disjoint vertex sets

lim
m;n!1Pr[ Duplicator winsEHR[G(n; p(n));H(m;p(m)); t]] = 1

Remark. For any given choice of G;H somebody must win EHR[G;H; t]. (That is, there is no
random play, the play is perfect.) Given this probability distribution over (G;H) there will be
a probability that EHR[G;H; t] will be a win for Duplicator, and this must approach one.
Proof. We prove only the \if" part. Suppose p = p(n) did not satisfy the Zero-One Law. Let A
satisfy

lim
n!1Pr[G(n; p(n)) j= A] = c

with 0 < c < 1. Let t = t(A) be as given by the Lemma. With limiting probability 2c(1� c) > 0
exactly one of G(n; p(n)); H(n; p(n)) would satisfy A and thus Spoiler would win, contradict-
ing the assumption. This is not a full proof since when the Zero-one Law is not satis�ed
limn!1 Pr[G(n; p(n)) j= A] might not exist. If there is a subsequence ni on which the limit is
c 2 (0; 1) we may use the same argument. Otherwise there will be two subsequences ni; mi on
which the limit is zero and one respectively. Then letting n;m!1 through ni; mi respectively,
Spoiler will win EHR[G;H; t] with probability approaching one. 2

Theorem 4.4 provides a bridge from Logic to Random Graphs. To prove that p = p(n)
satis�es the Zero-One Law we now no longer need to know anything about Logic - we just have
to �nd a good strategy for the Duplicator.



extension. Set � =
�n�r

v

�
pe, the expected value of N in G(n; p).

Theorem 3.2. Let (R;H) be strictly balanced. Then for all � > 0 there exists K so that if
p = p(n) is such that � > K log n then almost surely

jN(x1; . . . ; xr)� �j < ��

for all x1; . . . ; xr.

In particular if �� logn then almost surely all N(x1; . . . ; xr) � �.

4 Zero-One Laws

In this section we restrict our attention to graph theoretic properties expressible in the First
Order theory of graphs. The language of this theory consists of variables (x; y; z; . . .), which
always represent vertices of a graph, equality and adjacency (x = y; x � y), the usual Boolean
connectives (^;:; . . .) and universal and existential quan�cation (8x; 9y). Sentences must be
�nite. As examples, one can express the property of containing a triangle

9x9y9z [x � y ^ x � z ^ y � z]

having no isolated point
8x9y [x � y]

and having radius at most two

9x8y [:(y = x) ^ :(y � x) �! 9z [z � y ^ y � x]]

For any property A and any n; p we consider the probability that the random graph G(n; p)
satis�es A, denoted

Pr[G(n; p) j= A]

Our objects in this section will be the theorem of Glebskii et.al. [1969] and independently
Fagin[1976]
Theorem 4.1 For any �xed p, 0 < p < 1 and any First Order A

lim
n!1Pr[G(n; p) j= A] = 0 or 1

and that of Shelah and Spencer[1988]
Theorem 4.2 For any irrational �, 0 < � < 1, setting p = p(n) = n��

lim
n!1Pr[G(n; p) j= A] = 0 or 1

Both proofs are only outlined.

We shall say that a function p = p(n) satis�es the Zero-One Law if the above equality holds
for every First Order A.

The Glebskii/Fagin Theorem has a natural interpretation when p = :5 as then G(n; p) gives
equal weight to every (labelled) graph. It then says that any First Order property A holds
for either almost all graphs or for almost no graphs. The Shelah/Spencer Theorem may be
interpreted in terms of threshold functions. For example, p = n�2=3 is a threshold function for
containment of a K4. That is, when p � n�2=3, G(n; p) almost surely does not contain a K4

whereas when p � n�2=3 it almost surely does contain a K4. In between, say at p = n�2=3,
the probability is between 0 and 1, in this case 1 � e�1=24. The (admittedly rough) notion is



3 All Vertices in nearly the same number of Triangles

Returning to the example of x1, let N(x) denote the number of triangles containing vertex x.
Set � =

�n�1
2

�
p3 as before.

Theorem 3.1. For every � > 0 there exists K so that if p = p(n) is such that � = K logn then
almost surely

(1� �)� < N(x) < (1 + �)�

for all vertices x.

We shall actually show that for a given vertex x

Pr[jN(x)� �j > ��] = o(n�1)

If the distribution of N(x) were Poisson with mean � then this would follow by Large Deviation
results and indeed our approach will show that N(x) is closely approximated by the Poisson
distribution.

We call F a maximal disjoint family of extensions if F consists of pairs fxi; yig such that all
x; xi; yi are triangles in G(n; p), the xi; yi are all distinct, and there is no fx0; y0g with x; x0; y0

a triangle and x0; y0 both distinct from all the xi; yi. Let Z(s) denote the number of maximal
disjoint families of size s. Lets restrict 0 � s � log2 n (a technical convenience) and bound
E[Z(s)]. There are � �n�12 �s=s! choices for F . Each has probability (p3)s that all xi; yi do indeed
give extensions. We further need that the n�1�2s � n other vertices contain no extension. The
calculation of x1 may be carried out here to show that this probability is � e��. All together

E[Z(s)] � (1 + o(1))
�s

s!
e��

But now the right hand side is asymptotically the Poisson distribution so that we can choose K
so that X

�E[Z(s)] = o(n�1) (�)
where

P� is over s < log2 n with js� �j > ��.

When s > log2 n we ignore the condition that F be maximal so that E[Z(s)] < �s=s! =
o(n�10), say. Thus (�) holds with

P� over all s with js � �j > ��. Thus with probability
1 � o(n�1) all maximal disjoint families of extensions F have js � �j < ��. But there must be
some maximal disjoint family of extensions. Thus with probability 1�o(n�1) there is a maximal
disjoint family of extensions F with js� �j < ��. As F consists of extensions

Pr[N(x) < (1� �)�] = o(n�1)

To complete the upper bound we need show that N(x) will not be much larger than jF j. Here
we use only that p = n�2=3+o(1). There is o(n�1) probability that G(n; p) has an edge fx; x0g
lying in ten triangles. There is a o(n�1) that G(n; p) has a vertex x with ui; vi; wi; 1 � i � 7 all
distinct and all x; ui; vi and x; vi; wi triangles. When these do not occur N(x) � jF j + 70 for
any maximal disjoint family of extensions jF j and so for any �0 > �

Pr[N(x) > (1 + �0)�] < o(n�1) + Pr[some jF j > (1 + �)�] = o(n�1)

With some additional work one can �nd K so that the conclusions of the theorem hold for
any p = p(n) with � > K logn. The general result is stated in terms of rooted graphs. For a
given rooted graph (R;H) let N(x1; . . . ; xr) denote the number of (y1; . . . ; yv) giving an (R;H)



where x1; . . . ; xr are some particular vertices. But

Cx1 ^ . . .^ Cxr = ^Bxiyz ;

the conjunction over 1 � i � r and all y; z. We apply Janson's Inequality to this conjunction.
Again � = p3 = o(1). The number of fxi; y; zg is r

�n�1
2

� � O(n), the overcount coming from
those triangles containing two (or three) of the xi. (Here it is crucial that r is �xed.) Thus

X
Pr[Bxiyz ] = p3

 
r

 
n� 1

2

!
� O(n)

!
= r� + O(n�1+o(1))

As before � is p5 times the number of pairs xiyz � xjy
0z0. There are O(rn3) = O(n3) terms

with i = j and O(r2n2) = O(n2) terms with i 6= j so again � = o(1). Therefore

Pr[Cx1 ^ . . .^ Cxr ] � e�r�

and

E[X(r)=r!] � (ne��)r

r!
=
cr

r!
Hence X has limiting Poisson distribution, in particular Pr[X = 0]! e��. 2

2 Rooted Graphs

The above result was only a special case of a general result of Spencer[1990] which we now
state. By a rooted graph is meant a pair (R;H) consisting of a graph H = (V (H); E(H)) and a
speci�ed proper subset R � V (H) of vertices called the roots. For convenience let the vertices
of H be labelled a1; . . . ; ar; b1; . . . ; bv with R = fa1; . . . ; arg. In a graph G we say that vertices
y1; . . . ; yv make an (R;H)-extension of vertices x1 . . . ; xr if all these vertices are distinct; yi; yj
are adjacent in G whenever bi; bj are adjacent in H ; and xi; yj are adjacent in G whenever ai; bj
are adjacent in H . So G on x1; . . . ; xr; y1; . . . ; yv gives a copy of H which may have additional
edges { except that edges between the x's are not examined. We let Ext(R;H) be the property
the for all x1; . . . ; xr there exist y1; . . . ; yv giving an (R;H) extension. For example, when H

is a triangle and R one vertex Ext(R;H) is the statement that every vertex lies in a triangle.
When H is a path of length t and R the endpoints Ext(R;H) is the statement that every pair of
vertices lie on a path of length t. When R = ; Ext(;; H) is the already examined statement that
there exists a copy of H . As in that situation we have a notion of balanced and strictly balanced.
We say (R;H) has type (v; e) where v is the number of nonroot vertices and e is the number of
edges of H , not counting edges with both vertices in R. For every S with R � S � V (H) let
(vS ; eS) be the type of (R;H jS). We call (R;H) balanced if eS=vS � e=v for all such S and we
call (R;H) strictly balanced if eS=vS < e=v for all proper S � V (H). We call (R;H) nontrivial
if every root is adjacent to at least one nonroot.
Theorem 2.1. Let (R;H) be a nontrivial strictly balanced rooted graph with type (v; e) and
r = jRj. Let c1 be the number of graph automorphism � : V (H) ! V (H) with �(x) = x for
all roots x. Let c2 be the number of bijections � : R ! R which are extendable to some graph
automorphism � : V (H)! V (H). Let � > 0 be arbitrary and �xed. Let p = p(n) satisfy

nvpe

c1
= ln

�
nr

c2�

�
Then

lim
n!1Pr[G(n; p) j= Ext(R;H)] = e��

While the counting of automorphisms leads to some technical complexities the proof is es-
sentially that of the \every vertex in a triangle" case.



Lecture 5: Counting Extensions and Zero-One Laws

The threshold behavior for the existence of a copy of H in G(n; p) is well understood. Now
we turn to what, in a logical sense, is the next level which we call extension statements. We
want G(n; p) to have the property that every x1; . . . ; xr belong to a copy of H . For example
(r = 1), every vertex lies in a triangle. We �nd the �ne threshold behavior for this property and
further show - continuing this example - that for p a bit larger almost surely every vertex lies
in about the same number of triangles.

1 Every Vertex in a Triangle

Let A be the property that every vertex lies in a triangle.
Theorem 1.1. Let c > 0 be �xed and let p = p(n), � = �(n) satisfy 

n� 1

2

!
p3 = �

e�� =
c

n

Then
lim
n!1Pr[G(n; p) j= A] = e�c

Proof. First �x x 2 V (G). For each unordered y; z 2 V (G) � fxg let Bxyz be the event that
fx; y; zg is a triangle of G. Let Cx be the event ^Bxyz and Xx the corresponding indicator
random variable. We use Janson's Inequality to bound E[Xx] = Pr[Cx]. Here p = o(1) so
� = o(1).

P
Pr[Bxyz ] = � as de�ned above. Dependency xyz � xuv occurs if and only if the

sets overlap (other than in x). Hence

� =
X
y;z;z0

Pr[Bxyz ^Bxyz0 ] = O(n3)p5 = o(1)

since p = n�2=3+o(1). Thus

E[Xx] � e�� =
c

n

Now de�ne
X =

X
x2V (G)

Xx;

the number of vertices x not lying in a triangle. Then from Linearity of Expectation

E[X ] =
X

x2V (G)

E[Xx]! c

We need show that the Poisson Paradigm applies to X . To do this we show that all moments
of X are the same as for the Poisson distribution. Fix r. Then

E[X(r)=r!] = S(r) =
X

Pr[Cx1 ^ . . .^ Cxr ];

the sum over all sets of vertices fx1; . . . ; xrg. All r-sets look alike so

E[X(r)=r!] =

 
n

r

!
Pr[Cx1 ^ . . .^ Cxr ] �

nr

r!
Pr[Cx1 ^ . . .^ Cxr ]



3 Some Very Low Probabilities

Let A be the property that G does not contain K4 and consider Pr[G(n; p) j= A] as p varies.
(Results with K4 replaced by an arbitrary H are discussed at the end of this section.) We
know that p = n�2=3 is a threshold function so that for p � n�2=3 this probability is o(1).
Here we want to estimate that probability. Our estimates here will be quite rough, only up
to a o(1) additive factor in the hyperexponent, though with more care the bounds di�er by
\only" a constant factor in the exponent. If we were to consider all potential K4 as giving

mutually independent events then we would be led to the estimate (1� p6)(n4) = e�n4+o(1)p6 . For
p appropriately small this turns out to be correct. But for, say, p = 1

2 it would give the estimate

e�n4+o(1) . This must, however, be way o� the mark since with probability 2�(n2) = e�n2+o(1) the
graph G could be empty and hence trivially satisfy A.

Rather than giving the full generality we assume p = n�� with 2
3 > � > 0. The result is:

Pr[G(n; p) j= A] = e�n
4�6�+o(1)

for 2
3 > � � 2

5 and

Pr[G(n; p) j= A] = e�n
2��+o(1)

for 2
5 � � > 0.

The upper bound follows from the inequality

Pr[G(n; p) j= A] � max
h
(1� p6)(

n
4); (1� p)(

n
2)
i

This is actually two inequalities. The �rst comes from the probability of G not containing a K4

being at most the probability as if all the potential K4 were independent. The second is the same
bound on the probability that G doesn't contain a K2 - i.e., that G has no edges. Calculation
shows that the \turnover" point for the two inequalities occurs when p = n�2=5+o(1).

The upper bound follows from the Janson inequalities. For each four set � of vertices B� is
that that 4-set gives a K4 and we want Pr[^B�]. We have � = �(n4p6) and � lnM � � and
(as shown in Lecture 1) � = �(���) with �� = �(n2p5 + np3). With p = n�� and 2

3 > � > 2
5

we have �� = o(1) so that

Pr[^B�] � e��(1+o(1)) = e�n
4�6�+o(1)

When 2
5 > � > 0 then �� = �(n2p5) (somewhat surprisingly the np3 never is signi�cant in

these calculations) and the extended Janson inequality gives

Pr[^B�] � e��(�
2=�) = e��(�=�

�) = e�n
2��

The general result has been found by T.  Luczak, A. Rucinski and S. Janson. Let H be any
�xed graph and let A be the property of not containing a copy of H . For any subgraph H 0 of
H the correlation inequality gives

Pr[G(n; p) j= A] � e�E[XH0 ]

where XH 0 is the number of copies of H 0 in G. Now let p = n�� where we restrict to those �

for which p is past the threshold function for the appearance of H . Then

Pr[G(n; p) j= A] = en
o(1)

min
H 0

e�E[XH0 ]



so that
f(k) > n3+o(1)

Now we use the Generalized Janson Inequality to estimate Pr[!(G) < k]. Here � = f(k). (Note

that Janson's Inequality gives a lower bound of 2�f(k) = 2�n3+o(1) to this probability but this

is way o� the mark since with probability 2�(n2) the random G is empty!) The value � was
examined in Lecture 2 and we showed

�

�2
=

��

�
=

k�1X
i=2

g(i)

There g(2) � k4=n2 and g(k � 1) � 2kn2�k=� were the dominating terms. In our instance
� > n3+o(1) and 2�k = n�2+o(1) so g(2) dominates and

� � �2k4

n2

Hence we bound the clique number probability

Pr[!(G) < k] < e��
2(1+o(1))=2� = e�(n

2=k4)(1+o(1)) = e�n
2+o(1)

as k = �(ln n). (The possibility that G is empty gives a lower bound so that we may say the

probability is e�n2+o(1) , though a o(1) in the hyperexponent leaves lots of room.)
Theorem 2.1. (Bollob�as [1988]) Almost always

�(G)) � n

2 log2 n

Proof. The argument that

�(G) � n

�(G)
� n

2 log2 n
(1 + o(1))

almost always was given in Lecture 2.

The reverse inequality was an open question for a full quarter century! Set m = bn= ln2 nc.
For any set S of m vertices the restriction GjS has the distribution of G(m; 1=2). Let k =
k(m) = k0(m)� 4 as above. Note

k � 2 log2m � 2 log2 n

Then
Pr[�[GjS] < k] < e�m

2+o(1)

There are
�n
m

�
< 2n = 2m

1+o(1)
such sets S. Hence

Pr[�[GjS] < k for some m-set S] < 2m
1+o(1)

e�m
2+o(1)

= o(1)

That is, almost always every m vertices contain a k-element independent set.

Now suppose G has this property. We pull out k-element independent sets and give each a
distinct color until there are less than m vertices left. Then we give each point a distinct color.
By this procedure

�(G) � dn �m

k
e+ m � n

k
+ m =

n

2 log2 n
(1 + o(1)) + o(

n

log2 n
)

=
n

2 log2 n
(1 + o(1))

and this occurs for almost all G. 2



Observe that for this n the left hand side is 1 + o(1). Note that
�n
k

�
grows, in n, like nk . For any

� 2 (�1;+1) if

n = n0(k)[1 +
�+ o(1)

k
]

then  
n

k

!
2�(k2) = [1 +

� + o(1)

k
]k = e� + o(1)

and so
Pr[!(G(n; p)) < k] = e�e

�
+ o(1)

As � ranges from �1 to +1, e�e� ranges from 1 to 0. As n0(k + 1) � p2n0(k) the ranges will
not \overlap" for di�erent k. More precisely, let K be arbitrarily large and set

Ik = [n0(k)[1� K

k
]; n0(k)[1 +

K

k
]]

For k � k0(K), Ik�1 \ Ik = ;. Suppose n � n0(k0(K)). If n lies between the intervals (which
occurs for \most" n), which we denote by Ik < n < Ik+1, then

Pr[!(G(n; p)) < k] � e�e
K

+ o(1);

nearly zero, and
Pr[!(G(n; p)) < k + 1] � e�e

�K
+ o(1);

nearly one, so that
Pr[!(G(n; p)) = k] � e�e

�K � e�e
K

+ o(1);

nearly one. When n 2 Ik we still have Ik�1 < n < Ik+1 so that

Pr[!(G(n; p)) = k or k � 1] � e�e
�K � e�e

K
+ o(1);

nearly one. As K may be made arbitrarily large this yields the celebrated two point concen-
tration theorem on clique number given as Corollary 2.1.2. Note, however, that for most n the
concentration of !(G(n; 1=2)) is actually on a single value!

2 Chromatic Number

Again �x p = 1=2 (there are similar results for other p) and let G � G(n; 12). We shall �nd
bounds on the chromatic number �(G). The original proof of Bollob�as used martingales and
will be discussed later. Set

f(k) =

 
n

k

!
2�(k2)

Let k0 = k0(n) be that value for which

f(k0 � 1) > 1 > f(k0)

Then n =
p

2
k(1+o(1))

so for k � k0,

f(k + 1)=f(k) =
n

k
2�k(1 + o(1)) = n�1+o(1)

Set
k = k(n) = k0(n)� 4



There are O(n2v�j) choices of �; � intersecting in j points since �; � are determined, except for
order, by 2v � j points. For each such �; �

Pr[B� ^B� ] = pjA�[A� j = p2e�jA�\A� j � p2e�fj

Thus

� =
vX

j=2

O(n2v�j)O(n�
v
e
(2e�fj))

But

2v � j � v

e
(2e� fj) =

vfj
e
� j < 0

so each term is o(1) and hence � = o(1). By Janson's Inequality

lim
n!1Pr[^B�] = lim

n!1M = exp[�ce=a]

completing the proof. 2

The �ne threshold behavior for the appearance of an arbitrary graph H has been worked
out but it can get quite complicated.

Lecture 4: The Chromatic Number Resolved!

The centerpiece of this lecture is the result of B�ela Bollob�as that, with G � G(n; 12), the
chromatic number �(G) is asymptotically n=(2 log2 n) almost surely.

1 Clique Number Revisited

In this section we �x p = 1=2, (other values yield similar results), let G � G(n; p) and consider
the clique number !(G). For a �xed c > 0 let n; k!1 so that 

n

k

!
2�(k2) ! c

As a �rst approximation

n � k

e
p

2

p
2
k

and

k � 2 lnn

ln 2

Here � ! c so M ! e�c. The � term was examined earlier. For this k, � = o(E[X ]2) and so
� = o(1). Therefore

lim
n;k!1

Pr[!(G(n; p)) < k] = e�c

Being more careful, let n0(k) be the minimum n for which 
n

k

!
2�(k2) � 1:



We set

p =
�(1� �)

�

so as to maximize this quantity. The added assumption of Theorem 1.2 assures us that the
probability p is at most one. Then

E
h
� ln[Pr[^i2SBi]

i
� �2(1� �)

2�

Therefore there is a speci�c S � I for which

� ln[Pr[^i2SBi] � �2(1� �)

2�

That is,

Pr[^i2SBi] � e�
�2(1��)

2�

But
Pr[^i2IBi] � Pr[^i2SBi]

completing the proof. 2

3 Appearance of Small Subgraphs Revisited

Generalizing the �ne threshold behavior for the appearance of K4 we �nd the �ne threshold
behavior for the appearance of any strictly balanced graph H .
Theorem 3.1 Let H be a strictly balanced graph with v vertices, e edges and a automorphisms.
Let c > 0 be arbitrary. Let A be the property that G contains no copy of H . Then with
p = cn�v=e,

lim
n!1Pr[G(n; p) j= A] = exp[�ce=a]

Proof. Let A�; 1 � � � �nv�v!=a, range over the edge sets of possible copies of H and let B� be
the event G(n; p) � A�. We apply Janson's Inequality. As

lim
n!1� = limn!1

 
n

v

!
v!pe=a = ce=a

we �nd
lim
n!1M = exp[�ce=a]

Now we examine (similar to Theorem 1.4.2)

� =
X
���

Pr[B� ^B� ]

We split the sum according to the number of vertices in the intersection of copies � and �.
Suppose they intersect in j vertices. If j = 0 or j = 1 then A� \ A� = ; so that � � � cannot
occur. For 2 � j � v let fj be the maximal jA� \ A� j where � � � and �; � intersect in j
vertices. As � 6= �, fv < e. When 2 � j � v � 1 the critical observation is that A� \ A� is a
subgraph of H and hence, as H is strictly balanced,

fj
j
<

e

v



from the Correlation Inequality. Thus

Pr[Bij ^1�j<i Bj ] � Pr[Bi]�
dX

j=1

Pr[Bj ^ Bi]

Reversing

Pr[Bij ^1�j<i Bj ] � Pr[Bi] +
dX

j=1

Pr[Bj ^ Bi]

� Pr[Bi]

0
@1 +

1

1� �

dX
j=1

Pr[Bj ^ Bi]

1
A

since Pr[Bi] � 1� �. Employing the inequality 1 + x � ex,

Pr[Bij ^1�j<i Bj ] � Pr[Bi]e
1

1��

Pd

j=1
Pr[Bj^Bi]

For each 1 � i � m we plug this inequality into

Pr[^i2IBi] =
mY
i=1

Pr[Bij ^1�j<i Bj ]

The terms Pr[Bi] multiply to M . The exponents add: for each i; j 2 I with j < i and j � i the
term Pr[Bj ^ Bi] appears once so they add to �=2. 2
Proof of Theorem 1.2 As discussed earlier, the proof of Theorem 1.1 gives

Pr[^i2IBi] � e��+
1

1��
�
2

which we rewrite as

� ln[Pr[^i2IBi]] �
X
i2I

Pr[Bi]� 1

2(1� �)

X
i�j

Pr[Bi ^ Bj ]

For any set of indices S � I the same inequality applied only to the Bi; i 2 S gives

� ln[Pr[^i2SBi]] �
X
i2S

Pr[Bi]� 1

2(1� �)

X
i;j2S;i�j

Pr[Bi ^ Bj ]

Let now S be a random subset of I given by

Pr[i 2 S] = p

with p a constant to be determined, the events mutually independent. (Here we are using
probabilistic methods to prove a probability theorem!) Each term Pr[Bi] then appears with
probability p and each term Pr[Bi ^Bj ] with probability p2 so that

E
h
� ln[Pr[^i2SBi]

i
� E

"X
i2S

Pr[Bi]

#
� 1

2(1� �)
E

2
4 X
i;j2S;i�j

Pr[Bi ^Bj ]

3
5

= p�� 1

1� �
p2

�

2



Theorem 1.2 (The Generalized Janson Inequality). Under the assumptions of Theorem 1.1 and
the further assumption that � � �(1� �)

Pr[^i2IBi] � e�
�2(1��)

2�

Theorem 1.2 (when it applies) often gives a much stronger result than Chebyschev's Inequal-
ity as used earlier. We can bound V ar[X ] � � + � so that

Pr[^i2IBi] = Pr[X = 0] � V ar[X ]

E[X ]2
� � + �

�2

Suppose � = o(1), � !1, �� �, and 
 = �2

� !1. Chebyschev's upper bound on Pr[X = 0]
is then roughly 
�1 while Janson's upper bound is roughly e�
 .

2 The Proofs

The original proofs of Janson are based on estimates of the Laplace transform of an appropriate
random variable. The proof presented here follows that of Boppana and Spencer [1989]. We
shall use the inequalities

Pr[Bij ^j2J Bj ] � Pr[Bi]

valid for all index sets J � I; i 62 J and

Pr[BijBk ^
^
j2J

Bj ] � Pr[BijBk]

valid for all index sets J � I; i; k 62 J . The �rst follows from general Correlation Inequalities.
The second is equivalent to the �rst since conditioning on Bk is the same as assuming pr =
Pr[r 2 R] = 1 for all r 2 Ak.
Proof of Theorem 1.1 The lower bound follows immediately. Order the index set I = f1; . . . ; mg
for convenience. For 1 � i � m

Pr[Bij ^1�j<i Bj ] � Pr[Bi]

so
Pr[Bij ^1�j<i Bj ] � Pr[Bi]

and

Pr[^i2IBi] =
mY
i=1

Pr[Bij ^1�j<i Bj ] �
mY
i=1

Pr[Bi]

Now the upper bound. For a given i renumber, for convenience, so that i � j for 1 � j � d
and not for d + 1 � j < i. We use the inequality Pr[AjB ^ C] � Pr[A ^ BjC], valid for any
A;B;C. With A = Bi, B = B1 ^ . . .^ Bd, C = Bd+1 ^ . . .^ Bi�1

Pr[Bij ^1�j<i Bj ] = Pr[AjB ^ C] � Pr[A ^ BjC] = Pr[AjC]Pr[BjA ^ C]

From the mutual independence Pr[AjC] = Pr[A]. We bound

Pr[BjA ^ C] � 1�
dX

j=1

Pr[Bj jBi ^ C] � 1�
dX

j=1

Pr[Bj jBi]



When the Bi are \mostly" independent the Janson Inequalities allow us, sometimes, to say that
these two quantities are \nearly" equal.

Let 
 be a �nite universal set and let R be a random subset of 
 given by

Pr[r 2 R] = pr;

these events mutually independent over r 2 
. (In application to G(n; p), 
 is the set of pairs
fi; jg, i; j 2 V (G) and all pr = p so that R is the edge set of G(n; p).) Let Ai; i 2 I , be subsets
of 
, I a �nite index set. Let Bi be the event Ai � R. (That is, each point r 2 
 \ 
ips a coin"
to determine if it is in R. Bi is the event that the coins for all r 2 Ai came up \heads".) Let
Xi be the indicator random variable for Bi and X =

P
i2I Xi the number of Ai � R. The event

^i2IBi and X = 0 are then identical. For i; j 2 I we write i � j if i 6= j and Ai \Aj 6= ;. Note
that when i 6= j and not i � j then Bi; Bj are independent events since they involve separate
coin 
ips. Furthermore, and this plays a crucial role in the proofs, if i 62 J � I and not i � j

for all j 2 J then Bi is mutually independent of fBj jj 2 Jg, i.e., independent of any Boolean
function of those Bj . This is because the coin 
ips on Ai and on [j2JAj are independent. We
de�ne

� =
X
i�j

Pr[Bi ^ Bj ]

Here the sum is over ordered pairs so that �=2 gives the same sum over unordered pairs. (This
will be the same � as in Lecture 1. We set

M =
Y
i2I

Pr[Bi];

the value of Pr[^i2IBi] if the Bi were independent.
Theorem 1.1 (The Janson Inequality). Let Bi; i 2 I , �;M be as above and assume all Pr[Bi] � �.
Then

M � Pr[^i2IBi] �Me
1

1��
�
2

Now set
� = E[X ] =

X
i2I

Pr[Bi]

For each i 2 I
Pr[Bi] = 1� Pr[Bi] � e�Pr[Bi]

so, multiplying over i 2 I ,
M � e��

It is often more convenient to replace the upper bound of Theorem 1.1 with

Pr[^i2IBi] � e��+
1

1��
�
2

As an example, set p = cn�2=3 and consider the probability that G(n; p) contains no K4.
The Bi then range over the

�n
4

�
potential K4 - each being a 6-element subset of 
. Here, as

is often the case, � = o(1), � = o(1) (as calculated previously) and � approaches a constant,
here k = c6=24. In these instances Pr[^i2IBi] ! e�k . Thus we have the �ne structure of the
threshold function of !(G) = 4.

As � becomes large the Janson Inequality becomes less precise. Indeed, when � � 2�(1� �)
it gives an upper bound for the probability which is larger than one. At that point (and even
somewhat before) the following result kicks in.



then R(k; l) > n.
Proof. Let G � G(n; p) and color the edges of G red and the other edges of Kn blue. Then the
left hand side above is simply the expectation of the number of red Kk plus the number of blue
Kl. For some G this is zero and that G gives the desired coloring. 2

Dealing with the asymptotics of this result can be quite tricky. For example, what does this
imply about R(k; 2k)?

5 High Girth and High Chromatic Number

Many consider the following one of the most pleasing uses of the probabilistic method, as the
result is surprising and does not appear to call for nonconstructive techniques. The girth of a
graph G is the size of its smallest circuit.
Theorem 5.1(Erd}os [1959]). For all k; l there exists a graph G with girth(G) > l and �(G) > k.
Proof. Fix � < 1=l and let G � G(n; p) with p = n��1. Let X be the number of circuits of size
at most l. Then

E[X ] =
lX

i=3

(n)i
2i

pi �
lX

i=3

n�i

2i
= o(n)

as �l < 1. In particular

Pr[X � n

2
] = o(1)

Set x = d3p ln ne so that

Pr[�(G) � x] �
 
n

x

!
(1� p)(

x
2) <

h
ne�p(x�1)=2

ix
= o(1)

Let n be su�ciently large so that both these events have probability less than :5. Then there is
a speci�c G with less than n=2 cycles of length less than l and with �(G) < 3n1�� lnn. Remove
from G a vertex from each cycle of length at most l. This gives a graph G� with at least n=2
vertices. G� has girth greater than l and �(G�) � �(G). Thus

�(G�) � jG�j
�(G�)

� n=2

3n1�� ln n
=

n�

6 lnn

To complete the proof, let n be su�ciently large so that this is greater than k.

Lecture 3: The Poisson Paradigm

When X is the sum of many rare indicator \mostly independent" random variables and
� = E[X ] we would like to say that X is close to a Poisson distribution with mean � and, in
particular, that Pr[X = 0] is nearly e��. We call this rough statement the Poisson Paradigm.
We give a number of situations in which this Paradigm may be rigorously proven.

1 The Janson Inequalities

In many instances we would like to bound the probability that none of a set of bad events
Bi; i 2 I occur. If the events are mutually independent then

Pr[^i2IBi] =
Y
i2I

Pr[Bi]



For such p, n(1� p)n�1 � � = e�c and by the above argument the probability that X has
no isolated vertices approaches e��. If G has no isolated vertices but is not connected there is
a component of k vertices for some 2 � k � n

2 . Letting B be this event

Pr[B] �
n=2X
k=2

 
n

k

!
kk�2pk�1(1� p)k(n�1)�(k2)

The �rst factor is the choice of a component set S � V (G). The second factor is a choice of
tree on S. The third factor is the probability that those tree pairs are in E(G). The �nal factor
is that there be no edge from S to V (G)� S. Some calculation (which we omit but note that
k = 2 provides the main term) gives that Pr[B] = o(1) so that X 6= 0 and connectivity have the
same limiting probability. 2

4 The Probabilistic Method

In 1947 Paul Erd}os started what is now called the Probabilistic Method with a three page paper
in the Bulletin of the American Mathematical Society. The Ramsey function R(k; l) is de�ned
as the least n such that if the edges of Kn are colored Red and Blue then there is either a Red
Kk or a Blue Kl. The existence of such an n is a consequence of Ramsey's Theorem and will not
concern us here. Rather, we are interested in lower bounds on the Ramsey function. To unravel
the de�nition R(k; l) > n means that there exists a Red-Blue coloring of Kn with neither Red
Kk nor Blue Kl. In his 1947 paper Erd}os considered the case k = l.
Theorem 4.1. If  

n

k

!
21�(k2) < 1

then R(k; l) > n.
Proof. Let G � G(n; 12) and consider the random two-coloring given by coloring the edges of G
red and the other edges of Kn blue. Let X be the number of monochromatic Kk. Then the left
hand side above is simply E[X ]. With E[X ] < 1, Pr[X = 0] > 0. Hence there is a point in the
probability space - i.e., a graph G, whose coloring has X = 0 monochromatic Kk. 2

Note here a subtle (for some) point. With positive probability G(n; 12) has the desired
property and therefore there must - absolutely, positively - exist a G with the desired property.
Random Graphs and the Probabilistic Method are closely related. In Random Graphs we study
the probability of G(n; p) having certain properties. In the Probabilistic Method our goal is to
prove the existence of a G having certain properties. We create a probability space in which the
probability of the random G having these properties is positive, and from that it follows that
some such G must exist.

Applying some simple asymptotics to the theorem yields that R(k; k) >
p

2
n(1+o(1))

. In 1935
Erd}os and George Szekeres found the upper bound R(k; k) < 4n(1+o(1)) by nonrandom means.
While there have been improvements in lower order terms, these bounds remain the best known
up to (1 + o(1))n terms. It is also interesting that no exponential lower bound is known by
constructive means.

A general lower bound is the following.
Theorem 4.2. If there exists p 2 [0; 1] with 

n

k

!
p(k2) +

 
n

l

!
(1� p)(

l
2) < 1



For the lower bound (which is not best possible) we outline an analysis of the following
\greedy algorithm". We �nd an independent set C on G as follows. Set S0 = V (G), a1 = 1
and S1 equal the set of vertices not adjacent to a1. Having determined a1; . . . ; ai and Si let ai+1
be the least vertex of Si and let Si+1 be those x 2 Si � faig not adjacent to ai+1. Continue
until St = ; and set C = fa1; . . .atg. A fairly straightforward analysis gives that jCj � log2 n
almost surely, and moreover that the probability (for any given � > 0 that jCj < (log2n)(1� �)
is o(n�1). Call this one pass of the algorithm. Now we give all points of C color \one", remove
vertices C from G and iterate. Let G1 be G with C removed. Critically, it �nding C we only
\exposed" edges involving C so that we can consider G1 to have distribution G(n1;

1
2), where

n1 = n�jCj is the number of vertices. Letting nj be the number of vertices remaining after the
j-th pass, almost surely we have nj+1 < nj � (1� �) log2 nj so that the algorithm is completed
using less than n

log2 n
(1 + �0) colors. (Actually, to avoid end e�ects we can stop the algorithm

when there are o(n= logn) vertices remaining and simply give each such vertex a separate color.)

It is tempting to improve the lower bound as follows. We know that almost surely G contains
an independent set of size � 2 log2 n. Let C be that set, remove C from G giving G1 and iterate.
The problem is, of course, that G1 no longer has distribution G(n1;

1
2) and no proof has been

found along these lines of the true result that �(G) � n
2 log2 n

almost surely.

3 Connectivity

In this section we give a relatively simple example of what we call the Poisson Paradigm: the
rough notion that if there are many rare and nearly independent events then the number of
events that hold has approximately a Poisson distribution. This will yield one of the most
beautiful of the Erd}os- R�enyi results, a quite precise description of the threshold behavior for
connectivity. A vertex v 2 G is isolated if it is adjacent to no w 2 V . In G(n; p) let X be the
number of isolated vertices.
Theorem 3.1. Let p = p(n) satisfy n(1� p)n�1 = �. Then

lim
n!1Pr[X = 0] = e��

We let Xi be the indicator random variable for vertex i being isolated so that X = X1 +
. . . + Xn. Then E[Xi] = (1� p)n�1 so by linearity of expectation E[X ] = �. Now consider the
r-th factorial moment E[(X)r] for any �xed r. By the symmetry E[(X)r] = (n)rE[X1 � � �Xr].
For vertices 1; . . . ; r to all be isolated the r(n� 1)� �r2� pairs fi; xg overlapping 1; . . . ; r must all
not be edges. Thus

E[(X)r] = (n)r(1� p)r(n�1)�(r2) � nr(1� p)r(n�1) � �r

(That is, the dependence among the Xi was asymptotically negligible.) As all the moments of
X approach those of P (�), X approaches P (�) in distribution and in particular the theorem
holds. 2

Now we give the Erd}os-R�enyi famous \double exponential" result.
Theorem 3.2. Let

p = p(n) =
logn

n
+

c

n
+ o(

1

n
)

Then
lim
n!1Pr[G(n; p) is connected] = e�e

�c



where we set

g(i) =

�k
i

��n�k
k�i
�

�n
k

� 2(i2)

Observe that g(i) may be thought of as the probability that a randomly chosen T will intersect
a �xed S in i points times the factor increase in Pr[AT ] when it does. Setting i = 2,

g(2) = 2

�k
2

��n�k
k�2
�

�n
k

� � k4

n2
= o(1)

At the other extreme i = k � 1

g(k� 1) =
k(n� k)2�(k�1)�n

k

�
2�(k2)

� 2kn2�k

E[X ]

As k � 2 log2 n the numerator is n�1+o(1). The denominator approaches in�nity and so g(k�1) =
o(1). Some detailed calculation (which we omit) gives that the remaining g(i) are also negligible
so that Corollary 1.3.5 applies. 2

Theorem 1.1 leads to a strong concentration result for !(G). For k � 2 log2 n

f(k + 1)

f(k)
=
n� k + 1

k + 1
2�k = n�1+o(1) = o(1)

Let k0 = k0(n) be that value with f(k0) � 1 > f(k0 + 1). For \most" n the function f(k)
will jump from a large f(k0) to a small f(k0 + 1). The probability that G contains a clique
of size k0 + 1 is at most f(k0 + 1) which will be very small. When f(k0) is large Theorem 1.1
implies that G contains a clique of size k0 with probability nearly one. Together, with very
high probability !(G) = k0. For some n one of the values f(k0); f(k0 + 1) may be of moderate
size so this argument does not apply. Still one may show a strong concentration result found
independently by Bollob�as, Erd}os [1976] and Matula [1976].
Corollary 1.2 There exists k = k(n) so that

Pr[!(G) = k or k + 1]! 1

2 Chromatic Number

Again let us �x p = 1
2 and this time we consider the chromatic number �(G) with G � G(n; p).

Our results in this section will be improved in Lecture 4.
Theorem 2.1. Almost surely

n

2 log2 n
(1 + o(1)) � �(G) � n

log2n
(1 + o(1))

For the lower bound we use the general bound

�(G) � n=!(G)

which is true since each color class must be a clique in G and so can be used at most !(G)
times. But G has the same distribution as G so almost surely !(G) � (2 log2 n)(1 + o(1). This
will turn out to be the right asymptotic answer.



Our assumption p � n�v=e implies E[X ] ! 1. It su�ces therefore to show �� = o(E[X ]).
Fixing x1; . . . ; xv,

�� =
X

(y1;...;yv)�(x1;...;xv)
Pr[A(y1;...;yv)jA(x1;...;xv)]

There are v!=a = O(1) terms with fy1; . . . ; yvg = fx1; . . . ; xvg and for each the conditional
probability is at most one (actually, at most p), thus contributing O(1) = o(E[X ]) to ��. When
fy1; . . . ; yvg\fx1; . . . ; xvg has i elements, 2 � i � v� 1 the argument of Theorem 4.2 gives that
the contribution to �� is o(E[X ]). Altogether �� = o(E[X ]) and we apply Corollary 3.5 2
Theorem 4.5 Let H be any �xed graph. For every subgraph H 0 of H (including H itself) let
XH 0 denote the number of copies of H 0 in G(n; p). Assume p is such that E[XH 0]!1 for every
H 0. Then

XH � E[XH]

almost always.
Proof. Let H have v vertices and e edges. As in Theorem 4.4 it su�ces to show �� = o(E[X ]).
We split �� into a �nite number of terms. For each H 0 with w vertice and f edges we have those
(y1; . . . ; yv) that overlap with the �xed (x1; . . . ; xv) in a copy of H 0. These terms contribute, up
to constants,

nv�wpe�f = �

�
E[XH ]

E[XH 0]

�
= o(E[XH])

to ��. Hence Corollary 3.5 does apply. 2

Lecture 2: More Random Graphs

1 Clique Number

Now we �x edge probability p = 1
2 and consider the clique number !(G). We set

f(k) =

 
n

k

!
2�(k2);

the expected number of k-cliques. The function f(k) drops under one at k � 2 log2 n. (Very
roughly, f(k) is like nk2�k

2=2.)
Theorem 1.1 Let k = k(n) satisfy k � 2 log2 n and f(k)!1. Then almost always !(G) � k.
Proof. For each k-set S let AS be the event \S is a clique" and XS the corresponding indicator
random variable. We set

X =
X
jSj=k

XS

so that !(G) � k if and only if X > 0. Then E[X ] = f(k)!1 and we examine ��. Fix S and
note that T � S if and only if jT \ Sj = i where 2 � i � k � 1. Hence

�� =
k�1X
i=2

 
k

i

! 
n� k

k � i

!
2(i2)�(k2)

and so
��

E[X ]
=

k�1X
i=2

g(i)



common edges - i.e., if and only if jS \ T j = i with 2 � i � v � 1. Let S be �xed. We split

�� =
X
T�S

Pr[AT jAS ] =
v�1X
i=2

X
jT\Sj=i

Pr[AT jAS ]

For each i there are O(nv�i) choices of T . Fix S; T and consider Pr[AT jAS ]. There are O(1)
possible copies of H on T . Each has - since, critically, H is balanced - at most ie

v edges with
both vertices in S and thus at least e� ie

v other edges. Hence

Pr[AT jAS ] = O(pe�
ie
v )

and

�� =
v�1X
i=2

O(nv�ipe�
ie
v ) =

v�1X
i=2

O((nvpe)1�
i
v )

=
v�1X
i=2

o(nvpe) = o(E[X ])

since nvpe !1. Hence Corollary 3.5 applies. 2
Theorem 4.3 In the notation of Theorem 4.2 if H is not balanced then p = n�v=e is not the
threshold function for A.
Proof. Let H1 be a subgraph of H with v1 vertices, e1 edges and e1=v1 > e=v. Let � satisfy
v=e < � < v1=e1 and set p = n��. The expected number of copies of H1 is then o(1) so almost
always G(n; p) contains no copy of H1. But if it contains no copy of H1 then it surely can
contain no copy of H . 2

The threshold function for the property of containing a copy of H , for general H , was
examined in the original papers of Erd}os and R�enyi. Let H1 be that subgraph with maximal
density �(H1) = e1=v1. (When H is balanced we may take H1 = H .) They showed that
p = n�v1=e1 is the threshold function. This will follow fairly quickly from the methods of
theorem 4.5.

We �nish this section with two strengthenings of Theorem 4.2.
Theorem 4.4 Let H be strictly balanced with v vertices, e edges and a automorphisms. Let X
be the number of copies of H in G(n; p). Assume p� n�v=e. Then almost always

X � nvpe

a

Proof. Label the vertices of H by 1; . . . ; v. For each ordered x1; . . . ; xv let Ax1;...;xv be the event
that x1; . . . ; xv provides a copy of H in that order. Speci�cally we de�ne

Ax1;...;xv : fi; jg 2 E(H)) fxi; xjg 2 E(G)

We let Ix1;...;xv be the corresponding indicator random variable. We de�ne an equivalence class
on v-tuples by setting (x1; . . . ; xv) � (y1; . . . ; yv) if there is an automorphism � of V (H) so that
y�(i) = xi for 1 � i � v.Then

X =
X

Ix1;...;xv

gives the number of copies of H in G where the sum is taken over one entry from each equivalence
class. As there are (n)v=a terms

E[X ] =
(n)v
a

E[Ix1;...;xv ] =
(n)vpe

a
� nvpe

a



When p(n)� n�2=3, E[X ] = o(1) and so X = 0 almost surely.

Now suppose p(n) � n�2=3 so that E[X ]! 1 and consider the �� of Corollary 3.5. (All
4-sets \look the same" so that the XS are symmetric.) Here S � T if and only if S 6= T and
S; T have common edges - i.e., if and only if jS \ T j = 2 or 3. Fix S. There are O(n2) sets T
with jS \ T j = 2 and for each of these Pr[AT jAS ] = p5. There are O(n) sets T with jS \ T j = 3
and for each of these Pr[AT jAS ] = p3. Thus

�� = O(n2p5) + O(np3) = o(n4p6) = o(E[X ])

since p� n�2=3. Corollary 3.5 therefore applies and X > 0, i.e., there does exist a clique of size
4, almost always. 2

The proof of Theorem 4.1 appears to require a fortuitous calculation of ��. The following
de�nitions will allow for a description of when these calculations work out.
De�nitions. Let H be a graph with v vertices and e edges. We call �(H) = e=v the density of
H . We call H balanced if every subgraph H 0 has �(H 0) � �(H). We call H strictly balanced if
every proper subgraph H 0 has �(H 0) < �(H).
Examples. K4 and, in general, Kk are strictly balanced. The graph

r

r

r

r

r�
�

�@
@

@

is not balanced as it has density 7=5 while the subgraph K4 has density 3=2. The graph

r

r

r

r

r�
�

�@
@

@

r

is balanced but not strictly balanced as it and its subgraph K4 have density 3=2.
Theorem 4.2 Let H be a balanced graph with v vertices and e edges. Let A(G) be the event
that H is a subgraph (not necessarily induced) of G. Then p = n�v=e is the threshold function
for A.
Proof. We follow the argument of Theorem 4.1 For each v-set S let AS be the event that GjS
contains H as a subgraph. Then

pe � Pr[AS ] � v!pe

(Any particular placement of H has probability pe of occuring and there are at most v! possible
placements. The precise calculation of Pr[AS ] is, in general, complicated due to the overlapping
of potential copies of H .) Let XS be the indicator random variable for AS and

X =
X
jSj=v

XS

so that A holds if and only if X > 0. Linearity of Expectation gives

E[X ] =
X
jSj=v

E[XS] =

 
n

v

!
Pr[AS ] = �(nvpe)

If p� n�v=e then E[X ] = o(1) so X = 0 almost always.

Now assume p� n�v=e so that E[X ]! 1 and consider the �� of Corollary 3.5 (All v-sets
look the same so the XS are symmetric.) Here S � T if and only if S 6= T and S; T have



Note that when i � j

Cov[Xi; Xj] = E[XiXj ]�E[Xi]E[Xj] � E[XiXj ] = Pr[Ai ^ Aj ]

and that when i 6= j and not i � j then Cov[Xi; Xj] = 0. Thus

V ar[X ] � E[X ] + �

Corollary 3.4. If E[X ] ! 1 and � = o(E[X ]2) then X > 0 almost always. Furthermore
X � E[X ] almost always.

Let us say X1; . . . ; Xm are symmetric if for every i 6= j there is an automorphism of the
underlying probability space that sends event Ai to event Aj . Examples will appear in the next
section. In this instance we write

� =
X
i�j

Pr[Ai ^Aj ] =
X
i

Pr[Ai]
X
j�i

Pr[Aj jAi]

and note that the inner summation is independent of i. We set

�� =
X
j�i

Pr[Aj jAi]

where i is any �xed index. Then

� =
X
i

Pr[Ai]�
� = ��X

i

Pr[Ai] = ��E[X ]

Corollary 3.5. If E[X ] ! 1 and �� = o(E[X ]) then X > 0 almost always. Furthermore
X � E[X ] almost always.

The condition of Corollary 3.5 has the intuitive sense that conditioning on any speci�c Ai

holding does not substantially increase the expected number E[X ] of events holding.

4 Appearance of Small Subgraphs

What is the threshold function for the appearance of a given graph H . This problem was solved
in the original papers of Erd}os and R�enyi. We begin with an instructive special case.
Theorem 4.1 The property !(G) � 4 has threshold function n�2=3.
Proof. For every 4-set S of vertices in G(n; p) let AS be the event \S is a clique" and XS its
indicator random variable. Then

E[XS] = Pr[AS ] = p6

as six di�erent edges must all lie in G(n; p). Set

X =
X
jSj=4

XS

so that X is the number of 4-cliques in G and !(G) � 4 if and only if X > 0. Linearity of
Expectation gives

E[X ] =
X
jSj=4

E[XS] =

 
n

4

!
p6 � n4p6
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precisely the conjunction ^BS over all S. If the BS were mutually independent then we would

have
Pr[^BS ] =

Y
[BS ] = (1� p3)(

n
3) � e�(n3)p

3 ! e�c
3=6

The reality is that the BS are not mutually independent though when jS \ T j � 1, BS and BT

are mutually independent. This is quite a typical situation in the study of random graphs in
which we must deal with events that are \almost", but not precisely, mutual independent.

3 Variance

Here we introduce the Variance in a form that is particularly suited to the study of random
graphs. The expressions � and �� de�ned in this section will appear often in these notes.

Let X be a nonnegative integral valued random variable and suppose we want to bound
Pr[X = 0] given the value � = E[X ]. If � < 1 we may use the inequality

Pr[X > 0] � E[X ]

so that if E[X ] ! 0 then X = 0 almost always. (Here we are imagining an in�nite sequence
of X dependent on some parameter n going to in�nity.) But now suppose E[X ]! 1. It does
not necessarily follow that X > 0 almost always. For example, let X be the number of deaths
due to nuclear war in the twelve months after reading this paragraph. Calculation of E[X ] can
make for lively debate but few would deny that it is quite large. Yet we may believe - or hope -
that Pr[X 6= 0] is very close to zero. We can sometimes deduce X > 0 almost always if we have
further information about V ar[X ].
Theorem 3.1

Pr[X = 0] � V ar[X ]

E[X ]2

Proof. Set � = �=� in Chebyschev's Inequality. Then

Pr[X = 0] � Pr[jX � �j � ��] � 1

�2
=
�2

�2
2

We generally apply this result in asymptotic terms.
Corollary 3.2

If V ar[X ] = o(E[X ]2) then X > 0 a.a.

The proof of the Theorem actually gives that for any � > 0

Pr[jX �E[X ]j � �E[X ]]� V ar[X ]

�2E[X ]2

and thus in asymptotic terms we actually have the following stronger assertion:
Corollary 3.3

If V ar[X ] = o(E[X ]2) then X � E[X ] a.a.

Suppose again X = X1 + . . . + Xm where Xi is the indicator random variable for event Ai. For
indices i; j write i � j if i 6= j and the events Ai; Aj are not independent. We set (the sum over
ordered pairs)

� =
X
i�j

Pr[Ai ^ Aj ]



graph of all \on" edges has distribution G(n; p). As p increases G(n; p) evolves from empty to
full.

In their original paper Erd}os and R�enyi let G(n; e) be the random graph with n vertices and
precisely e edges. Again there is a dynamic model: Begin with no edges and add edges randomly
one by one until the graph becomes full. Generally G(n; e) will have very similar properties as
G(n; p) with p � e

(n2)
. We will work on the probability model exclusively.

2 Threshold Functions

The term \the random graph" is, strictly speaking, a misnomer. G(n; p) is a probability space
over graphs. Given any graph theoretic property A there will be a probability that G(n; p)
satis�es A, which we write Pr[G(n; p) j= A]. When A is monotone Pr[G(n; p) j= A] is a monotone
function of p. As an instructive example, let A be the event \G is triangle free". Let X be the
number of triangles contained in G(n; p). Linearity of expectation gives

E[X ] =

 
n

3

!
p3

This suggests the parametrization p = c=n. Then

lim
n!1E[X ] = lim

n!1

 
n

3

!
p3 = c3=6

We shall see that the distribution of X is asymptotically Poisson. In particular

lim
n!1Pr[G(n; p) j= A] = lim

n!1Pr[X = 0] = e�c
3=6

Note that
lim
c!0

e�c
3=6 = 1

lim
c!1 e�c

3=6 = 0

When p = 10�6=n, G(n; p) is very unlikely to have triangles and when p = 106=n, G(n; p) is
very likely to have triangles. In the dynamic view the �rst triangles almost always appear at
p = �(1=n). If we take a function such as p(n) = n�:9 with p(n)� n�1 then G(n; p) will almost
always have triangles. Occasionally we will abuse notation and say, for example, that G(n; n�:9)
contains a triangle - this meaning that the probability that it contains a triangle approaches 1 as
n approaches in�nity. Similarly, when p(n)� n�1, for example, p(n) = 1=(n lnn), then G(n; p)
will almost always not contain a triangle and we abuse notation and say that G(n; 1=(n lnn)) is
trianglefree. It was a central observation of Erd}os and R�enyi that many natural graph theoretic
properties become true in a very narrow range of p. They made the following key de�nition.
De�nition. r(n) is called a threshold function for a graph theoretic property A if
(i) When p(n)� r(n); limn!1 Pr[G(n; p) j= A] = 0
(ii) When p(n)� r(n); limn!1 Pr[G(n; p) j= A] = 1
or visa versa.

In our example, 1=n is a threshold function for A. Note that the threshold function, when
one exists, is not unique. We could equally have said that 10=n is a threshold function for A.

Lets approach the problem of G(n; c=n) being trianglefree once more. For every set S of three
vertices let BS be the event that S is a triangle. Then Pr[BS ] = p3. Then \trianglefreeness" is



NINE LECTURES ON RANDOM GRAPHS
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Graph Theory Preliminaries A graph G, formally speaking, is a pair (V (G); E(G)) where
the elements v 2 V (G) are called vertices and the elements of E(G), called edges, are two
element subsets fv; wg of V (G). When fv; wg 2 E(G) we say v; w are adjacent. (In standard
graph theory terminology our graphs are undirected and have no loops and no multiple edges.)
Pictorially, we often display the v 2 V (G) as points and draw an arc between v and w when
they are adjacent. We call V (G) the vertex set of G and E(G) the edge set of G. (When G is
understood we shall write simply V and E respectively. We also often write v 2 G or fv; wg 2 G
instead of the formally correct v 2 V (G) and fv; wg 2 E(G) respectively.) A set S � V is called
a clique if all pairs x; y 2 S are adjacent. The clique number, denoted by !(G), is the largest
size of a clique in G. An independent set S is one for which no pairs x; y;2 S are adjacent, the
largest size of an independent set is called the independence number and is denoted �(G). A
k-coloring of G is a map f : V ! f1; . . . ; kg such that if x; y are adjacent then f(x) 6= f(y). The
minimal k for which a k-coloring exists is called the chromatic number of G and is denoted �(G).
Note !(G) � �(G) since all vertices of a clique much receive distinct colors. The complement
of G, denoted G, has the same vertex set as G and x; y are adjacent in G if and only if x; y are
not adjacent in G. The complete graph on k vertices, denoted by Kk, consists of a vertex set of
size k with all pairs x; y adjacent. The empty graph on k vertices, denoted by Ik, consists of a
vertex set of size k with no pairs x; y adjacent.
References. Theorem 2.3.4 refers to Lecture 2, Section 3, theorem 4. Double indexing, such
as Theorem 3.4, refers to Section 3, theorem 4 in the current lecture.

Lecture 1: Basics

1 What is a Random Graph

Let n be a positive integer, 0 � p � 1. The random graph G(n; p) is a probability space over
the set of graphs on the vertex set f1; . . . ; ng determined by

Pr[fi; jg 2 G] = p

with these events mutually independent.

Random Graphs is an active area of research which combines probability theory and graph
theory. The subject began in 1960 with the monumental paper On the Evolution of Random

Graphs by Paul Erd}os and Alfred R�enyi. The book Random Graphs by B�ela Bollob�as is the
standard source for the �eld.

There is a compelling dynamic model for random graphs. For all pairs i; j let xi;j be selected
uniformly from [0; 1], the choices mutually independent. Imagine p going from 0 to 1. Originally,
all potential edges are \o�". The edge from i to j (which we may imagine as a neon light) is
turned on when p reaches xi;j and then stays on. At p = 1 all edges are \on". At time p the


