Notes on Kruskal's Algorithm for Minimal Spanning Tree

In Kruskal's algorithm (§23.2) the edges are ordered e_1, \ldots, e_E by of weight and e_i is added to the tree if and only if its addition does not cause a cycle. The data structure that does this efficiently is covered in detail in Chapter 21, which we are not covering. Instead, these notes give a specific implementation of the algorithm. Assume the edges have already been ordered by weight and x_i, y_i are the vertices of e_i . To each vertex x we have functions $\pi(x)$ and SIZE(x), initially all $\pi(x) \leftarrow x$ and all $SIZE(x) \leftarrow 1$.

For i = 1 to E we set (for notational convenience) $x \leftarrow x_i, y \leftarrow y_i$ and do the following:

WHILE $\pi(x) \neq x$ $x \leftarrow \pi(x)$ (*going down the stairs*) WHILE $\pi(y) \neq y$ $y \leftarrow \pi(y)$ (*going down the stairs*) IF $x \neq y$ then DO IF $SIZE(x) \leq SIZE(y)$ then DO $\pi(x) \leftarrow y$ $SIZE(y) \leftarrow SIZE(y) + SIZE(x)$ OTHERWISE DO $\pi(y) \leftarrow x$ $SIZE(x) \leftarrow SIZE(x) + SIZE(y)$

Add e_i to Minimal Spanning Tree

At any time the $\pi(x)$ will give a rooted forest with $\pi(x) = x$ exactly when x is a root. In that case SIZE(x) will be the size of the forest. Certain edges will have already been put in the Minimal Spanning Tree so that the structure will be a forest. That forest and the forest given by $\pi(x)$ will have the same components (though they may have different edges).

Example. $e_1 = (a, c), e_2 = (c, b), e_3 = (d, e), e_4 = (a, d), e_5 = (b, d)$. With i = 1 we add e_1 to tree, $\pi(a) \leftarrow c$ and $SIZE(c) \leftarrow 2$. With i = 2 we add e_2 to tree, as SIZE(c) > SIZE(b) we set $pi(b) \leftarrow c$ and $SIZE(c) \leftarrow 3$. With i = 3 we add e_3 to tree, $\pi(d) \leftarrow e$ and $SIZE(e) \leftarrow 2$. Now i = 4 so $x \leftarrow a; y \leftarrow d$. The WHILE parts trace x down to its root c and y down to its root e. As SIZE(c) > SIZE(e) we set $\pi(e) \leftarrow c$, $SIZE(c) \leftarrow 5$ and add e_4 to the tree. Note that the current state of the Minimal Spanning Tree and the forest given by π have different edges but the same components. Now with $i = 5, x \leftarrow b; y \leftarrow e$. Both x, y trace down with the WHILE loops to the same c so we do nothing and e_5 is not added to the tree.

To analyze the time we note that the process is done E times, so we analyze the process with a particular $x = x_i, y = y_i$. The key aspect to the time is we must iterate $\pi(x) \leftarrow x$ until reaching a root. (Similarly for y.) At first blush, this seems like it might take time V. (V is number of vertices.) *However*, here we use the fact that when we earlier considered an edge x, y and we moved them down to their roots we then reset $\pi(x) \leftarrow y$ where SIZE[y] had been bigger than SIZE[x]. Now the new SIZE[y] became the old SIZE[x] + SIZE[y]. That is, the new SIZE[y] is at least double the old SIZE[x]. As x is no longer a root its value of SIZE[x] will never change. The value of SIZE[y] may change later, but it can only get larger. Hence we will have $2 \cdot SIZE[x] \leq SIZE[y]$ forevermore. Therefore, as we look at a path $x, \pi(x), \pi(\pi(x)), \ldots$ the value $SIZE(\cdot)$ at least doubles each iteration. Therefore the path can only be of length log V. This is a big savings over the length V without this aspect. Now the process with a particular x, ytakes time $O(\log V)$ and therefore the total time is $O(E \log V)$.

Path Compression: (This is extra material and not on the final!) Before we move "down the stairs" we save, temporarily, the original value of x. (same for y) with

 $original x \leftarrow x$

Then we go "down the stairs" to the new value of x. Now we go back up to *originals* and reset the entire path to arrow the new x:

$$z \leftarrow originalx$$

$$\pi[z] \leftarrow x$$

WHILE
$$\pi[z] \neq z$$

$$\pi[z] \leftarrow x$$

$$z \leftarrow \pi[z]$$

That is, the entire path from *originalx* to x is now pointing directly to x. This has effectively doubled the time, as we go down the WHILE loop twice. However, when later in the program we have a WHILE loop that hits *originalx* it will jump directly to x. That is, the path has been *compressed*. Analysis of path compression is remarkably subtle (mathematicians love it!) but lets just say that it gives an improved running time for MST when n is really large.