
Dear Professor,
Here’s a little more detailed write-up of the algorithm I discussed with

you this morning, which uses two lists to carry out the alphabet reduction
used to determine an optimal Huffman encoding for some document.

We assume that we are given an alphabet consisting of individual char-
acters and their occurrence counts across some corpus.

For convenience I refer to the heads of the alphabet list and composite-
alphabet list using array notation, but we should implement this as a linked
list so that shifting the head/car off the list is a constant-time operation.

The algorithm then works as follows:

Algorithm 1: Shift-And-Merge-Huffman

Input : Alphabet with frequencies, unsorted
Output: Huffman Tree

Triviality check: return Alphabet[0] if it is the sole element

Initialize:
Sort Alphabet with O(n) or O(n lg n) algorithm
Initialize Composite as an empty doubly-linked list

while Alphabet and Composite together have > 1 item do
Smallest← lesser of Alphabet[0] and Composite[0]
Remove Smallest from its list
NextSmallest← lesser of Alphabet[0] and Composite[0]
Remove NextSmallest from its list
NewNode.F req ← Smallest.F req + NextSmallest.F req
Set Smallest and NextSmallest as children of NewNode
Insert NewNode at the end of Composite

end
return Composite[0]

We have the option of taking an O(n) step before sorting the list in
order to normalize the alphabetic counts into frequencies 0 ≤ freq ≤ 1. In
doing so we may be able to discern enough about the data distribution to
guarantee an O(n) sort.

Below is an argument for why it works.



Suppose we have an input alphabet A = {a0 ≤ a1 ≤ . . . ≤ an} and a
composite list B = {b0 ≤ b1 ≤ b2 ≤ . . . ≤ bn}.

Consider a point after a shift-and-merge operation has completed. The
following properties should hold.

1 b0 ≤ bn
This is trivially true initially (when B = {∅}) and after the first shift-
and-merge step (when |B| = 1).

Suppose elements α and β were removed from the combined composite-
alphabet set {A∪B} and merged to form element b0. Any subsequent
shift-and-merge step would create bn = γ+ δ. But since the shift-and-
merge operation removes the smallest elements from the combined set,
we know that α ≤ β ≤ γ ≤ δ, therefore b0(= α+ β) ≤ bn(= γ + δ).

Since all elements remaining in the combined set are no less than the
ones which combined to form bn, any further shift-and-merge opera-
tions will also result in merged values greater than bn.

2 bn ≤ 2b0.

bn = α + β was the item added most recently to the composite list,
where α and β were the smallest two items in the combined set {A∪B}.
Since α and β were both removed from the combined set, α ≤ β = b0+i
(where 0 ≤ i); so b0 cannot have been less that α or β.

But since α ≤ β and β ≤ b0, therefore α+ β = bn ≤ 2b0.

3 By consequence of 1 and 2, b0 ≤ bn ≤ 2b0 for any n ≥ 0, provided
B is not empty. This also requires that B will remain in sorted order
throughout the operation.

4 Just to re-emphasize, b0 ≤ b1 ≤ bn ≤ 2b0. So it is not possible to
enter a situation in which b0 + b1 ≤ bn, even once the initial alphabet
is gone and we are only carrying out the shift-and-merge operation on
the composite list.


