Dear Professor,
Here's a little more detailed write-up of the algorithm I discussed with you this morning, which uses two lists to carry out the alphabet reduction used to determine an optimal Huffman encoding for some document.

We assume that we are given an alphabet consisting of individual characters and their occurrence counts across some corpus.

For convenience I refer to the heads of the alphabet list and compositealphabet list using array notation, but we should implement this as a linked list so that shifting the head/car off the list is a constant-time operation.

The algorithm then works as follows:

```
Algorithm 1: Shift-And-MERGE-HuFfmAN
    Input : ALPHABET with frequencies, unsorted
    Output: Huffman Tree
```

Triviality check: return Alphabet[0] if it is the sole element

Initialize:

Sort Alphabet with $O(n)$ or $O(n \lg n)$ algorithm
Initialize Composite as an empty doubly-linked list
while Alphabet and Composite together have >1 item do
Smallest \leftarrow lesser of Alphabet[0] and Composite[0]
Remove Smallest from its list
NextSmallest \leftarrow lesser of Alphabet[0] and Composite[0]
Remove NextSmallest from its list
NewNode.Freq \leftarrow Smallest.Freq + NextSmallest.Freq
Set Smallest and NextSmallest as children of NewNode Insert NewNode at the end of Composite
end
return Composite[0]
We have the option of taking an $O(n)$ step before sorting the list in order to normalize the alphabetic counts into frequencies $0 \leq f r e q \leq 1$. In doing so we may be able to discern enough about the data distribution to guarantee an $O(n)$ sort.

Below is an argument for why it works.

Suppose we have an input alphabet $A=\left\{a_{0} \leq a_{1} \leq \ldots \leq a_{n}\right\}$ and a composite list $B=\left\{b_{0} \leq b_{1} \leq b_{2} \leq \ldots \leq b_{n}\right\}$.

Consider a point after a shift-and-merge operation has completed. The following properties should hold.
$1 b_{0} \leq b_{n}$
This is trivially true initially (when $B=\{\emptyset\}$) and after the first shift-and-merge step (when $|B|=1$).
Suppose elements α and β were removed from the combined compositealphabet set $\{A \cup B\}$ and merged to form element b_{0}. Any subsequent shift-and-merge step would create $b_{n}=\gamma+\delta$. But since the shift-andmerge operation removes the smallest elements from the combined set, we know that $\alpha \leq \beta \leq \gamma \leq \delta$, therefore $b_{0}(=\alpha+\beta) \leq b_{n}(=\gamma+\delta)$.
Since all elements remaining in the combined set are no less than the ones which combined to form b_{n}, any further shift-and-merge operations will also result in merged values greater than b_{n}.
$2 b_{n} \leq 2 b_{0}$.
$b_{n}=\alpha+\beta$ was the item added most recently to the composite list, where α and β were the smallest two items in the combined set $\{A \cup B\}$. Since α and β were both removed from the combined set, $\alpha \leq \beta=b_{0}+i$ (where $0 \leq i$); so b_{0} cannot have been less that α or β.
But since $\alpha \leq \beta$ and $\beta \leq b_{0}$, therefore $\alpha+\beta=b_{n} \leq 2 b_{0}$.
3 By consequence of 1 and $2, b_{0} \leq b_{n} \leq 2 b_{0}$ for any $n \geq 0$, provided B is not empty. This also requires that B will remain in sorted order throughout the operation.

4 Just to re-emphasize, $b_{0} \leq b_{1} \leq b_{n} \leq 2 b_{0}$. So it is not possible to enter a situation in which $b_{0}+b_{1} \leq b_{n}$, even once the initial alphabet is gone and we are only carrying out the shift-and-merge operation on the composite list.

