
Fundamental Algorithms, Assignment 9
Solutions

1. (*) Suppose that the Huffman Code for {v,w, x, y, z} has 0 or 1 as the
code word for z. Prove that the frequency for z cannot be less than
1

3
. Give an example where the frequency for z is 0.36 and z does get

code word 0 or 1.
Solution:For an example, let the frequencies be 0.16, 0.16, 0.16, 0.16, 0.36
in order. Then v,w merge to, say, a with 0.32; x, y merge to b with
0.32; a, b merge to c with 0.64 and finally c, z merge, so z gets only
a single bit. For the proof, the first two merges cannot involve z and
so after them we have some a, b, z. (a, b might be among the original
letters.) These add to 1 so that when z has frequency less than 1/3
it cannot have the biggest frequency. Hence it will be involved in the
penultimate merge.

(a) What is an optimal Huffman code for the following code when
the frequencies are the first eight Fibonacci number?

a : 1, b : 1, c : 2, d : 3, e : 5, f : 8, g : 13, h : 21

(b) The Fibonacci sequence is defined by initial values 0, 1 with each
further term the sum of the previous two terms. Generalize the
previous answer to find the optimal code when there are n letters
with frequencies the first n (excluding the 0) Fibronacci numbers.

Solution: The Huffman encoding tree is given in the picture on the
website: In general, the encoding for the character with the first Fi-
bonacci number will be h1 = 1n−1. For the character with the kth
Fibonacci number will be hk = 1n−k0

2. Suppose that in implementing the Huffman code we weren’t so clever
as to use Min-Heaps. Rather, at each step we found the two letters of
minimal frequency and replaced them by a new letter with frequency
their sum. How long would that algorithm take, in Thetaland, as a
function of the initial number of letters n.
Solution:To find the letter of minimal frequency takes time O(n),
doing it twice, adding frequencies, and replacing them by a new letter
all takes O(n). We do this n times so the total time is O(n2). It is
actually Θ(n2) – as the number of letters decreases the time decreases
but the first n/2 times there are at least n/2 letters and so finding the



minimum takes Ω(n) and so the total time for the first n/2 times (that
is, starting with n letters until there are n/2 letters left) is Ω((n/2) ·
(n/2)) = Ω(n2). We’ve sandwiched upper and lower bounds so this
gives total time Θ(n2).

3. Consider the undirected graph with vertices 1, 2, 3, 4, 5 and adjacency
lists (arrows omitted) 1 : 25, 2 : 1534, 3 : 24, 4 : 253, 5 : 412. Show
the d and π values that result from running BFS, using 3 as a source.
Nice picture, please!
Solution:

BFS: 3, 2, 4, 1, 5
d[3] = 0, π[3] = nil
d[2] = 1, π[2] = 3
d[4] = 1, π[4] = 3
d[1] = 2, π[1] = 2
d[5] = 2, π[5] = 2

4. Show the d and π values that result from running BFS on the undi-
rected graph of Figure A, using vertex u as the source.
Solution:

d[U ] = 0, π[U ] = nil
d[T ] = 1, π[T ] = U
d[X] = 1, π[X] = U
d[Y ] = 1, π[Y ] = U
d[W ] = 2, π[W ] = T
d[S] = 3, π[S] = W
d[R] = 4, π[R] = S
d[V ] = 5, π[V ] = R

5. We are given a set V of boxers. Between any two pairs of boxers there
may or may not be a rivalry. Assume the rivalries form a graph G
which is given by an adjacency list representation, that is, Adj[v] is a
list of the rivals of v. Let n be the number of boxers (or nodes) and
r the number of rivalries (or edges). Give a O(n + r) time algorithm
that determines whether it is possible to designate some of boxers as
GOOD and the others as BAD such that each rivalry is between a GOOD

boxer and a BAD boxer . If it is possible to perform such a designation
your algorithm should produce it.

Here is the approach: Create a new field TYPE[v] with the values GOOD
and BAD. Assume that the boxersare in a list L so that you can pro-
gram: For all v ∈ L. The idea will be to apply BFS[v] – when you hit



a new vertex its value will be determined. A cautionary note: BFS[v]
might not hit all the vertices so, just like we had DFS and DFS-VISIT

you should have an overall BFS-MASTER (that will run through the list
L) and, when appropriate, call BFS[v].

Note: The cognescenti will recognize that we are determining if a
graph is bipartite!
Solution:The idea here is to call the first boxerGOOD. When someone
is adjacent to someone GOOD they are called BAD and if they are ad-
jacent to someone BAD they are called GOOD. But if in the adjacency
list you come upon someone who has already been labelled (that is,
not white) then you must check if there is a contradiction. A further
problem: BFS[v] will only explore the connected component of v, if
that is labelled with no contradiction then you must go on to the other
vertices. So we start with everything white. The “outside” program
is:
For all v ∈ L
If COLOR[v] = WHITE (*else skip*) then BFSPLUS[v].

BFSPLUS[v] starts by setting TYPE[v] = GOOD. Then it runs BFS[v]
with two additions. When u ∈ Adj[w] and u is white you define
TYPE[u] to be the opposite of TYPE[w]. When u is not white you check
if TYPE[w] = TYPE[u]. If not, ignore. But if so exit the entire program
with NO DESIGNATION POSSIBLE printout.

6. Show how DFS works on Figure B. All lists are alphabetical, except
that we put R before Q so it is the first letter. Show the discovery and
finishing time for each vertex.
Solution:

Discovery order : RUY QSV WTXZ
Finishing order : WV SZXTQY UR
Stack : push(R) push(U) push(Y ) push(Q) push(S) push(V ) push(W )
pop(W ) pop(V ) pop(S) push(T ) push(X) push(Z) pop(Z)
pop(X) pop(T ) pop(Q) pop(Y ) pop(U) pop(R)

7. Show the ordering of the vertices produced by TOP-SORT when it is
run on Figure C, with all lists alphabetical.
Solution:We apply DFS to the graph. The first letter is M so we
apply DFS-VISIT(M)



v s[v] f[v]

M 1 20
Q 2 5
T 3 4
R 6 19
U 7 8
Y 9 18
V 10 17
W 11 14
Z 12 13
X 15 16

Note, for example, that though X is in Adj[M] it doesn’t affect DFS.
At time 19 R finishes and returns control to M . M looks at X in
its adjacency list but it is no longer white and so ignores it. At this
stage all vertices are black except N,O,P, S which as white. In this
particular example N is the letter right after M but in the general
case DFS would skip over those vertices which weren’t white. Indeed,
right after DFS-VISIT all vertices are white or black. So next we do
DFS-VISIT(N). Note that the time does not restart! Note also that
the now black vertices, such as U ∈ Adj(N) and R ∈ Adj(O), do not
play a role

v s[v] f[v]

N 21 26
O 22 25
S 23 24

Finally we do DFS-VISIT(P). This one is quick. The adjacency list of
P consists only of S which is already black. So

v s[v] f[v]

P 27 28

The sort is the list of vertices in the reverse order of their finish. In
the algorithm when a vertex finishes we place it at the start of a linked
list, initially nil. At the end, with negligible extra time, we have the
list:

PNOSMRY V XWZUQT



8. Let G be a DAG with a specific designated vertex v. Uno and Dos
play the following game. A token is placed on v. The players alternate
moves, Uno playing first. On each turn if the token is on w the player
moves the token to some vertex u with (w, u) an edge of the DAG.
When a player has no move, he or she loses. Except for the first part
below, we assume Uno and Dos play perfectly.

(a) Argue that the game must end.
Solution:Let G have V vertices. If the game went on for V
moves the chip would hit V + 1 positions v = v0, v1, . . . , vV and
so some position would be hit twice – some i < j with vi = vj –
but that gives a cycle vivi+1 · · · vj−1vi.

(b) Define VALUE[z] to be the winner of the game (either Uno or
Dos) where the token is initially placed at vertex z and Uno plays
first. Suppose the VALUE[w] are known for all w ∈ Adj[z]. How
do those values determine VALUE[z].
Solution:Suppose there is some w ∈ Adj[z] with VALUE[w] equal
Dos. Uno makes that move. Now, as the roles are reversed and
Dos must move first so Uno wins. Therefore VALUE[z] is Uno. If
there is no such w then whatever move Uno makes a position w is
reached with VALUE[w] equal Uno. But this means the the player
making the first move will win, and that player is Dos. Therefore
VALUE[z] is Dos.

(c) Using the above idea modify DFS to find who wins the original
game. Give an upper bound on the time of your algorithm.
Solution:Apply DFS-VISIT[v] with an additional field VALUE

We can implement the previous part in several ways. The easiest
is to wait until a vertex z has become black. At that time check
the VALUE (they will already have been determined) of all w ∈
Adj[z]. If any is Dos, set VALUE[z] to be Uno, otherwise (this
includes the case where Adj[z] is empty!) set VALUE[z] to be
Dos. The time is O(V + E). It could be considerably smaller
than V + E as DFS-VISIT[v] might only reach a small part of
the graph.


