
Fundamental Algorithms, Assignment 8
Solutions

1. Set W = ⌊
√

N⌋. We are given PRICE[I], 1 ≤ I ≤ W , the price of a
rod of length I. Give a program that will output the optimal revenue
for a rod of length N2 and give the time, in Θ-land, of the algorithm.
Use an auxilliary array R[J ], 0 ≤ J ≤ N2. You may not use the
term MAX is your program Explain, in clear words, how your program
is working. (You can use MAX in your explanations.) Use an auxilliary
array R[J ], 0 ≤ J ≤ N2.
Solution:The idea is that

R[J ] = max[PRICE[I] + R[J − I]

where, critically, I ranges over 1 ≤ I ≤ min[I,W ].
R[0] = 0;R[1] = PRICE[1] (* initialization *)
FOR J = 2 to N2 (*here we calculate R[J ] given previous values*)
S = J ; IF W ≤ S THEN S = W (*so S = min(J,W ))
TEMP = 0 (*initializing to find max*)
FOR I = 1 TO S; IF PRICE[I] + R[J − I] ≥ TEMP THEN
TEMP ← PRICE[I] + R[J − I]; ENDFOR (* TEMP becomes the
maximal value *)
R[J ]← TEMP
ENDFOR (* for J *)
RETURN R[N2].

The outer loops goes 1 ≤ J ≤ N2. So for the time we need to add

the times for the inner loop over J . The time for the inner loop is
basically min(J,W ). There are two ranges. While 1 ≤ J < W this is
J steps and so it adds to 1+2+ . . .+(W −1) ∼W 2/2 = Θ(N). While
W ≤ J ≤ N2 this is W steps so it adds to W (N2 −W ) = Θ(N2.5).
The total is the sum which is dominated by the second range so the
time is Θ(N2.5).

2. Suppose, in the Activity Selector problem, we instead select the last
activity to start that is compatible with all previously selected ac-
tivities. Describe how this approach works, write a program for it
(psuedocode allowed) and prove that it yields an optimal algorithm.
Solution:This approach is symmetric to the one presented in the
textbook. It is a greedy solution in that at each point, we’re selecting
the last activity to start, and recursing down to the single subproblem
of finding the optimal solution for all remaining activities compatible



with the ones already scheduled. We can give the recursive algorithm
as follows:

1 RECURSIVE-ACTIVITY-SELECTOR(s, f, i)

2 m← i− 1

3 while m > 0 and si < fm

4 do m← m− 1

5 if m > 0

6 then return {am}∪ RECURSIVE-ACTIVITY-SELECTOR (s, f,m)

7 else return ∅
We initially run this algorithm with i = n where n is the number of
tasks. This is a greedy algorithm, in that we’re decomposing the prob-
lem recursively into a single optimal subproblem. We can rigorously
prove that this gives us an optimal solution by induction on the num-
ber of activities. But it is easier to note that a dynamic programming
solution to this problem would yield an optimal result, and, as we saw
in the book, there are two key observations we can use on the general
recurrence of this problem that show that the greedy solution is equiv-
alent to the dynamic programming solution. The recurrence for this
solution is given in the book. We note the following two observations
(and prove them):

Consider any nonempty subproblem Sij, and let am be the activity in
Sij with with the latest start time:

sm = max{sk : ak ∈ Sij}
1 Activity am is used in some maximum-size subset of mutually

compatible activities of Sij

[Pf] Suppose that Aij is a maximum-size subset of mutually
compatible activities of Sij. We also suppose that the activities
in Aij are ordered in monotonically increasing order of starting
time. Let ak be the last activity in Aij . If ak = am, we’re done,
since we’ve shown that am is used in constructing the schedule.
Otherwise, we construct the subset A′ij = Aij−{ak}∪{am}. We
know the activities in the subset are disjoint, since ak is the last
activity to start, and sm ≥ sk. The number of activities in the
subset are the same, so it is a maximum-size subset of activities
that includes am.



2 The subproblem Smj is empty, so that choosing am leaves the
subproblem Sim as the only one that may be nonempty

[Pf] Suppose that Smj is nonempty, so there is some activity
ak such that fm ≤ sk < fk ≤ sj < fj. Then, ak is also in Sij,
which has a later start time than am, contradicting our initial
assumption.

3. Students (professors too!) often come up with very clever ideas for
optimization programs. The problem (often!) is that they (sometimes,
but that is enough) give the wrong answer. Here are three approaches
and your problem, in each case, is to give an example where it yields
the wrong answer.

(a) Pick the activity of the shortest duration from amongst those
which do not overlap previously selected activities.

(b) Pick the activity which overlaps the fewest other remaining activ-
ities from amongst those which do not overlap previously selected
activities.

(c) Pick the activity with the earliest start time from amongst those
which do not overlap previously selected activities.

Solution: One example to show that the approach of selecting the
activity of least duration does not yield an optimal solution is the set
of tasks a1 = (5, 7), a2 = (1, 6), a3 = (6, 10). a1 is selected first,
but this locks out the other two, which clearly comprise the optimal
solution.
An example to show that the strategy of choosing the activities that
overlap the fewest other remaining activities is the following set of
tasks: a1 = (0, 1), a2 = (1, 3), a3 = (3, 5), a4 = (5, 6), a5 = (0, 2),
a6 = (0, 2), a7 = (2, 4), a8 = (4, 6), a9 = (4, 6). a1, a4, and a6 have
two overlapping activities, while the others have three. This means
that a1, a4, and a6 will be the activities selected, but the optimal
solution is a1, a2, a3, a4,
An example to show that the strategy of choosing the compatible
remaining activities with the earliest start time is a1 = (1, 4), a2 =
(4, 5), a3 = (2, 3), a4 = (3, 4). a1 will be selected first, followed by a2,
when clearly, the optimal solution consists of a3, a4, and a2.


