
Fundamental Algorithms, Assignment 6
Solutions

1. Consider a Binary Search Tree T with vertices a, b, c, d, e, f, g, h and
ROOT [T ] = a and with the following values (N means NIL)

vertex a b c d e f g h
parent N e e a d g c a

left h N N e c N f N
right d N g N b N N N

(a) Which is the successor of c. Illustrate how the program SUCCESSOR

will find it.
Solution:The successor of c is f . As c has a right child g, SUC-
CESSOR will call MIN[g] which will go to the left as long as
possible, ending (in one step) at f .

(b) Which is the minimal element? Illustrate how the program MIN

will find it.
Solution:h. Start at root a. Go to left: h. Go to left: NIL.
Return h.

(c) Illustrate the program DELETE[e]

Solution:There are two approaches (equally correct) to DELETE[x]
when x has two children. One can effectively replace x by the
maximum of its left tree or the minimum of its right tree.
Solution 1: e has a left child c. Applying MAX[c] gives g. g

has a left child f . So we splice f into g’s place by resetting
right[c] = f and p[f ] = c and we put g in e’s place, setting
left[d] = g, left[g] = c, right[g] = b. and p[g] = d.
Solution 2: e has right chils b. Applying MIN[b] gives b itself.
We splice b into e’s place by resetting p[c] = b and left[b] = c and
p[b] = d and left[d] = e

2. Draw binary search trees of height 2,3,4,5,6 on the set of keys {1,4,5,10,16,17,21}.
Solution:For height 2 with 7 it must be balanced so 10 is the root
with children 4, 17 which in turn have children 1, 5 and 16, 21. For
height 6 it must be a line. There are two ways: 1 as root and then
taking right children go dwon 4, 5, 10, 16, 17, 21. (Or take 21 as root



and go in reverse.) For the other heights there are many solutions.
E.g.: height 3: 10 has left child 5 with left child 4 with left child 1 and
10 has right child 17 which has two children 16, 21. Height 4: root 16
has left child 10 with left child 5 with left child 4 with left child 1 and
16 has right child 17 with right child 17. Height 5 would be similar
with 17 as root.

3. What is the difference between the binary-search property and the
heap property? (*) Can the heap property be used to print out the
keys of an n-node tree in sorted order in O(n) time? Explain how or
why not.
Solution:Actually there is not that much the same. In min-heap the
parent is less than both children. In BST the parent is bigger than
the leftchild and less than the right child and moreover the parent is
bigger than all of the left subtree and less than all of the right subtree.

There is no way to get a sorted order from a min-heap in time O(n).
Recall you can build a min-heap from scratch in time O(n). So is
you could then get a sorted order in further time O(n) then in total
O(n)+O(n) = O(n) you would sort an array from scratch. We can’t do
that – sorts take time O(n lg n) unless there is additional information
about the data.

4. You are given an array A[1 · · · n], whose values come from a universe
Ω. (In application, the values would be the keys of records.) You want
to test if there are any duplicates, if there are any 1 ≤ i < j ≤ n such
that A[i] = A[j]. You are given a hash function h : Ω → {1, . . . , n}
and a table T [1 · · ·n] of linked lists, initially all empty. Using the hash
function, give an algorithm that returns BAD if there is a duplicate and
GOOD if there is no duplicate. Discuss the time of the algorithm under
the assumption that calculating the hast function takes unit time.
Solution:For 1 ≤ i ≤ n calculate w = h(A[i]). Go through the linked
list T [w] to see if any of the values are A[i]. If so, end the procedure
and returen BAD. If not, add A[i] to the head of the linked list T [w].
If the FOR loop ends then return GOOD.

5. What would the BST tree look like if you start with the root a1 with
key[a1] = 1 (and nothing else) and then you apply INSERT [a2], . . . , INSERT [an]
in that order where key[ai] = i for each 2 ≤ i ≤ n? Suppose the same
assumptions of starting with a1 and the key values but the INSERT
commands were done in reverse order INSERT [an], . . . , INSERT [a2].
Solution:In the first case it would be like a line to the right, with



each ai the right child of the previous ai−1. In the second case an

would be the right child of a1 and then it would look like a line to
the left (but always staying to the right of a1) with ai−1 being the left
child of ai.


