
Fundamental Algorithms, Assignment 5
Solutions

1. Some exercises in which n is NOT the data size but we want the answer
in terms of n. (Answers in Θ-land.)

(a) How long does MERGE-SORT on n2 items take?
Solution:On n items it would be our mantra Θ(n lg n) so on n2

it would be Θ(n2 lg(n2)). But lg(n2) = 2 lg(n) and the 2 gets
absorbed in the Θ so the answer is Θ(n2 lg n).

(b) Suppose that when n = 2m, ANNA takes time Θ(m22m). How long
does it take as a function of n.
Solution:As m = lg n this is Θ(n lg2 n). (Note that lg2 n (the
square of the lg) and lg(n2) (the lg of the square) are very differ-
ent!)

(c) Suppose that when n = 2m, BOB takes time Θ(5m). How long
does it take as a function of n.
Solution:5m = (2c)m = (2m)c = nc where c = lg 5.

(d) How long does COUNTING-SORT take to sort n2 items with each
item in the range 0 to n3 − 1.
Solution:Θ(n3) as the main time is going through the mostly
empty slots.

(e) How long does RADIX-SORT take to sort n2 items with each item
in the range 0 to n3 − 1 and base n is used.
Solution:The numbers have three digits in base n (for example
0 to 999 in decimal or 0 to 7 in binary) so there are three appli-
cations of COUNTING-SORT. Three is a constant so lets just look
at COUNTING-SORT. Here the time is Θ(n2) as the main time is to
put the n2 items into the n slots. So the total time is Θ(n2).

2. Consider hashing with chaining using as hash function the sum of the
numerical values of the letters (A=1,B=2,...,Z=26) mod 7. For ex-
ample, h(JOE)= 10+15+5 mod 7 = 2. Starting with an empty table
apply the following operations. Show the state of the hash table after
each one. (In the case of Search tell what places were examined and
in what order.)
Insert COBB
Insert RUTH
Insert ROSE
Search BUZ



Insert DOC
Delete COBB

Solution:Let T [0 · · · 6] be the hash table which is {NIL, NIL, NIL,
NIL, NIL, NIL, NIL} initially.
Let num(·) : {A,B, · · · , Z} → [1 · · · , 26] be the specified bijection
which maps a letter to its numerical value. We have

• Insert COBB:
num(C) + num(O) + num(B) + num(B) mod 7
= (3 + 15 + 2 + 2) mod 7 = 22 mod 7 = 1
T [1] is empty, so “COBB” is placed in T [1].
T [0 · · · 6] = {NIL, “COBB”, NIL, NIL, NIL, NIL, NIL}.

• Insert RUTH:
num(R) + num(U) + num(T) + num(H) mod 7
= (18 + 21 + 20 + 8) mod 7 = 67 mod 7 = 4
T [4] is empty, so “RUTH” is placed in T [4].
T [0 · · · 6] = {NIL, “COBB”, NIL, NIL, “RUTH”, NIL, NIL}.

• Insert ROSE:
num(R) + num(O) + num(S) + num(E) mod 7
= (18 + 15 + 19 + 5) mod 7 = 57 mod 7 = 1
So “ROSE” is placed as the head of the linked list in T [1].
T = {NIL, “ROSE”→“COBB”, NIL, NIL, “RUTH”, NIL, NIL}.

• Search BUZ:
num(B) + num(U) + num(Z) mod 7
= (2 + 21 + 26) mod 7 = 49 mod 7 = 0
T [0] is empty, it would not contain “BUZ”
“NIL” (representing “not found”) is returned.
Hash table T remains unchanged.

• Insert DOC:
num(D) + num(O) + num(C) mod 7
= (4 + 15 + 3) mod 7 = 22 mod 7 = 1
So “DOC” is placed as the head of the linked list in T [1].
T = {NIL, “DOC”→“ROSE”→“COBB”, NIL, NIL, “RUTH”,
NIL, NIL}.

• Delete COBB:
As calculated before, the key for COBB is 1.
So “COBB” is fetched in T [1]. After “DOC” and “ROSE” are



examined, “COBB” is found and then deleted.
T = {NIL, “DOC”→“ROSE”, NIL, NIL, “RUTH”, NIL, NIL}.

3. Consider a Binary Search Tree T with vertices a, b, c, d, e, f, g, h and
ROOT [T ] = a and with the following values (N means NIL)

vertex a b c d e f g h
parent N e e a d g c a

left h N N e c N f N
right d N g N b N N N
key 80 170 140 200 150 143 148 70

Draw a nice picture of the tree. Illustrate INSERT[i]where key[i]=100.
Solution:Here is the picture, without the key values.

a

h d

e

c b

g

f

For INSERT[i]:
We start at root a with key[a] = 80. As 80 < 100 we replace a by its
right child d with key[d] = 200. As 100 < 200 we replace d by its left
child e with key[e] = 150. As 100 < 150 we replace e by its left child c

with key[c] = 140. As 100 < 140 we replace c by its left child. But its
left child is NIL so we make the new vertex i its left child by setting
p[i] = c and left[c] = i.


