Fundamental Algorithms, Assignment 4 Solutions

1. Consider the recursion $T(n)=9 T(n / 3)+n^{2}$ with initial value $T(1)=$ 1. Calculate the precise values of $T(3), T(9), T(27), T(81), T(243)$. Make a good (and correct) guess as to the general formula for $T\left(3^{i}\right)$ and write this as $T(n)$. (Don't worry about when n is not a power of three.) Now use the Master Theorem to give, in Thetaland, the asymptotics of $T(n)$. Check that the two answers are consistent.
Solution: $T(3)=9(1)+3^{3}=18=2(9), T(9)=9(18)+9^{2}=243=$ $3(81), T(27)=9(243)+729=2916=4(729), T(81)=32805=$ $5(6561), T(243)=354294=6(59049)$. In general, $T\left(3^{i}\right)=(i+1) 3^{2 i}$. With $n=3^{i}$ we have $3^{2 i}=n^{2}$ and $i=\log _{3} n$ so the formula is $T(n)=n^{2}\left(1+\log _{3} n\right)$. In Thetaland, $T(n)=\Theta\left(n^{2} \lg n\right)$. With the Master Theorem, as $\log _{3} 9=2$ we are in the special case which gives indeed $T(n)=\Theta\left(n^{2} \lg n\right)$.
Another approach is via the auxilliary function $S(n)$ discussed in class. Here $S(n)=T(n) / n^{2}$. Dividing the original recursion by n^{2} gives

$$
\frac{T(n)}{n^{2}}=\frac{T(n / 3)}{(n / 3)^{2}}+1
$$

so that

$$
S(n)=S(n / 3)+1 \text { with initial value } S(1)=T(1) / 1^{2}=1
$$

so that

$$
S(n)=1+\log _{3} n \text { and so } T(n)=n^{2}\left(1+\log _{3} n\right)
$$

2. Use the Master Theorem to give, in Thetaland, the asymptotics of these recursions:
(a) $T(n)=6 T(n / 2)+n \sqrt{n}$

Solution: As $\log _{2} 6=\frac{\ln 6}{\ln 2}=2.58 \cdots>3 / 2$ we have Low Overhead and $T(n)=\Theta\left(n^{\log _{2} 6}\right)$.
(b) $T(n)=4 T(n / 2)+n^{5}$

Solution: $\log _{2} 4=2<5$ so we have High Overhead and $T(n)=$ $\Theta\left(n^{5}\right)$.
(c) $T(n)=4 T(n / 2)+7 n^{2}+2 n+1$

Solution: $\log _{2} 4=2$ and the Overhead is $\Theta\left(n^{2}\right)$ so $T(n)=$ $\Theta\left(n^{2} \lg n\right.$.
3. Toom-3 is an algorithm similar to the Karatsuba algorithm discussed in class. (Don't worry how Toom-3 really works, we just want an analysis given the information below.) It multiplies two n digit numbers by making five recursive calls to multiplication of two $n / 3$ digit numbers plus thirty additions and subtractions. Each of the additions and subtractions take time $O(n)$. Give the recursion for the time $T(n)$ for Toom-3 and use the Master Theorem to find the asymptotics of $T(n)$. Compare with the time $\Theta\left(n^{\log _{2} 3}\right)$ of Karatsuba. Which is faster when n is large?
Solution: $T(n)=5 T(n / 3)+O(n)$ as the thirty is absorbed into the big oh n term. From the master theorem $T(n)=\Theta\left(n^{\log _{3} 5}\right)$. As

$$
\log _{3} 5=\frac{\ln 5}{\ln 3}=1.46 \cdots<1.58 \cdots=\log _{2} 3
$$

it is better that the $\Theta\left(n^{\log _{2} 3}\right)$ of Karatsuba. (In practice unless n is really large Karatsuba does better because Toom-3 has large constant factors.)
4. Write the following sums in the form $\Theta(g(n))$ with $g(n)$ one of the standard functions. In each case give reasonable (they needn't be optimal) positive c_{1}, c_{2} so that the sum is between $c_{1} g(n)$ and $c_{2} g(n)$ for n large.
(a) $n^{2}+(n+1)^{2}+\ldots+(2 n)^{2}$

Solution: $\Theta\left(n^{3}\right)$. There are $\sim n$ terms all between n^{2} and $4 n^{2}$ so the sum is between $n^{3}(1+o(1))$ and $4 n^{3}(1+o(1))$.
(b) $\lg ^{2}(1)+\lg ^{2}(2)+\ldots+\lg ^{2}(n)$

Solution: $\Theta\left(n \lg ^{2} n\right)$. There are n terms all at most $\lg ^{2}(n)$ so an upper bound is $n \lg ^{2}(n)$. Lopping off the bottom half of the terms we still have $n / 2$ terms and each is at least $\lg ^{2}(n / 2)=$ $(\lg (n)-1)^{2} \sim \lg ^{2} n$ so the lower bound is $(1+o(1))\left(\frac{n}{2}\right) \lg ^{2} n$.
(c) $1^{3}+\ldots+n^{3}$.

Solution: $T(n)=\Theta\left(n^{4}\right)$. Upper bound n^{4} as n terms, each at most n. Lopping off bottom half yields $n / 2$ terms, each at least $(n / 2)^{3}$ giving a lower bound $(n / 2)(n / 2)^{3}=n^{4} / 16$.
5. Give an algorithm for subtracting two n-digit decimal numbers. The numbers will be inputted as $A[0 \cdots N]$ and $B[0 \cdots N]$ and the output should be $C[0 \cdots N]$. How long does your algorithm take, expressing your answer in one of the standard $\Theta(g(n))$ forms.

Solution:Here is one way, the term BORROW being the truth value of whether you have "borrowed."
BORROW=false;
FOR I=0 TO N;
IF BORROW=false THEN $\mathrm{X}=\mathrm{A}[\mathrm{I}]-\mathrm{B}[\mathrm{I}]$;
IF BORROW=true THEN $\mathrm{X}=\mathrm{A}[\mathrm{I}]-1-\mathrm{B}[\mathrm{I}]$;
IF $\mathrm{X} \geq 0$ THEN
$\mathrm{C}[\mathrm{I}]=\mathrm{X}$;
BORROW=false;
ELSE
$\mathrm{C}[\mathrm{I}]=\mathrm{X}+10$;
BORROW=true;
ENDFOR
IF BORROW=true THEN ERROR;
END
This takes only a single pass and so is a linear time, that is $\Theta(N)$ algorithm.

