Fundamental Algorithms, Assignment 4 Solutions

1. Consider the recursion $T(n) = 9T(n/3) + n^2$ with initial value T(1) =1. Calculate the *precise* values of T(3), T(9), T(27), T(81), T(243). Make a good (and correct) guess as to the general formula for $T(3^i)$ and write this as T(n). (Don't worry about when n is not a power of three.) Now use the Master Theorem to give, in Thetaland, the asymptotics of T(n). Check that the two answers are consistent. Solution: $T(3) = 9(1) + 3^3 = 18 = 2(9), T(9) = 9(18) + 9^2 = 243 =$ 3(81), T(27) = 9(243) + 729 = 2916 = 4(729), T(81) = 32805 = 5(6561), T(243) = 354294 = 6(59049). In general, $T(3^i) = (i + 1)3^{2i}$. With $n = 3^i$ we have $3^{2i} = n^2$ and $i = \log_3 n$ so the formula is $T(n) = n^2(1 + \log_3 n)$. In Thetaland, $T(n) = \Theta(n^2 \lg n)$. With the Master Theorem, as $\log_3 9 = 2$ we are in the special case which gives indeed $T(n) = \Theta(n^2 \lg n)$.

Another approach is via the auxilliary function S(n) discussed in class. Here $S(n) = T(n)/n^2$. Dividing the original recursion by n^2 gives

$$\frac{T(n)}{n^2} = \frac{T(n/3)}{(n/3)^2} + 1$$

so that

$$S(n) = S(n/3) + 1$$
 with initial value $S(1) = T(1)/1^2 = 1$

so that

$$S(n) = 1 + \log_3 n$$
 and so $T(n) = n^2(1 + \log_3 n)$

- 2. Use the Master Theorem to give, in Thetaland, the asymptotics of these recursions:
 - (a) $T(n) = 6T(n/2) + n\sqrt{n}$ Solution: As $\log_2 6 = \frac{\ln 6}{\ln 2} = 2.58 \dots > 3/2$ we have Low Overhead and $T(n) = \Theta(n^{\log_2 6})$.
 - (b) $T(n) = 4T(n/2) + n^5$ Solution: $\log_2 4 = 2 < 5$ so we have High Overhead and $T(n) = \Theta(n^5)$.
 - (c) $T(n) = 4T(n/2) + 7n^2 + 2n + 1$ Solution: $\log_2 4 = 2$ and the Overhead is $\Theta(n^2)$ so $T(n) = \Theta(n^2 \lg n)$.

3. Toom-3 is an algorithm similar to the Karatsuba algorithm discussed in class. (Don't worry how Toom-3 really works, we just want an analysis given the information below.) It multiplies two n digit numbers by making five recursive calls to multiplication of two n/3 digit numbers plus thirty additions and subtractions. Each of the additions and subtractions take time O(n). Give the recursion for the time T(n) for Toom-3 and use the Master Theorem to find the asymptotics of T(n). Compare with the time $\Theta(n^{\log_2 3})$ of Karatsuba. Which is faster when n is large?

Solution: T(n) = 5T(n/3) + O(n) as the thirty is absorbed into the big of *n* term. From the master theorem $T(n) = \Theta(n^{\log_3 5})$. As

$$\log_3 5 = \frac{\ln 5}{\ln 3} = 1.46 \dots < 1.58 \dots = \log_2 3$$

it is better that the $\Theta(n^{\log_2 3})$ of Karatsuba. (In practice unless n is really large Karatsuba does better because Toom-3 has large constant factors.)

- 4. Write the following sums in the form $\Theta(g(n))$ with g(n) one of the standard functions. In each case give reasonable (they needn't be optimal) positive c_1, c_2 so that the sum is between $c_1g(n)$ and $c_2g(n)$ for n large.
 - (a) $n^2 + (n+1)^2 + \ldots + (2n)^2$ Solution: $\Theta(n^3)$. There are $\sim n$ terms all between n^2 and $4n^2$ so the sum is between $n^3(1 + o(1))$ and $4n^3(1 + o(1))$.
 - (b) $\lg^2(1) + \lg^2(2) + \ldots + \lg^2(n)$ Solution: $\Theta(n \lg^2 n)$. There are *n* terms all at most $\lg^2(n)$ so an upper bound is $n \lg^2(n)$. Lopping off the bottom half of the terms we still have n/2 terms and each is at least $\lg^2(n/2) = (\lg(n) - 1)^2 \sim \lg^2 n$ so the lower bound is $(1 + o(1))(\frac{n}{2}) \lg^2 n$.
 - (c) $1^3 + \ldots + n^3$. Solution: $T(n) = \Theta(n^4)$. Upper bound n^4 as n terms, each at most n. Lopping off bottom half yields n/2 terms, each at least $(n/2)^3$ giving a lower bound $(n/2)(n/2)^3 = n^4/16$.
- 5. Give an algorithm for subtracting two *n*-digit decimal numbers. The numbers will be inputted as $A[0 \cdots N]$ and $B[0 \cdots N]$ and the output should be $C[0 \cdots N]$. How long does your algorithm take, expressing your answer in one of the standard $\Theta(g(n))$ forms.

```
\label{eq:solution:Here is one way, the term BORROW being the truth value of whether you have "borrowed." \\ BORROW=false; \\ FOR I=0 TO N; \\ IF BORROW=false THEN X=A[I]-B[I]; \\ IF BORROW=true THEN X=A[I]-1-B[I]; \\ IF X \geq 0 THEN \\ C[I]=X; \\ BORROW=false; \\ \\ ELSE \\ C[I]=X+10; \\ BORROW=true; \\ \\ ENDFOR \\ IF BORROW=true THEN ERROR; \\ END \\ \\ \end{array}
```

This takes only a single pass and so is a linear time, that is $\Theta(N)$ algorithm.