
Fundamental Algorithms, Problem Set 3
Solutions

1. Write each of the following functions as Θ(g(n)) where g(n) is one of
the standard forms: 2n3 − 11n + 98 ; 6n + 43n lg n; 63n2 + 14n lg5 n;
3 + 5

n
Solution:In order, Θ(n4),Θ(n lg n),Θ(n2),Θ(1).

2. Illustrate the operation of RADIX-SORT on the list: COW, DOG, SEA,
RUG, ROW, MOB, BOX, TAB, BAR, EAR, TAR, DIG, BIG, TEA,
NOW, FOX following the Figure in the Radix-Sort section. (Use al-
phabetical order and sort one letter at a time.)
Solution:From left to right:

COW SEA TAB BAR
DOG TEA BAR BIG
SEA MOB EAR BOX
RUG TAB TAR COW
ROW DOG SEA DIG
MOB RUG TEA DOG
BOX DIG DIG EAR
TAB BIG BIG FOX
BAR BAR MOB MOB
EAR EAR DOG NOW
TAR TAR COW ROW
DIG COW ROW RUG
BIG ROW NOW SEA
TEA NOW BOX TAB
NOW BOX FOX TAR
FOX FOX RUG TEA

3. Illustrate the operation of BUCKET-SORT on the array
A = (.79, .13, .16, .64, .39, .20, .89, .53, .71, .43)
following the Figure in the Bucket-Sort section.
Solution:We first construct the auxiliary list B:

∅ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ∅
.13 .20 .39 .43 .53 .64 .79 .89

↓ ↓
.16 .71



We then sort each bucket with any sort, giving us:

∅ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ∅
.13 .20 .39 .43 .53 .64 .71 .89

↓ ↓
.16 .79

Finally, we concatenate each of the buckets together in order:

.13 .16 .20 .39 .43 .53 .64 .71 .79 .89

4. Given A[1 · · ·N ] with 0 ≤ A[I] < NN for all I.

(a) How long will COUNTING-SORT take?
Solution:Θ(NN) since you have to go through array C of length
NN . If you wrote O(NN + N) it is not technically wrong but it
misses the point. In asymptotics we ignore the lower order terms
to put things in the right form. Thus we want to write O(NN ),
in this case Θ(NN ) since you do indeed need to go through array
C.

(b) How long will RADIX-SORT take using base N?
Solution:Now C has length N do for each digit this is a linear
sort, Θ(N). However, there are N digits so that the total time is
Θ(N2).

(c) How long will RADIX-SORT take using base N
√

N? (Assume
√

N
integral.)
Solution:There are now

√
N digits, not too bad, but each digit

takes time N
√

N as that is the length of C so the total time is

Θ(
√

NN
√

N ) which is awful.

(d) (*) Argue that for no base K will RADIX-SORT do as well as
HEAP-SORT.
Solution:Here is one way. If the base Khas K ≥ N2 then it
takes time N2 or more just to go through the array C, which is
worse than the Θ(N lg N) HEAP-SORT. On the other side, if the
base K has K ≤ N2 then the number of digits is at least N/2
(the smaller the base, the greater the number of digits and with
base N2 there are N/2 digits) and as each digit takes linear time
the total time is Ω(N2) which is worse than HEAP-SORT.



5. Just For Fun: What is the next term is the sequence

4, 14, 23, 34, 42, 50, . . .

Solution:Its the A Train! Next stop, Columbus Circle.

6. Write the time T (N) (don’t worry about the output!) for the following
algorithms in the form T (N) = Θ(g(N)) for a standard g(N). Assume

(for this problem only!) that addition and multiplication take one time
unit.

(a) X=0
FOR I=1 TO N

do FOR J=1 TO N
X ++

Solution:Double-loop, time Θ(N2).

(b) I=1
WHILE I < N

do I = 2*I
Solution:Only lg N doublings to get to N and each doubling
(by our assumption) takes one time unit so total time Θ(lg N).

(c) FOR I=1 TO N
do J=1
WHILE J*J < I

do J=J+1
Solution:For each I the subloop takes O(

√
I) as after that J ∗

J > I. So we need look at
√

1 + . . . +
√

N . This is at most
N
√

N as there are N terms and each is at most
√

N . As a lower
bound cut it off at the middle. (This often works!) We have
√

N/2+ . . .+
√

N . There are N/2 terms here and each is at least
√

N/2 so the total is at least N
√

N/(2
√

2). In Theta-World (as
your lecturer likes to call it) constants don’t count so the answer
is Θ(N3/2).

(d) FOR I = 1 to N
J=I
WHILE J < N

do J=2*J
Solution:For a given I the subloop starts at I and double until



reaching N . We double t times, where t is the smallest integer
I2t ≥ N , so t = ⌈lg(N/I)⌉. So the total time is

TOTAL = O

(

n
∑

i=1

⌈lg(n/i)⌉
)

(1)

This is challenging.
Approach One: We “get rid” of the ceiling by noting that the
ceiling can only affect each term by 1 and therefore the sum by
at most n and so

TOTAL = O(n) + O

(

n
∑

i=1

lg(n/i)

)

(2)

Now there are a variety of approaches. One is via Stirling’s For-
mula. The object in parentheses is precisely ln(nn/n!) and by
Stirling nn/n! ∼ en(2πn)−1/2. The square root term is inconse-
quential and lg(nn/en) ∼ n lg 2 = O(n). Thus

TOTAL = O(n) + O(n) = O(n) (3)

this is a linear time algorithm! Note that the ceiling actually
does have an effect on the constants buried in the O as both
parts are linear in n. Comment: How did we know that removing
the ceilings would work? We didn’t, we tried it and it turned out
its effect was not dominant so we were OK. This is part of the
art of doing asymptotics!
Approach Two: Similar to the analysis of BUILD-MAX-HEAP
we have 1 doubling n/2 times, 2 doublings n/4 times (n/4 < i ≤
n/2), 3 doublings n/8 times so the total doublings is n

∑

u u2−u

but that sum, even to infinity, is 2 so the total doublings is ∼ 2n.

7. Prof. Ligate decides to do Bucket Sort on n items with n2 buckets
while his student Ima Hogg decides to do Bucket Sort on n items with
n1/2 buckets. Assume that the items are indeed uniformly distributed.
Assume that Ima’s algorithm for sorting inside a bucket takes time
O(m2) when the bucket has m items.

(a) Argue that Prof. Ligate has made a poor choice of the number of
buckets by looking analyzing the time of Bucket Sort in his case.
Solution:The time will be O(n2) since one has to pass through
the buckets to link them up. Note that even though most of the



buckets are empty you don’t know which one’s are empty so you
have to check each one.

(b) Argue that Ima has made a poor choice of the number of buckets
by looking analyzing the time of Bucket Sort in her case.
Solution:Lets say each of the n1/2 buckets had around n1/2

items. (Indeed, with high probability that will be the case.) Then
sorting each bucket (under our assumption) takes O((n1/2)2) =
O(n) so the total time for bucket sorting would be O(n3/2).

(c) Argue that Ima uses roughly the same amount of space as some-
one using n buckets.
Solution:She didn’t save any space. While the array is only of
length n1/2 she has all the items in the linked lists in the array
so the total space used up by the array is still Θ(n).

If you take a number and double it and double it again and then
double it a few more times, the number gets bigger and bigger
and goes higher and higher and only arithmetic can tell you what
the number is when you quit doubling.
from Arithmetic by Carl Sandburg


