
Fundamental Algorithms, Problem Set 2
Solutions

1. Illustrate the operation of PARTITION(A,1,12) on the array

A = (13, 19, 9, 5, 12, 8, 7, 4, 11, 2, 6, 10)

(You may use either the text’s program or the version given in class,
but please specify which you are using.)
Solution:Using the class version we have p = 1, q = 12 and an auxil-
liary array B of length 12. We initialize left = 1, right = 12. We first
set x = 10, the pivot element. Now for j = 1 to 11 we either put A(j)
as B(left) and increment left or as B(right) and decrement right,
depending on whether A(j) ≤ x or not. Here is what happens near
the start:

j newB left right
1 B[12]=13 1 11
2 B[11]=19 1 10
3 B[1]=9 2 10

etc., after j = 11 we get

B = (9, 5, 8, 7, 4, 2, 6, 8, 11, 12, 19, 13)

and now we have the left and right pointer with value 8 so we take our
pivot value 10 (note that we saved it so it wouldn’t be overwritten!)
and make it B[8], its correct position, giving

B = (9, 5, 8, 7, 4, 2, 6, 10, 11, 12, 19, 13)

We then reset the A vector to the B vector and we return the value
8. In QUICKSORT[1,12] we would now recursively QUICKSORT the first
seven positions and the final four positions.

2. Let L(n), (“L” for lucky) denote the number of comparisons that
quicksort does if each time it is applied the pivot lies in the precise
center of the array. For example, applying quicksort to an array of
length 31, say A(1) · · ·A(31) objects, there would be 30 comparisons
(between A(31) and all the other A(j)) and then A(31) would end up
in the 16th place and there would be two recursive calls to quicksort
on arrays each of size 15. Find the precise value of L(1023). (Hint:



thats one less than 1024!)
Solution:Let L(n) = p(n) + L(ℓ) + L(r).
L(1) = 0.
If n is odd, ℓ = n−1

2
= r, thus

L(n) = p(n) + 2L(
n − 1

2
).

W.l.o.g. If n is even, ℓ = ⌈n−1

2
⌉ and r = ⌊n−1

2
⌋.

p(n) = n− 1

L(1023) = 1022 + 2L(511) = 1022 + 2*3586 = 8194
L(511) = 510 + 2L(255) = 510 + 2*1538 = 3586
L(255) = 254 + 2L(127) = 254 + 2*642 = 1538
L(127) = 126 + 2L(63) = 126 + 2*258 = 642
L(63) = 62 + 2L(31) = 62 + 2*98 = 258
L(31) = 30 + 2L(15) = 30 + 2*34 = 98
L(15) = 14 + 2L(7) = 14 + 2*10 = 34
L(7) = 6 + 2L(3) = 6 + 2*2 = 10
L(3) = 2 + 2L(1) = 2 + 2*0 = 0
L(1) = 0

Note: We have to work backwards to get L(1023), doing L(1), L(3), L(7) · · ·
in that order.

3. You wish to sort five elements, denoted a, b, c, d, e. Assume that you
already know that a < b, c < d and a < c. Sort the elements with 4
further comparisons. (This actually gives a sorting of a, b, c, d, e under
no assumptions with 7 comparisons. For if you begin by comparing
a, b and then comparing c, d and then comparing the smaller of a, b to
the smaller of c, d you will have something like a < b, c < d, a < c

except maybe with the letter interchanged. So the 4 more comparisons
will suffice.
Solution:We have a < c < d. Ignoring b, we compare e with c and
then with either a or d so that now {a, c, d, e} are ranked, though
not necessarily in that order. Now we insert b into the ranking of
c, d, e, comparing it first to the middle and then to the top or bottom.
Since we know a < b this gives us the full ranking in 4 comparisons.



(Remark: This isn’t as ad hoc as it may seem. After the given first
three questions there are 15 possible permutations and 4 remaining
questions. As 15 ≤ 24 this is not ruled out. But the next question must
split the possibilities 8− 7. Suppose, for example, you make the next
question “Is b < c?” On the Yes branch there are 5 possibilities (abcd

with e in any position) but on the No branch there are 10 possibilities
(either acbd or acdb with e in any position) and there are only three
questions remaining so only 8 branches so we would be dead. Note
here that for a decision tree to work it has to work with all possible
answers.)

4. Babu is trying to sort a, b, c, d, e with seven comparisons. First he asks
“Is a < b” and the answer is yes. Now he asks “Is a < c?” Argue that
(in worst-case) he will not succeed.
Solution:Suppose (this being worst-case), he gets the answer Yes. At
this stage of the original 120 permutations there are 40 left. (One way
to see that is that a is the smallest of a, b, c and that happens precisely
one-third of the time.) But 40 > 32 = 25. From the Decision Tree
Lower Bound he will need more than 5 further questions.

5. Illustrate the operation of COUNTING-SORT with k = 6 on the array
A = (6, 0, 2, 2, 0, 1, 3, 4, 6, 1, 3).
Solution:We start with C[0 · · · 6] all zeroes. We go through A, in-
crementing C[A[i]], at the end of which C[j] gives the number of j’s
in A, so it is 2, 2, 2, 2, 1, 0, 2. Then from j = 1 to 6 we set C[j] ←
C[j] + C[j − 1] and now C has the cumulative sums 2, 4, 6, 8, 9, 9, 11.
Now we work our way down the array A:
A[11] = 2 and C[2] = 6 so we set B[6] = 2 and reset C[2] = 5.
A[10] = 3 and C[3] = 8 so we set B[5] = 8 and reset C[3] = 7.
A[9] = 1 and C[1] = 4 so we set B[4] = 1 and reset C[1] = 3.
A[8] = 6 and C[6] = 11 so we set B[11] = 6 and reset C[6] = 10.
A[7] = 4 and C[4] = 9 so we set B[9] = 4 and reset C[4] = 8.
A[6] = 3 and C[3] = 7 so we set B[7] = 3 and reset C[3] = 2.
That last one was the clever one. Because C[3] had earlier been decre-
mented we are putting the second three into the appropriate empty
space.
A[5] = 1 and C[1] = 3 so we set B[3] = 1 and reset C[1] = 2.
et cetera. At the end B is 0, 0, 1, 1, 2, 2, 3, 3, 4, 6, the sorted output.

6. You are given a Max-Heap with n entries. Assume all entries are
distinct. Your goal is to find the third largest entry. One way would



be to EXTRACT-MAX twice and then MAXIMUM. How long does this take?
Find a better (by which we always mean faster for n large) way.
Solution:As EXTRACT-MAX takes O(lg n) and MAXIMUM takes O(1) that
method would take 2 · O(lg n) + O(1) = O(lg n) steps. Better: The
third largest is (previous problems!) one of A[1] · · ·A[7]. Sort those
seven in O(1) time and take the third.


