Fundamental Algorithms, Assignment 13

Solutions

1. Suppose that we are doing Dijkstra's Algorithm on vertex set $V=$ $\{1, \ldots, 500\}$ with source vertex $s=1$ and at some time we have $S=$ $\{1, \ldots, 100\}$. What is the interpretation of $\pi[v], d[v]$ for $v \in S$?
Solution: $d[v]$ is the minimal cost of a path from s to v and $\pi[v]$ will be the vertex just before v on that path.
What is the interpretation of $\pi[v], d[v]$ for $v \notin S$?
Solution: $d[v]$ is the minimal cost of a path $s, v_{1}, \ldots, v_{j}, v$ where all the $v_{1}, \ldots, v_{j} \in S . \pi[v]$ will be the vertex just before v in this path, here v_{j}.
Which v will have $\pi[v]=N I L$ at this time.
Solution: Those v for which there is no directed edge from any vertex in S to v.
For those v what will be $d[v]$?
Solution:Infinity
2. Suppose, as with Dijkstra's Algorithm, the input is a directed graph, G, a source vertex s, and a weight function w. But now further assume that the weight function only takes on the values one and two. Modify Dijkstra's algorithm - replacing the MIN-HEAP with a more suitable data structure - so that the total time is $O(E+V)$.
Solution: There are a number of approaches here. Start with $S=\{s\}$ and sets ONE (those v adjacent to s via an edge of weight one), TWO (those v adjacent to s via an edge of weight two), and INFTY (those not adjacent to s). Now rather than going one vertex at a time S will be all points at weighted distance d or less from s and ONE,TWO will be those v adjacent to a $v \in S$ be an edge of weight one or two (if both, one). Suppose, first, ONE is empty. Add all points $v \in T W O$ to S. Each new (not in S) neighbor of each such v is put in ONE or TWO depending on its weight. Suppose, otherwise, ONE is not empty. Add all points $v \in O N E$ to S. All points of TWO move to ONE. Each new (not in S) neighbor of each such v is put in ONE or TWO depending on its weight. Alternate Approach: Whenever $w(x, y)=2$ create a new vertex z, delete edge (x, y) and add edges $(x, z),(z, y)$, each of weight one. Now all the weights are one so that BFS will give the distances.
3. Let G be a DAG on vertices $1, \ldots, n$ and suppose we are given that the ordering $1 \cdots n$ is a Topological Sort. Let COUNT[i,j] denote the
number of paths from i to j. Let s, a "source vertex" be given. Give an efficient algorithm (appropriately modifying the methods of §24.1) to find COUNT $[\mathrm{s}, \mathrm{j}]$ for all j.
Solution:Lets assume $s=1$ (we can ignore the earlier vertices, if any) and write $\operatorname{COU} N T[j]$ for $\operatorname{COU} N T[1, j]$. We set $\operatorname{COUNT}[1]=1$. The key is that $\operatorname{COUNT}[1, j]$ is the sum, over all $i<j$ with i, j a directed edge, of $\operatorname{COUNT}[1, i]$. Why? Well, every path from 1 to j will have a unique penultimate point $i<j$ and given i there will be precisely COUNT[i] such paths. One way to implement this is to make a reverse adjacency list, create for every j a list Adjrev $[j]$ of those i with a directed edge from i to j. This can be done in time $O(E)$ by going through the original adjacency lists and when $j \in \operatorname{Adj}[i]$ adding i to $\operatorname{Adjrev}[j]$. Then we can implement this sum. The total time (assuming addition takes unit time) is $O(E)$.
