
Fundamental Algorithms, Assignment 13
Solutions

1. Suppose that we are doing Dijkstra’s Algorithm on vertex set V =
{1, . . . , 500} with source vertex s = 1 and at some time we have S =
{1, . . . , 100}. What is the interpretation of π[v], d[v] for v ∈ S?
Solution:d[v] is the minimal cost of a path from s to v and π[v] will
be the vertex just before v on that path.
What is the interpretation of π[v], d[v] for v 6∈ S?
Solution:d[v] is the minimal cost of a path s, v1, . . . , vj , v where all
the v1, . . . , vj ∈ S. π[v] will be the vertex just before v in this path,
here vj.
Which v will have π[v] = NIL at this time.
Solution:Those v for which there is no directed edge from any vertex
in S to v.
For those v what will be d[v]?
Solution:Infinity

2. Suppose, as with Dijkstra’s Algorithm, the input is a directed graph,
G, a source vertex s, and a weight function w. But now further assume
that the weight function only takes on the values one and two. Modify
Dijkstra’s algorithm – replacing the MIN-HEAP with a more suitable
data structure – so that the total time is O(E + V ).
Solution:There are a number of approaches here. Start with S = {s}
and sets ONE (those v adjacent to s via an edge of weight one), TWO
(those v adjacent to s via an edge of weight two), and INFTY (those
not adjacent to s). Now rather than going one vertex at a time S will
be all points at weighted distance d or less from s and ONE,TWO will
be those v adjacent to a v ∈ S be an edge of weight one or two (if both,
one). Suppose, first, ONE is empty. Add all points v ∈ TWO to S.
Each new (not in S) neighbor of each such v is put in ONE or TWO
depending on its weight. Suppose, otherwise, ONE is not empty. Add
all points v ∈ ONE to S. All points of TWO move to ONE. Each new
(not in S) neighbor of each such v is put in ONE or TWO depending
on its weight. Alternate Approach: Whenever w(x, y) = 2 create
a new vertex z, delete edge (x, y) and add edges (x, z), (z, y), each of
weight one. Now all the weights are one so that BFS will give the
distances.

3. Let G be a DAG on vertices 1, . . . , n and suppose we are given that
the ordering 1 · · · n is a Topological Sort. Let COUNT[i,j] denote the



number of paths from i to j. Let s, a “source vertex” be given. Give
an efficient algorithm (appropriately modifying the methods of §24.1)
to find COUNT[s,j] for all j.
Solution:Lets assume s = 1 (we can ignore the earlier vertices, if any)
and write COUNT [j] for COUNT [1, j]. We set COUNT [1] = 1.
The key is that COUNT [1, j] is the sum, over all i < j with i, j a
directed edge, of COUNT [1, i]. Why? Well, every path from 1 to
j will have a unique penultimate point i < j and given i there will
be precisely COUNT [i] such paths. One way to implement this is
to make a reverse adjacency list, create for every j a list Adjrev[j]
of those i with a directed edge from i to j. This can be done in time
O(E) by going through the original adjacency lists and when j ∈ Adj[i]
adding i to Adjrev[j]. Then we can implement this sum. The total
time (assuming addition takes unit time) is O(E).


