Fundamental Algorithms, Assignment 12 SOLUTIONS

1. Which of the following problem classes are in P and which are probably not in P. (By probably not we mean that we do not as of today know that it is in P but of course tomorrow somebody might come up with a clever algorithm.)
(a) PRIME. The input here would be integers n and Yes would be returned iff n is prime.
Solution: In P via the Agarwal, Kayal, Sexana algorithm.
(b) I gave the above problem twenty years ago. What was the answer then?
Solution: Probably not in P. (The above algorithm was discovered in 2002.)
(c) CONNECTED-GRAPH. The input here would be a graph G and Yes would be returned iff the graph was connected.
Solution:In P as we can use, for example, Breadth-First Search.
(d) TRAVELING-SALESMAN. The input here would be a graph G together with a positive integer weight $w(e)$ for each edge e and an integer B. Yes would be returned iff there was a Hamiltonian Cycle which had total weight at most B.
Solution:Probably not in P. This is a big open question.
(e) SPANNING-TREE. The input here would be a graph G together with a positive integer weight $w(e)$ for each edge e and an integer B. Yes would be returned iff there was a spanning tree which had total weight at most B.
Solution:In P as we can use Kruskal's or Prim's algorithm.
(f) ALMOSTDAG. The input here would be a directed graph G. Yes would be returned iff there was a set of at most 10 edges of G that could be removed from G so that the remaining graph is a DAG. (Your argument should work with 10 replaced by any constant value.)
Solution:In P. For every set of 10 edges - and there are $O\left(n^{20}\right)$ of them, apply TopSort to see if G is a DAG after their removal. Each instance of TopSort is polynomial (certainly $O\left(n^{3}\right)$ with "room to spare") so multiplying by the number of instances gives $O\left(n^{23}\right)$ which is still polynomial. (Note that this argument does not work if 10 is replaced by, say, $\lfloor\sqrt{n}\rfloor$ as then you would have $n^{\sqrt{n}}$ which is not polynomial.)
2. Show that the following problem classes are in $N P$. (That is, describe the certificate that the Oracle gives and describe the procedure that Verifier will take. Warning: Do not trust Oracle! For example, if Oracle gives you n distinct vertices you have to verify that they are indeed distinct!)
(a) PRIME-INTERVAL The input here would be integers n, a, b. Yes would be returned iff there was a prime p which divided n and for which $a \leq p \leq b$.
Solution: Oracle gives p. Verifier checks that $a \leq p \leq b$, that $p \mid n$ and that p is prime, the last using the Agarwal, Kayal, Sexana algorithm.
(b) TRAVELLING-SALESMAN As described above.

Solution: Oracle gives the ordering x_{1}, \ldots, x_{n} of the vertices. Verifier must check that these are distinct vertices, that they are all the vertices, and that the sum of the weights of the edges $\left\{x_{i}, x_{i+1}\right.$ (including $\left\{x_{n}, x_{1}\right\}$ is at most B.
(c) COMPOSITE The input here would be an integer n. Yes would be returned if n was composite. For this problem I want two solutions. One (the easier one) uses the Agarwal, Kayal, Saxena algorithm. The second should not use the Agarwal, Kayal, Saxena algorithm.
Solution: One: Use AKS for Prime and then flip the Yes/No answer. That is, the Oracle is not needed at all. This is OK. Indeed any L which is in P is in $N P$ since you don't need to use the Oracle. The other: Oracle gives a, b with $n=a b$. Verifier checks the multiplication.
(d) 3-COLOR The input here would be a graph G. Yes would be returned if there was a three coloring of the vertices such that no two adjacent vertices v, w had the same color.
Solution: Oracle gives the three coloring. Verifier checks that for every $w \in \operatorname{Adj}[v], v, w$ do not have the same color.
(e) NEAR-DAG. The input here would be a directed graph G and an integer B. Yes would be returned if there was a set of at most B edges that could be removed from G so that the remaining graph was acyclic. (This is like ALMOST-DAG with the critical distinction that B is not restricted to 10 , or any constant value. Rather, B can depend on the number of vertices of G.)
Solution: Oracle gives the B edges to be removed. Verifier counts
them, makes sure they are edges in the graph, and then removes them from G and applies TopSort to see if the remaining graph is indeed a DAG. Alternately to TopSort, Oracle could give the ordering x_{1}, \ldots, x_{n} of the vertices such that all edges are "to the right". Then Verifier would have to check that these are indeed the n vertices with no repetition and that every edge does indeed go to the right.
3. For the following pairs L_{1}, L_{2} of problem classes show that $L_{1} \leq_{P} L_{2}$. That is, given a "black box" that will solve any instance of L_{2} in unit time, create a polynomial time algorithm that will solve any instance of L_{1} in polynomial time.
(a) Let L_{2} be TRAVELLING-SALESMAN DESIGNATED PATH. The input here would be a graph G, two designated vertices, a source v_{1} and a $\operatorname{sink} v_{n}$, together with a positive integer weight $w(e)$ for each edge e and an integer B. Yes would be returned iff there was a Hamiltonian Path (i.e., one goes through all the vertices v_{1}, \ldots, v_{n} in some order (starting and ending at the designated vertices) but does not return from v_{n} back to v_{1}) which had total weight at most $B . L_{1}$ is TRAVELLING-SALESMAN as described above.
Solution: For each edge $e=\{x, y\}$ of the graph ask L_{2} if there is a Hamiltonian Path from x to y (that is, source x, sink y) whose length is at most $B-w(e)$. If you ever get a Yes then the answer to L_{1} is Yes as you add the edge e to the Hamiltonian path. But if you always get No then the answer to L_{1} is No as a Hamiltonian cycle of length $\leq B$ would have to use some $e=\{x, y\}$ and cutting it out would give a Hamiltonian path of length less that $B-w(e)$ with that source and sink.
(b) Let L_{2} be CLIQUE. The input here would be a graph G together with a positive integer B. Yes would be returned iff there was a clique with at least B vertices. (A set of vertices in a graph G is a clique if every pair of them are adjacent.) Let L_{1} be INDEPENDENT-SET. The input here would be a graph G together with a positive integer B. Yes would be returned iff there was a independent set with at least B vertices. (A set of vertices in a graph G is an independent set if no pair of them are adjacent.) Solution: G has an independent set of size at least B if and only if G^{c} has a clique of size at least B. Here G^{c} is the complement of G, pairs of vertices being adjacent in G^{c} iff they are not adjacent
in G. Given G it takes time $O\left(n^{2}\right)$ to create G^{c}. Our algorithm for L_{1} on G would be to create G^{c} and then apply L_{2} to it, and that will return the correct answer to the original problem.
4. Assume PRIME-INTERVAL (defined above) is in P. Using it as a black box give a polynomial time algorithm with input integer $n \geq 2$ that returns some prime factor p. (Caution: This means polynomial in the number of digits in n, or what is sometimes called polylog n, meaning $O\left(\lg ^{c} n\right)$ for some constant c.)
Solution: We search for the prime factor by continually splitting the interval in half. We start that we know PRIME-INTERVAL($\mathrm{n}, 2, \mathrm{n}$) is true. Now check PRIME-INTERVAL ($n, 2, \frac{n}{2}$). If true we know there is a prime in $\left[2, \frac{n}{2}\right]$, else we know there is a prime in $\left(\frac{n}{2}, n\right]$. We keep splitting the interval in half until we have an interval of length one where there is a prime. This takes $\lg n$ calls. (*) Further, give a polynomial time algorithm with input integer $n \geq 2$ that returns the entire prime factorization of n.
Solution: Apply the above to get the first prime factor p and now iterate the entire procedure on $\frac{n}{p}$. Each time we get a prime the new value of n is at most half of the previous value so we do this at most $\lg n$ times, each time takes at most $\lg n$ calls, so tis would require at most $\lg ^{2} n$ calls, as desired.

