
Fundamental Algorithms, Assignment 12

SOLUTIONS

1. Which of the following problem classes are in P and which are probably
not in P . (By probably not we mean that we do not as of today know
that it is in P but of course tomorrow somebody might come up with
a clever algorithm.)

(a) PRIME. The input here would be integers n and Yes would be
returned iff n is prime.
Solution:In P via the Agarwal, Kayal, Sexana algorithm.

(b) I gave the above problem twenty years ago. What was the answer
then?
Solution:Probably not in P . (The above algorithm was discov-
ered in 2002.)

(c) CONNECTED-GRAPH. The input here would be a graph G and Yes
would be returned iff the graph was connected.
Solution:In P as we can use, for example, Breadth-First Search.

(d) TRAVELING-SALESMAN. The input here would be a graph G to-
gether with a positive integer weight w(e) for each edge e and
an integer B. Yes would be returned iff there was a Hamiltonian
Cycle which had total weight at most B.
Solution:Probably not in P . This is a big open question.

(e) SPANNING-TREE. The input here would be a graph G together
with a positive integer weight w(e) for each edge e and an integer
B. Yes would be returned iff there was a spanning tree which
had total weight at most B.
Solution:In P as we can use Kruskal’s or Prim’s algorithm.

(f) ALMOSTDAG. The input here would be a directed graph G. Yes
would be returned iff there was a set of at most 10 edges of G that
could be removed from G so that the remaining graph is a DAG.
(Your argument should work with 10 replaced by any constant

value.)
Solution:In P . For every set of 10 edges – and there are O(n20)
of them, apply TopSort to see if G is a DAG after their removal.
Each instance of TopSort is polynomial (certainly O(n3) with
“room to spare”) so multiplying by the number of instances gives
O(n23) which is still polynomial. (Note that this argument does
not work if 10 is replaced by, say, ⌊√n⌋ as then you would have
n
√

n which is not polynomial.)



2. Show that the following problem classes are in NP . (That is, describe
the certificate that the Oracle gives and describe the procedure that
Verifier will take. Warning: Do not trust Oracle! For example, if
Oracle gives you n distinct vertices you have to verify that they are
indeed distinct!)

(a) PRIME-INTERVAL The input here would be integers n, a, b. Yes
would be returned iff there was a prime p which divided n and
for which a ≤ p ≤ b.
Solution:Oracle gives p. Verifier checks that a ≤ p ≤ b, that p|n
and that p is prime, the last using the Agarwal, Kayal, Sexana
algorithm.

(b) TRAVELLING-SALESMAN As described above.
Solution:Oracle gives the ordering x1, . . . , xn of the vertices.
Verifier must check that these are distinct vertices, that they are
all the vertices, and that the sum of the weights of the edges
{xi, xi+1 (including {xn, x1} is at most B.

(c) COMPOSITE The input here would be an integer n. Yes would be
returned if n was composite. For this problem I want two so-
lutions. One (the easier one) uses the Agarwal, Kayal, Saxena
algorithm. The second should not use the Agarwal, Kayal, Sax-
ena algorithm.
Solution:One: Use AKS for Prime and then flip the Yes/No
answer. That is, the Oracle is not needed at all. This is OK.
Indeed any L which is in P is in NP since you don’t need to use
the Oracle. The other: Oracle gives a, b with n = ab. Verifier
checks the multiplication.

(d) 3-COLOR The input here would be a graph G. Yes would be
returned if there was a three coloring of the vertices such that no
two adjacent vertices v,w had the same color.
Solution:Oracle gives the three coloring. Verifier checks that
for every w ∈ Adj[v], v,w do not have the same color.

(e) NEAR-DAG. The input here would be a directed graph G and an
integer B. Yes would be returned if there was a set of at most B

edges that could be removed from G so that the remaining graph
was acyclic. (This is like ALMOST-DAG with the critical distinction
that B is not restricted to 10, or any constant value. Rather, B

can depend on the number of vertices of G.)
Solution:Oracle gives the B edges to be removed. Verifier counts



them, makes sure they are edges in the graph, and then removes
them from G and applies TopSort to see if the remaining graph
is indeed a DAG. Alternately to TopSort, Oracle could give the
ordering x1, . . . , xn of the vertices such that all edges are “to the
right”. Then Verifier would have to check that these are indeed
the n vertices with no repetition and that every edge does indeed
go to the right.

3. For the following pairs L1, L2 of problem classes show that L1 ≤P L2.
That is, given a “black box” that will solve any instance of L2 in unit
time, create a polynomial time algorithm that will solve any instance
of L1 in polynomial time.

(a) Let L2 be TRAVELLING-SALESMAN DESIGNATED PATH. The input
here would be a graph G, two designated vertices, a source v1 and
a sink vn, together with a positive integer weight w(e) for each
edge e and an integer B. Yes would be returned iff there was a
Hamiltonian Path (i.e., one goes through all the vertices v1, . . . , vn

in some order (starting and ending at the designated vertices) but
does not return from vn back to v1) which had total weight at
most B. L1 is TRAVELLING-SALESMAN as described above.
Solution:For each edge e = {x, y} of the graph ask L2 if there
is a Hamiltonian Path from x to y (that is, source x, sink y)
whose length is at most B −w(e). If you ever get a Yes then the
answer to L1 is Yes as you add the edge e to the Hamiltonian
path. But if you always get No then the answer to L1 is No
as a Hamiltonian cycle of length ≤ B would have to use some

e = {x, y} and cutting it out would give a Hamiltonian path of
length less that B − w(e) with that source and sink.

(b) Let L2 be CLIQUE. The input here would be a graph G together
with a positive integer B. Yes would be returned iff there was
a clique with at least B vertices. (A set of vertices in a graph
G is a clique if every pair of them are adjacent.) Let L1 be
INDEPENDENT-SET. The input here would be a graph G together
with a positive integer B. Yes would be returned iff there was a
independent set with at least B vertices. (A set of vertices in a
graph G is an independent set if no pair of them are adjacent.)
Solution:G has an independent set of size at least B if and only
if Gc has a clique of size at least B. Here Gc is the complement of
G, pairs of vertices being adjacent in Gc iff they are not adjacent



in G. Given G it takes time O(n2) to create Gc. Our algorithm
for L1 on G would be to create Gc and then apply L2 to it, and
that will return the correct answer to the original problem.

4. Assume PRIME-INTERVAL (defined above) is in P . Using it as a black
box give a polynomial time algorithm with input integer n ≥ 2 that
returns some prime factor p. (Caution: This means polynomial in the
number of digits in n, or what is sometimes called polylog n, meaning
O(lgc n) for some constant c.)
Solution:We search for the prime factor by continually splitting the
interval in half. We start that we know PRIME-INTERVAL(n,2,n) is
true. Now check PRIME-INTERVAL(n,2,n

2
). If true we know there is

a prime in [2, n
2
], else we know there is a prime in (n

2
, n]. We keep

splitting the interval in half until we have an interval of length one
where there is a prime. This takes lg n calls. (*) Further, give a
polynomial time algorithm with input integer n ≥ 2 that returns the
entire prime factorization of n.
Solution:Apply the above to get the first prime factor p and now
iterate the entire procedure on n

p
. Each time we get a prime the new

value of n is at most half of the previous value so we do this at most
lg n times, each time takes at most lg n calls, so tis would require at
most lg2 n calls, as desired.


