
Fundamental Algorithms, Assignment 11

Solutions

1. Consider Dumb Prim for MST. The high level idea is the same but to
find the minimal weight of an edge {i, j}, i ∈ S, j 6∈ S, one looks at
all the weights and finds the minimum in the usual way. Assume that
all pairs {i, j} have a weight. Let n be the number of vertices.

(a) When |S| = i what is the time to add a vertex to S as a function
of n and i.
Solution:O(i(n − i)) as you need the minimum of that many
terms. (Actually, to get this you can’t be ”too dumb.” One way
is to keep S and S in linked lists. When x moves from S to S it
takes O(n) to remove it from S and O(1) to add it to S. Now
initialize MIN = ∞ and do a double loop on S and S to find
that i, j, i ∈ S, j ∈ S with minimal weight.)

(b) What is the total time for Dumb Prim as a sum over i.
Solution:O(

∑

n−1

i=1
i(n − i)) as you start with |S| = 1 and end

with |S| = n − 1.

(c) Evaluate the above sum as Θ(g(n)) for some nice function g(n).
(Caution: The time is not an increasing function of i. For exam-
ple, when i = n − 1 the time is quite quick.)
Solution:O(n3). The biggest term is the middle i = n/2 with
i(n − i) = n2/4 and there are n − 1 terms so the sum is at most
(n−1)n2/4 ∼ n3/4. The i = n/4 term gives i(n−i) = 3n2/16 and
all terms from i = n/4 to i = 3n/4 are at least that big so the
sume is at least (n/2)(3n2/16) ∼ (3/32)n3. We’ve sandwiched
the sum so it is Θ(n3).

(d) Compare the time for Dumb Prim with Prim as discussed in class
Solution:Prim takes O(E ln V). Here V = n and E =

(

n

2

)

∼
n2/2 so Prim takes O(n2 ln n), definitely faster than Dumb Prim.

2. Consider Prim’s Algorithm for MST on the complete graph with vertex
set {1, . . . , n}. Assume that edge {i, j} has weight (j − i)2. Let the
root vertex r = 1. Show the pattern as Prim’s Algorithm is applied.
Solution:The set S, initially {1}, will grow to {1, 2},. . .,{1, 2, . . . , i},
. . ., {1, . . . , n}. When S = {1, . . . , i} the closest point to S will be
i + 1 with π[i + 1] = i and key[i + 1] = 1. In particular, Let n = 100
and consider the situation when the tree created has 73 elements and
π and key have been updated.

(a) What are these 73 elements.
Solution:1, . . . , 73

(b) What are π[84] and key[84].
Solution:π[84] = 73 (all other of 1, . . . , 72 are further) and
key[84] = (84 − 73)2 = 121.

3. Find d = gcd(89, 55) and x, y with 89x + 55y = 1. [Remark: This is
part of a pattern with two consecutive numbers from the Fibonacci
sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .]
Solution:

EUCLID(89, 55) = EUCLID(55, 34) = EUCLID(34, 21) =

= EUCLID(21, 13) = EUCLID(13, 8) = EUCLID(8, 5) =

= EUCLID(5, 3) = EUCLID(3, 2) = EUCLID(2, 1) =

= EUCLID(1, 0) = 1

with all quotients 1 except the last. For EXTENDED− EUCLID we get a
chart like Figure 31.1:

a b ⌊a/b⌋ d x y

89 55 1 1 -21 34
55 34 1 1 13 -21
34 21 1 1 -8 13
21 13 1 1 5 -8
13 8 1 1 -3 5
8 5 1 1 2 -3
5 3 1 1 -1 2
3 2 1 1 1 -1
2 1 2 1 0 1
1 0 - 1 1 0

so x = −21 and y = 34. (Note that the x’s and y’s form a Fibonacci
like pattern as well!)

4. Find 211

507
in Z1000.

Solution:Here we first find EUCLID(1000, 507):

EUCLID(1000, 507) = EUCLID(507, 493) = EUCLID(493, 14) =

= EUCLID(14, 3) = EUCLID(3, 2) = EUCLID(2, 1) =

= EUCLID(1, 0) = 1

For EXTENDED− EUCLID we get a chart like Figure 31.1:

a b ⌊a/b⌋ d x y

1000 507 1 1 181 -357
507 493 1 1 -176 181
493 14 1 35 5 -176
14 3 1 4 -1 5
3 2 1 1 1 -1
2 1 1 2 0 1
1 0 - 1 1 0

so that 1000(181)− 357(507) = 1 so in Z1000 we have (−357)(507) = 1
so 1

507
= −357 = 643. Finally 211

507
= 211 · 643 = 135673 = 673. So the

answer is 673. To check: 673 · 507 = 341211 = 211.

5. Solve the system
x ≡ 34 mod 101
x ≡ 59 mod 103.
Solution:We write x = 103y + 59 (we could start with either and
this one is a bit easier) so that in Z101 we want 103y + 59 = 34 or
2y = −25 = 76 and y = 38. (Usually division is complicated but here it
worked out like normal division.) Then x = 103(38)+59 = 3973. The
general answer is given as x ≡ 3973 mod 10403 as 10403 = 103 · 101.

6. Using the Island-Hopping Method to find 21000 modulo 1001 using a
Calculator but NOT using multiple precision arithmetic.
Solution:

21 = 2

22 = 2 · 2 = 4

24 = 4 · 4 = 16

28 = 16 · 16 = 256

216 = 256 · 256 = 65536 = 471

232 = 471 · 471 = 221841 = 620

264 = 620 · 620 = 384400 = 16

2128 = 16 · 16 = 256

2256 = 256 · 256 = 65536 = 471

2512 = 471 · 471 = 221841 = 620

As 1000 = 512 + 256 + 128 + 64 + 32 + 8 we have

21000 = 620 · 471 · 256 · 16 · 620 · 256

We calculate in stages: 620 ·471 = 292020 = 729, 729 ·256 = 186624 =
438, 438 ·16 = 7008 = 1, 1 ·620 = 620 = 620, 620 ·256 = 158720 = 562,
So the answer is 562. This shows that 1001 is definitely not a prime.
(Of course, for numbers this small there are easier ways!)

7. Suppose that during Kruskal’s Algorithm (for MST) and some point
we have SIZE[v] = 37. What is the interpretation of that in the case
when π[v] = v?
Solution:At that moment v is in a component of size 37 and it is the
root of the associated tree.
What is the interpretation of that in the case when π[v] = u 6= v?
Solution:v had had size 37 at the moment when π[v] was changed,
and the component with v was joined to the (larger) component with
u.
How many different values can π[w] have during the course of Kruskal’s
algorithm?
Solution:Two. Initially π[w] = w but once it changes to π[w] = v it
doesn’t change any more. Precisely one vertex does not ever change,
it becomes the root of the final rooted tree.
How many different values (as a function of V , the number of vertices)
can SIZE[w] have during the course of Kruskal’s algorithm?
Solution:V . It is possible that w is joined to isolated vertices V − 1
times and so SIZE[w] goes from 1 to V by ones.

