Fundamental Algorithms, Assignment 11

Solutions

1. Consider Dumb Prim for MST. The high level idea is the same but to find the minimal weight of an edge $\{i, j\}, i \in S, j \notin S$, one looks at all the weights and finds the minimum in the usual way. Assume that all pairs $\{i, j\}$ have a weight. Let n be the number of vertices.
(a) When $|S|=i$ what is the time to add a vertex to S as a function of n and i.
Solution: $O(i(n-i))$ as you need the minimum of that many terms. (Actually, to get this you can't be "too dumb." One way is to keep S and \bar{S} in linked lists. When x moves from \bar{S} to S it takes $O(n)$ to remove it from \bar{S} and $O(1)$ to add it to S. Now initialize $M I N=\infty$ and do a double loop on S and \bar{S} to find that $i, j, i \in S, j \in \bar{S}$ with minimal weight.)
(b) What is the total time for Dumb Prim as a sum over i.

Solution: $O\left(\sum_{i=1}^{n-1} i(n-i)\right)$ as you start with $|S|=1$ and end with $|S|=n-1$.
(c) Evaluate the above sum as $\Theta(g(n))$ for some nice function $g(n)$. (Caution: The time is not an increasing function of i. For example, when $i=n-1$ the time is quite quick.)
Solution: $O\left(n^{3}\right)$. The biggest term is the middle $i=n / 2$ with $i(n-i)=n^{2} / 4$ and there are $n-1$ terms so the sum is at most $(n-1) n^{2} / 4 \sim n^{3} / 4$. The $i=n / 4$ term gives $i(n-i)=3 n^{2} / 16$ and all terms from $i=n / 4$ to $i=3 n / 4$ are at least that big so the sume is at least $(n / 2)\left(3 n^{2} / 16\right) \sim(3 / 32) n^{3}$. We've sandwiched the sum so it is $\Theta\left(n^{3}\right)$.
(d) Compare the time for Dumb Prim with Prim as discussed in class Solution: Prim takes $O(E \ln V)$. Here $V=n$ and $E=\binom{n}{2} \sim$ $n^{2} / 2$ so Prim takes $O\left(n^{2} \ln n\right)$, definitely faster than Dumb Prim.
2. Consider Prim's Algorithm for MST on the complete graph with vertex set $\{1, \ldots, n\}$. Assume that edge $\{i, j\}$ has weight $(j-i)^{2}$. Let the root vertex $r=1$. Show the pattern as Prim's Algorithm is applied. Solution: The set S, initially $\{1\}$, will grow to $\{1,2\}, \ldots,\{1,2, \ldots, i\}$, $\ldots,\{1, \ldots, n\}$. When $S=\{1, \ldots, i\}$ the closest point to S will be $i+1$ with $\pi[i+1]=i$ and $\operatorname{key}[i+1]=1$. In particular, Let $n=100$ and consider the situation when the tree created has 73 elements and π and key have been updated.
(a) What are these 73 elements.

Solution: $1, \ldots, 73$
(b) What are $\pi[84]$ and $k e y[84]$.

Solution: $\pi[84]=73$ (all other of $1, \ldots, 72$ are further) and key $[84]=(84-73)^{2}=121$.
3. Find $d=\operatorname{gcd}(89,55)$ and x, y with $89 x+55 y=1$. [Remark: This is part of a pattern with two consecutive numbers from the Fibonacci sequence $0,1,1,2,3,5,8,13,21,34,55,89, \ldots]$
Solution:

$$
\begin{gathered}
\operatorname{EUCLId}(89,55)=\operatorname{EUCLId}(55,34)=\operatorname{EUCLID}(34,21)= \\
=\operatorname{EUCLID}(21,13)=\operatorname{EUCLId}(13,8)=\operatorname{EUCLID}(8,5)= \\
=\operatorname{EUCLID}(5,3)=\operatorname{EUCLId}(3,2)=\operatorname{EUCLID}(2,1)= \\
=\operatorname{EUCLId}(1,0)=1
\end{gathered}
$$

with all quotients 1 except the last. For EXTENDED - EUCLID we get a chart like Figure 31.1:

a	b	$\lfloor a / b\rfloor$	d	x	y
89	55	1	1	-21	34
55	34	1	1	13	-21
34	21	1	1	-8	13
21	13	1	1	5	-8
13	8	1	1	-3	5
8	5	1	1	2	-3
5	3	1	1	-1	2
3	2	1	1	1	-1
2	1	2	1	0	1
1	0	-	1	1	0

so $x=-21$ and $y=34$. (Note that the x 's and y 's form a Fibonacci like pattern as well!)
4. Find $\frac{211}{507}$ in Z_{1000}.

Solution: Here we first find $\operatorname{EUCLID}(1000,507)$:

$$
\begin{gathered}
\operatorname{EUCLID}(1000,507)=\operatorname{EUCLID}(507,493)=\operatorname{EUCLID}(493,14)= \\
=\operatorname{EUCLID}(14,3)=\operatorname{EUCLID}(3,2)=\operatorname{EUCLID}(2,1)=
\end{gathered}
$$

$$
=\operatorname{EUCLID}(1,0)=1
$$

For EXTENDED - EUCLID we get a chart like Figure 31.1:

a	b	$\lfloor a / b\rfloor$	d	x	y
1000	507	1	1	181	-357
507	493	1	1	-176	181
493	14	1	35	5	-176
14	3	1	4	-1	5
3	2	1	1	1	-1
2	1	1	2	0	1
1	0	-	1	1	0

so that $1000(181)-357(507)=1$ so in Z_{1000} we have $(-357)(507)=1$ so $\frac{1}{507}=-357=643$. Finally $\frac{211}{507}=211 \cdot 643=135673=673$. So the answer is 673 . To check: $673 \cdot 507=341211=211$.
5. Solve the system
$x \equiv 34 \bmod 101$
$x \equiv 59 \bmod 103$.
Solution: We write $x=103 y+59$ (we could start with either and this one is a bit easier) so that in Z_{101} we want $103 y+59=34$ or $2 y=-25=76$ and $y=38$. (Usually division is complicated but here it worked out like normal division.) Then $x=103(38)+59=3973$. The general answer is given as $x \equiv 3973 \bmod 10403$ as $10403=103 \cdot 101$.
6. Using the Island-Hopping Method to find 2^{1000} modulo 1001 using a Calculator but NOT using multiple precision arithmetic.
Solution:

$$
\begin{gathered}
2^{1}=2 \\
2^{2}=2 \cdot 2=4 \\
2^{4}=4 \cdot 4=16 \\
2^{8}=16 \cdot 16=256 \\
2^{16}=256 \cdot 256=65536=471 \\
2^{32}=471 \cdot 471=221841=620 \\
2^{64}=620 \cdot 620=384400=16 \\
2^{128}=16 \cdot 16=256
\end{gathered}
$$

$$
\begin{gathered}
2^{256}=256 \cdot 256=65536=471 \\
2^{512}=471 \cdot 471=221841=620
\end{gathered}
$$

As $1000=512+256+128+64+32+8$ we have

$$
2^{1000}=620 \cdot 471 \cdot 256 \cdot 16 \cdot 620 \cdot 256
$$

We calculate in stages: $620 \cdot 471=292020=729,729 \cdot 256=186624=$ $438,438 \cdot 16=7008=1,1 \cdot 620=620=620,620 \cdot 256=158720=562$, So the answer is 562 . This shows that 1001 is definitely not a prime. (Of course, for numbers this small there are easier ways!)
7. Suppose that during Kruskal's Algorithm (for MST) and some point we have $S I Z E[v]=37$. What is the interpretation of that in the case when $\pi[v]=v$?
Solution: At that moment v is in a component of size 37 and it is the root of the associated tree.
What is the interpretation of that in the case when $\pi[v]=u \neq v$?
Solution: v had had size 37 at the moment when $\pi[v]$ was changed, and the component with v was joined to the (larger) component with u.
How many different values can $\pi[w]$ have during the course of Kruskal's algorithm?
Solution:Two. Initially $\pi[w]=w$ but once it changes to $\pi[w]=v$ it doesn't change any more. Precisely one vertex does not ever change, it becomes the root of the final rooted tree.
How many different values (as a function of V, the number of vertices) can $S I Z E[w]$ have during the course of Kruskal's algorithm?
Solution: V. It is possible that w is joined to isolated vertices $V-1$ times and so $S I Z E[w]$ goes from 1 to V by ones.

