Fundamental Algorithms, Assignment 11 Solutions

- 1. Consider Dumb Prim for MST. The high level idea is the same but to find the minimal weight of an edge $\{i, j\}, i \in S, j \notin S$, one looks at all the weights and finds the minimum in the usual way. Assume that all pairs $\{i, j\}$ have a weight. Let n be the number of vertices.
 - (a) When |S| = i what is the time to add a vertex to S as a function of n and i.

Solution: O(i(n-i)) as you need the minimum of that many terms. (Actually, to get this you can't be "too dumb." One way is to keep S and \overline{S} in linked lists. When x moves from \overline{S} to S it takes O(n) to remove it from \overline{S} and O(1) to add it to S. Now initialize $MIN = \infty$ and do a double loop on S and \overline{S} to find that $i, j, i \in S, j \in \overline{S}$ with minimal weight.)

- (b) What is the total time for Dumb Prim as a sum over *i*. Solution: $O(\sum_{i=1}^{n-1} i(n-i))$ as you start with |S| = 1 and end with |S| = n - 1.
- (c) Evaluate the above sum as Θ(g(n)) for some nice function g(n). (Caution: The time is not an increasing function of i. For example, when i = n − 1 the time is quite quick.)
 Solution: O(n³). The biggest term is the middle i = n/2 with i(n − i) = n²/4 and there are n − 1 terms so the sum is at most (n-1)n²/4 ~ n³/4. The i = n/4 term gives i(n-i) = 3n²/16 and all terms from i = n/4 to i = 3n/4 are at least that big so the sume is at least (n/2)(3n²/16) ~ (3/32)n³. We've sandwiched the sum so it is Θ(n³).
- (d) Compare the time for Dumb Prim with Prim as discussed in class Solution:Prim takes $O(E \ln V)$. Here V = n and $E = {n \choose 2} \sim n^2/2$ so Prim takes $O(n^2 \ln n)$, definitely faster than Dumb Prim.
- 2. Consider Prim's Algorithm for MST on the complete graph with vertex set $\{1, \ldots, n\}$. Assume that edge $\{i, j\}$ has weight $(j - i)^2$. Let the root vertex r = 1. Show the pattern as Prim's Algorithm is applied. Solution: The set S, initially $\{1\}$, will grow to $\{1, 2\}, \ldots, \{1, 2, \ldots, i\}$, $\ldots, \{1, \ldots, n\}$. When $S = \{1, \ldots, i\}$ the closest point to S will be i + 1 with $\pi[i + 1] = i$ and key[i + 1] = 1. In particular, Let n = 100and consider the situation when the tree created has 73 elements and π and key have been updated.

- (a) What are these 73 elements.Solution:1,...,73
- (b) What are $\pi[84]$ and key[84]. Solution: $\pi[84] = 73$ (all other of 1,...,72 are further) and $key[84] = (84 - 73)^2 = 121$.
- 3. Find $d = \gcd(89, 55)$ and x, y with 89x + 55y = 1. [Remark: This is part of a pattern with two consecutive numbers from the Fibonacci sequence $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \ldots$] Solution:

$$\begin{split} \texttt{EUCLID}(89,55) &= \texttt{EUCLID}(55,34) = \texttt{EUCLID}(34,21) = \\ &= \texttt{EUCLID}(21,13) = \texttt{EUCLID}(13,8) = \texttt{EUCLID}(8,5) = \\ &= \texttt{EUCLID}(5,3) = \texttt{EUCLID}(3,2) = \texttt{EUCLID}(2,1) = \\ &= \texttt{EUCLID}(1,0) = 1 \end{split}$$

with all quotients 1 except the last. For EXTENDED - EUCLID we get a chart like Figure 31.1:

a	b	$\lfloor a/b \rfloor$	d	х	у
89	55	1	1	-21	34
55	34	1	1	13	-21
34	21	1	1	-8	13
21	13	1	1	5	-8
13	8	1	1	-3	5
8	5	1	1	2	-3
5	3	1	1	-1	2
3	2	1	1	1	-1
2	1	2	1	0	1
1	0	-	1	1	0

so x = -21 and y = 34. (Note that the x's and y's form a Fibonacci like pattern as well!)

4. Find $\frac{211}{507}$ in Z_{1000} .

Solution: Here we first find EUCLID(1000, 507):

EUCLID(1000, 507) = EUCLID(507, 493) = EUCLID(493, 14) =

= EUCLID(14,3) = EUCLID(3,2) = EUCLID(2,1) =

= EUCLID(1,0) = 1

For EXTENDED – EUCLID we get a chart like Figure 31.1:

a	b	$\lfloor a/b \rfloor$	d	х	У
1000	507	1	1	181	-357
507	493	1	1	-176	181
493	14	1	35	5	-176
14	3	1	4	-1	5
3	2	1	1	1	-1
2	1	1	2	0	1
1	0	-	1	1	0

so that 1000(181) - 357(507) = 1 so in Z_{1000} we have (-357)(507) = 1so $\frac{1}{507} = -357 = 643$. Finally $\frac{211}{507} = 211 \cdot 643 = 135673 = 673$. So the answer is 673. To check: $673 \cdot 507 = 341211 = 211$.

- 5. Solve the system
 - $x \equiv 34 \mod 101$
 - $x \equiv 59 \mod 103.$

Solution: We write x = 103y + 59 (we could start with either and this one is a bit easier) so that in Z_{101} we want 103y + 59 = 34 or 2y = -25 = 76 and y = 38. (Usually division is complicated but here it worked out like normal division.) Then x = 103(38) + 59 = 3973. The general answer is given as $x \equiv 3973 \mod 10403$ as $10403 = 103 \cdot 101$.

 Using the Island-Hopping Method to find 2¹⁰⁰⁰ modulo 1001 using a Calculator but NOT using multiple precision arithmetic. Solution:

$$2^{1} = 2$$

$$2^{2} = 2 \cdot 2 = 4$$

$$2^{4} = 4 \cdot 4 = 16$$

$$2^{8} = 16 \cdot 16 = 256$$

$$2^{16} = 256 \cdot 256 = 65536 = 471$$

$$2^{32} = 471 \cdot 471 = 221841 = 620$$

$$2^{64} = 620 \cdot 620 = 384400 = 16$$

$$2^{128} = 16 \cdot 16 = 256$$

 $2^{256} = 256 \cdot 256 = 65536 = 471$ $2^{512} = 471 \cdot 471 = 221841 = 620$ As 1000 = 512 + 256 + 128 + 64 + 32 + 8 we have $2^{1000} = 620 \cdot 471 \cdot 256 \cdot 16 \cdot 620 \cdot 256$

We calculate in stages: $620 \cdot 471 = 292020 = 729$, $729 \cdot 256 = 186624 = 438$, $438 \cdot 16 = 7008 = 1$, $1 \cdot 620 = 620 = 620$, $620 \cdot 256 = 158720 = 562$, So the answer is 562. This shows that 1001 is *definitely* not a prime. (Of course, for numbers this small there are easier ways!)

7. Suppose that during Kruskal's Algorithm (for MST) and some point we have SIZE[v] = 37. What is the interpretation of that in the case when $\pi[v] = v$?

Solution: At that moment v is in a component of size 37 and it is the root of the associated tree.

What is the interpretation of that in the case when $\pi[v] = u \neq v$?

Solution: v had had size 37 at the moment when $\pi[v]$ was changed, and the component with v was joined to the (larger) component with u.

How many different values can $\pi[w]$ have during the course of Kruskal's algorithm?

Solution: Two. Initially $\pi[w] = w$ but once it changes to $\pi[w] = v$ it doesn't change any more. Precisely one vertex does not ever change, it becomes the root of the final rooted tree.

How many different values (as a function of V, the number of vertices) can SIZE[w] have during the course of Kruskal's algorithm?

Solution: V. It is possible that w is joined to isolated vertices V - 1 times and so SIZE[w] goes from 1 to V by ones.